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A time series showing seif-affine over all time scales follows a power law spectrum; when such a time series, X(})
(j=1,2,...,N), is transformed into the discrete Fourier transformation (i.e. X(j)= L¥/3C, cos2mjk/N — 6,), where C;,
and 4, are the amplitude and phase for wavenumber k, respectively), the power spectrum density for wavenumber k is
given by P(k)= C,f/N o k~®. The relationship between the power law index a and the fractal dimension D for a time
series following a power law spectrum is investigated by using a numerical experiment. It should be noted that the time
series with the same power law index shows various behaviors in a time domain, depending on distribution of 8, and gives
different values of the fractal dimension accordingly. In short, the phase distribution strongly affects the irregularity
represented in terms of the fractal dimension. In addition, the relationships between a and D are also examined both for

the differenced and for the integrated time series.

1. Introduction

The power spectrum analysis is generally used
for examining an irregular time series. When a
power spectrum density P(f) shows, in particu-
lar, a red-noise type without an eminent peak, it
is naturally approximated to follow a power law
spectrum: P(f) o f~¢, where the red-noise type
indicates that the power spectrum exhibits appre-
ciably more power at low frequencies than at high
frequencies, i.e. @ > 0. This approximation to the
power spectrum is the simplest description for
the red-noise type. In this approximation, the
power law index a« is one of the quantities de-
scribing the irregularity of the time series. Such
recipe is often applied to time series observed in
many fields.

A new concept for describing the characteris-
tics of irregular time series has been presented by
Mandelbrot [1]. He considered the fractal set of
points (¢, X(¢)) forming the graph of a function X

defined on the unit interval [1, 2]. In short, when
the time series X(t) can be viewed geometrically
as a curve, he defined a statistically self-affine
curve of which each part can be considered as a
reduced scale image of the whole. By setting
X(0) =0, the rescaled function ¢t~X(¢) has a
probability distribution independent of ¢, where
H is an index describing the characteristics of the
self-affine curve. H can be allowed to lie any-
where in the range of 0 <H <1. Mandelbrot
called this curve the Brown line-to-line function.
(We call hereafter this function BLF for short.)
In terms of a spectruni analysis, the power spec-
trum density of such curve follows a power law
form, P(f) af~!172% [1, 3].

In order to obtain the fractal dimension D of
the time series, Burlaga and Klein presented a
method to calculate the length of the curve of the
time series [4]. They compared the power law
index a obtained directly from the FFT proce-
dure with that estimated from the fractal dimen-
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sion using the fractional relationship between
and D: @ =5—2D [1, 3]. Their emphasis is laid
on the efficiency of the fractal analysis as com-
pared with that of the power spectrum analysis.

Another method to calculate the curve length
of the time series has been proposed by Higuchi
[5]. As for the accurate estimation of the fractal
dimension, the superiority of his method to that
by Burlaga and Klein was demonstrated. He has
also shown that his method is superior to the
power spectral analysis in the stable estimation of
the index, particularly when the number of the
data used for estimating the indices is limited.
Such case often occurs in the analysis of geophys-
ical phenomena. For example, the weak stationar-
ity can be assumed only during a short time
interval, and the number of the data used in the
estimation of the indices comes to be limited
accordingly. The fractal analysis has been used
for the description of the irregularity of the set of
points (¢, X(#)), not only for the time series [4-6]
but also for the topographic profile [7, 8].

The relationship between the fractal dimension
and the power law index is unsettled for a general
time series showing the power law spectrum. Our
major object is to investigate the relationship
between them by using a numerical experiment.

2. Relationship between the fractal dimension
and the power law index

First, we give an outline of the method pre-
sented by Higuchi [S]. From a given time series
X() (j=1,2,3,...,N), we first construct a new
time series, X", defined as follows:

Xm X(m), X(m+71),X(m+27),
o X(m+ [(N=m)/r]7)

(m=1,2,...,1), (1)

where [ ] denotes the Gauss’ notation and both 7
and m are integer. The length of the curve, X",

is given by

|
N-1 }1

“TN=—m)/o]r [T (2)

(N=-m)/7]
Y |[X(m+ir)-X(m+ (i-1)7)]

i=1

We define the curve length for the time interval
of 7 as the average value over r sets of L, (1),
and specify it by (L(1)). If (L(7)) a7~? within
the range 7, < T < Tq., the curve is self-affine
with fractal dimension D in this range.

The time series showing self-affine over all
time scales has a power law spectrum: P(f) o f™%,
where P(f) is the power spectrum density. For
BLF, the power law index a is related to the

fractal dimension D of the graph of X(;) by
a=5-2D (3)

for 1 < D < 21, 3]. Nevertheless, the relationship
between the fractal dimension and the power law
index is unsettled for a general time series show-
ing the power law spectrum. We therefore inves-
tigate it by using a numerical experiment.

When the total data number N is even, X(;)
can be expressed in terms of the discrete Fourier
transformation as follows:

N/2
X(j)= X Arcos(2wjk/N)
k=0
N/2—-1
+ Y. B,sin(2wjk/N)
k=1
N/2
= Y C,cos(2mwjk/N—86,), (4)
k=0

where C, =y A%+B? and 6, =tan"'(B,/4,)
(k#0,N/2). For k=0and k=N/2, C, is given
by A,. Oy,, and 6, should be zero due to the
degree of freedom. C, and 6, represent the am-
plitude and phase for wavenumber k, respec-
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tively. We remark here that whether N is even or
odd, does not affect the following results investi-
gated in this study. The power spectrum density
for wavenumber k is given by

P(k) =CZ/N. (5)

Obviously, a power spectrum has no information
about the phase; the variable 6, disappears in
eq.(5).

We consider the time series following the power
law spectrum

P(k) =Qk™*, (6)

where a is a power law index and Q is a certain
constant. When values of « and Q are given, the
amplitude for wavenumber &, C, can be defined
by using eqs. (5) and (6), except for C,. No value
of C, can satisfy the power law spectrum in eq.
(6). Nevertheless, the graph (j, X(j)) is shifted
only in vertical direction, according to C,, and
thereby the behavior of the graph is independent
of C,. In other words, C, is a threshold value
interrelated with the mean of X(j), and hence
we set Cy =0 in this study.

Next, we must determine the phase for
wavenumber k, 6,, in order to construct simu-
lated data following a power law spectrum. For
simplicity, 6, is given by a random variable with a
uniform distribution of the range [0,6,_,.] (6, ~
U(o, 6,,,. 1)), where 6, is given in degree. 6,
can vary within a range of [0,360]. The correla-
tion between the phases is set to be (6, :6,.) =
Oxx» Where §,; denotes the Kronecker delta.

We show in figs. la~le the time series with
0. = 0, 30, 60, 120, and 360 for the power law
index @ =2. When a =2, 0, = 360 gives a time
series showing a one-dimensional Brownian mo-
tion along the vertical axis. It is seen that the
time series shows irregular behavioi with an in-
creasing value of 6,,,. It is generally thought on a
visual inspection of panels (a)-(e) that the distur-
bance in the high-frequency domain becomes en-
hanced as increasing in 6 In fact, the time

max"*

series shown in panels (a)-(e) possess the same
power spectrum. By comparing the variation
shown in panel (a) with that in panel (e), it is
clear that the distribution of 6, strongly affects
behavior in the time domain. Then, a quantitative
analysis using only a power law index is inappro-
priate for describing the irregularity of the time
series. It is necessary to take the information of
the phase distribution into the quantitative analy-
sis of the time series.

We examine the dependency of the probability
distribution of 8, on the fractal dimension D as a
function of 8,,,. The values of the fractal dimen-
sion D are shown in fig. 2a as a function of 0,,,,
for several values of the power law index: a =1,
3/2,2,5/2, and 3. The total data number used in
this calculation is N=2" (r;,, =1 and 7, =
211). 1t is clear from fig. 2a that the fractal
dimension strongly depends on the probability
distribution of the phase. Since the probability
distribution of 6,, P(8,), is a uniform distribution
given by 1/6,,,,, the variable log(,,,,) is propor-
tional to the quantity E(6,,, ), which is defined by

N/2-1

amax
=- Y [0 P(6,) log P(6,) d6,
k=1

(N/2 = 1) l0g(Ope) - (7)

This quantity, E(6,,), represents the random-
ness of the probability distribution of the phase,
which is naturally based on the entropy of the
probability distribution [9, 10]. Hence we call this
variable, E(6,,,), phase entropy. To examine the
dependency of D on E, we show in fig. 2b the
values of D against log(8,,,). We can see in fig.
2b that the value of the fractal dimension linearly
increases as E increases within the range 6, <
180 for every power law index. The special value
6..ax = 0 is of particular interest. In this study, the
numerical experiments show a tendency that the
fractal dimension converges to D = 1, at least for
2 <a. For the range of 180<4,_,,, the whole
curve flattens and the fractal dimension reaches
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Fig. 1. The simulated time series with power law index « = 2 for several values of 6,,,,, where 8,,,, is a parameter describing the
distribution of the phase of the wave number k. Panels (a)-(e) correspond to the time series with 8,,,, =0, 30, 60, 120, and 360,

respectively.

the value independent of ,,,, according to the
power law index a.

The power spectrum of BLF follows a single
power law (P(f) o f~*) over the whole frequency
range and the fractal dimension is interrelated to
the power law index by eq. (3). In addition, it
should be noticed that the BLF curve has a
probability distribution of the phase with 6, =
360. Since the range 1 <D <2 in eq. (3) implies
that the power law index « can be allowed to lie
within the range 1 <a <3, it is interesting to
examine the fractal dimension D of a red-noise

type time series within the ranges 0 <a <1 and
3<a.

We examine the relation of eq. (3) for the
range 0 <a <4 by calculating the fractal dimen-
sion of the simulated time series which follows a
single power law spectrum. Of course, 0,,,, should
be 360 for all time series. Fig. 3 shows the fractal
dimension D against the power law index a. A
straight line indicates the relationship of eq. (3).
The curve is in good accordance with a straight
line near @ = 2. When increasing « from 2 to 3,
D becomes slightly greater than that given by eq.
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Fig. 2. The fractal dimension D as a function of 8,,,, (a) and
of log(8,,,,) (b) for several power law indices: & =1, 3/2, 2,
5/2, and 3.

(3). On the contrary, D becomes smaller than
that given by eq. (3) for « of less than 2. Then,
the relationship defined by eq. (3) completely
holds in the vicinity of a =2 (3/2-5/2).

Fox [8] also examined the relationship of the
fractal dimension with the spectral exponent (cor-
responding to the power law index « in this
study) for the BLF curve. To calculate the fractal
dimension, he used the divider method, which
gives an erroneous fractal dimension depending
on the scale of X(j) [11]. The present result is
closer to the relationship of eq. (3) and looks
more symmetric than his result.

We examine the dependency of D on the total
data number N in order to investigate the dis-
crepancy of D from the value given by eq. (3)
around a =1 and « =3. Time series with data
number N (N=2", m=14,...,19) are gener-

N = 219

I
.
.
.

1.8

D

fractal dimension

1.4

1.2

.
.....

t ! | 1

1.0

power law index (X /\

Fig. 3. The calculated fractal dimension D as a function of
the power law index a. In this calculation, we set N =2,
Tmin = 2%, and 7, = 2'%. The straight line indicates the rela-
tionship of eq. (3).

ated according to the aforementioned procedure.
The values of D for these simulated time series
are calculated as a function of «, and the results
for N=2' 217 and 2'° are shown in fig. 4. The
three curves coincide around a =2 (3/2-5/2),
representing good agreement with eq. (3). For
any curve, the deviation from the straight line
given by eq. (3) shows a tendency similar to that
seen in fig. 3. However, for any «, the residual
from the straight line becomes smaller when in-
creasing N. In short, the curve approaches a
straight line (indicated by arrows) for the range
1 <a <3, and flattens with D=2 for 0 <a <1
and with D =1 for 3 <a < 4.

To clearly demonstrate this tendency, the val-
ues of D are shown in figs. 5a and 5b against
log, N for @« =1 and a = 3, respectively. As men-
tioned above, we can see in these figures that
D—2 (a) and D—1 (b) when increasing N.
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power law index (X/

Fig. 4. D as a function of a for N=215, N=217 and N=
29 (Thia =2% and 7, =2%)

Nevertheless, we cannot confirm a convergence
of D=1 or D=2 as N — « because of the
computational limitation, such as memory.

3. The fractal dimensions of the differenced and
integrated time series

We consider the problem of estimating « when
D is given. Since D corresponds to a one-to-one
within 1 <a <3, a can be estimated through eq.
(3) if 1 <D <2. Nevertheless we cannot get the
value of « for the cases of D=1 and D=2,
because, as demonstrated in figs. 3 and 4, the
ranges 0 <a <1 and 3 <a correspond to D =2
and D = 1, respectively, Moreover, the values of
D around a=1 and a =3 partly dependent on
N. Consequently, we should not estimate the value
of a for D=1or D=2,

To resolve the degenerations of «: [0,1] —
D: 2 and a: [3,%) = D: 1, we consider the differ-
enced and integrated series of the original

N
&
- a=1
&
Q &
[+2]
]
g L@ .
14 15 16 17 18 19
logy N
[=2]
8
- =3
8
Q8
8
8 ({b)
14 15 16 17 18 19
]OgZ N

Fig. 5. The fractal dimension D plotted against the loga-
rithm of the data number, log, N, for « =1 (a) and a =3 (b).

time series. The differenced time series is given
by

vX(j)=x(j+1)-Xx() (=1,....,N-1),
(8)
and the integrated one is given by
J
Xs(J)= X X(I) (j=1,...,N). )
=1

VX(j) is the forward first-order difference of
X(j) and X4()) is an increment process of X(j).
We designate the fractal dimensions of VX(j)
and Xs(j) by Dy and Dy, respectively. Similarly,
the power law indices for VX(;j) and Xs(j) are
denoted by ay and as, respectively.

The difference operator V for the time series
represented by eq. (4) is possibly replaced by a
multiplication of k. Then, when the power spec-
trum density is given by eq. (6), the power spec-
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Fig. 6. The fractal dimension of the integrated time series,
Dy, as a function of . In this calculation, we use N =219,
Tmin = 2%, and 7, =2'3. The straight line is given by D =

G-a)/2.

trum density of the differenced time series shows
P(k)xk™@*2 Tt is easily understood from egs.
(8 and (9) that @y =a — 2 and @5 = a + 2. Thus
far, we get the following correspondence: a:
(3,5) » ay: (1,3) and a: (0, 1) = as: (2,3). Since
a within 1<a <3 maps D one-to-one (ap-
proximately given by eq. (3)), we conjecture that
the mappings f: a >Dy and f: a— Dy are
likely given by the curve demonstrated in fig. 3
(f: a—> D).

We show in fig. 6 Dy as a function of . The
straight line drawn in fig. 6 is defined by D =
(3 —a)/2. As previously estimated, the curve of
f @ = Dy shows a curve highly similar to the one
shown in fig. 3. If the curve in fig. 3 is shifted by
—2 along the « axis, it is identical with the curve
shown in fig. 6. Dy is plotted in fig. 7 against a.
The straight line indicates D =(7 —a)/2. By
shifting horizontally the original curve (shown in
fig. 3) by 2, this curve exactly agrees with that in
fig. 7. In both cases of f: @ —» D and f: a — Dy,
the discrepancy from the straight line, which is

NI R ey
S :
@

D‘Q

Q T—o
< D=
- 2
N
e
0 1 2 3 4 5

power faw index (Y

Fig. 7. The fractal dimension of the differenced time series
(N=2"-1), Dy, as a function of a. For any a, 7, =2*
and 7, = 2"3. The straight line indicates D = (7 — a) /2.
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Fig. 8. D, Dy, and Dy are schematically shown as a function
of the power law index a.

seen in fig. 3 around a=1 and a=3, is also
pointed out.

We schematically summarize these results in
fig. 8. Although any time series with a (0 <a < 1)
has D =2, Dy corresponds to a one-to-one. The
relationship is approximately given by Dy =
(3 —a)/2. Similarly, the degeneration of D =1
for 3<a <5 can be satisfactorily resolved by
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calculating Dy. In this case, the mapping is Dy =
(7 — @) /2. In short, a mth-order difference oper-
ation to X(j) leads to a horizontal shift by 2m of
the original curve of D. According to these re-
sults, we can get the following relationship:

Dym=(2m+5—-a)/2
X(m=-1,0,1,...), (10)

where V™ is an mth order difference operation,
but V~! means integration. This relationship
holds within the @ domain of definition 2m + 1,
2m + 3). However, for m = —1, the range is lim-
ited to [0, 1).

According to eq. (10), we can estimate a of
X(j) by calculating D, Dy, and Dy. In particu-
lar, we should compute Dy (Dy) for D =2 (for
D = 1). However, even if we get the values of D
and Dyg, the value of @ =1 (1/f noise) cannot be
precisely estimated because both D and D devi-
ate from the straight lines, depending on N. As
for a = 3, neither D nor Dy gives a correct value
of a.

4. Time series having a characteristic frequency

When a power spectrum density of a time
series P(f) varies as f~ throughout the whole
frequency range, the relation between the power
law index and fractal dimension was well under-
stood in the previous sections. Next, we consider
a time series whose power spectrum density can
be described as follows: P(f) acf~*t and P(f) @
f* in a low- and a high-frequency domain,
respectively. The frequency at which the power
law index changes is hereafter designated as f..
In a discrete Fourier expansion of eq. (4), f, is
given by k. /N, where k. is the wavenumber
where the power law index « in eq. (6) changes.
The characteristic period T, defined by 1/f,, is
T.=N/k. accordingly. At k_, we set Q, k_ %=
Qyuk; 4, where Q; and Q are constant values.
For such time series, whose power spectrum den-

(o, om) =(1,3)

- 80

} 40

0

i Al

1-40

80 - .80
0 4096 4 8192

0 256 ] 512

Fig. 9. The simulated time series with power law indices (o,
ay) = (1, 3) and the random phase are shown, where ay and
a; are power law indices defined in the whole frequency
range above and below the characteristic frequency f., re-
spectively.

sity changes its power law index at k., the rela-
tionship between the fractal and power spectrum
analyses has not yet been examined.

We show in fig. 9 the numerically generated
time series with (a;,ay)=(1,3) and random
phase. Of course, the random phase means a
probability distribution of the phase with 8_,, =
360. The fractal analysis is applied to such time
series (N =2'%) and the log r versus log{L(7))
plots are demonstrated in fig. 10a. The values of
log{ L(r)) shown in this figure are obtained by
averaging over the values of log{L(7)) of 500
time series with (e, ay) = (1,3) and the random
phase. When a curve is self-affine for all 7 from 1
to 7., the log 7 versus log{ L(7)) plots fall on a
straight line for all r. However, when the-logr
versus log{ L(7)) plots show a straight line with a
sharp bent at a certain 7, the behavior having a
time scale longer than this characteristic time
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Fig. 10. (a) (L(r)) of the times series with (e, ay) =(1, 3)
and N=2'9 as a function of the lag time = on doubly
logarithmic scale. The phase distribution is random. The
characteristic wavenumber k. is set to be 2'°, then T, is 28
(f.=2'"/2'%). Straight lines with a slope equal to —1.847
and —1.243 are drawn in the time scale longer and smaller
than = 20, respectively. (b) D(r) is plotted against log,7.

scale is different from that shorter than it. We
designate this characteristic (critical) time scale
by 7.. Since self-affinity holds within each time
scale shorter and longer than 7, two fractal di-
mensions can be defined for such time series. The
fractal dimensions defined within the time scales
below and above r_ are specified here by Dy and
D, , respectively. In order to obtain Dg, D, and
T., @ curve consisting of two line segments with a
discontinuity in its slope is fitted to the log~
versus log{ L(7)) plots. We call hereinafter this
curve the two-segment curve. The two-segment
curve is fitted to the log v versus log{ L(7)) plots
by using a least-squares estimation. The charac-
teristic time scale 7, corresponds to the broken
point where the line discontinuously changes its

slope. It is seen in fig. 10a that the curve breaks
at 7.=20. . normalized by the characteristic
period T, 7./T,, is 20/64. The two straight lines
are also drawn in this figure by vertically shifting
so as not to stain the logr versus log{ L(7))
plots.

Although it maybe appears that the two-seg-
ment curve drawn in fig. 10a is satisfactorily fitted
to the logr versus log{L(7)) plots, the log~
versus log{ L(r)) plots show a round corner
around 7. Since the fractal dimension D is de-
fined by minus the slope of the straight line fitted
to the logr versus log{L(7)) plots, it can be
considered that minus the differential coefficient
of the curve of the log T versus log{ L(7)) plots is
replaced by D. We extend the definition of D as
follows:

_ dlog(L(7))

D(7) = dlog =

Viog{L(7))
=TT Viegr (1)

We show in fig. 10b D(7) as a function of
log,7. The two dotted horizontal lines super-
posed in this figure indicate the values of D and
Dy, which are obtained by fitting the two-segment
curve shown in fig. 10a. D(r) gradually becomes
larger as 7 increases, and then saturates at D =
1.9 for T, <t (T, =25). The small fluctuation of
D(7) around the saturation level may be induced
from the discontinuous change of « at k.. It is
noteworthy that D(r) does not discontinuously
change from Dg to D, as a step function, but
shows a gradual increase as 7 — T_. Then, even if
the time series has a characteristic frequency (f,)
in frequency domain, the log 7 versus log{ L(7))
plots have no sharp bent, representing no 7.

We also demonstrate in fig. 11 D(7) of the time
series with a power law index (a = 2) in order to
confirm the good fit of the straight line to the
log T versus log{ L(7)) plots. D(7) exactly agrees
with D =3 /2 for every 7, except for small 7. The
difference between D(r) and D =3/2 for small
7 comes from truncating the power spectrum at
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Fig. 11. D(r) of the time series with « =2 and N =2'". The
phase distribution is random. The dotted horizontal line indi-
- cates D=3/2.

the frequency domain higher than k=N/2. In
short, since the time series constructed by the
procedures used in this study has no component
within the frequency range higher than k =N/2,
the self-affinity does not hold within N/2 <k.
Even if we use a simulated time series with a
large N, this effect inevitably occurs as far as N
is finite.

5. Summary

For the irregularity of the time series, the
randomness of the phase distribution strongly
affects the behavior in the time domain. In short,
the phase distribution leads to a drastic change in
the smoothness of the curve as illustrated in figs.
la-1le. It was pointed out that we cannot discern
between the irregular and smooth functions only
by using the power spectrum analysis. For exam-
ple, even if the power spectrum density of the
time series shows a power law form with a power
law index of 5/3, which is the same value as that
of the classical Kolmogoroff turbulence, it is pos-
sible that the time series shows a very smooth
behavior in the time domain. Whenever we mea-
sure the irregularity of the time series, we should
take into account the information about the
phase. We also investigated the relationship be-
tween the randomness of the phases and the
fractal dimension by using simulated data. The

value of the fractal dimension changes depending
on the probability distribution of the phase of the
time series.

When a time series has a power law spectrum
within 1 <a <3 and a random phase distribu-
tion, the time series corresponds to the BLF
curve; when P(k) k™%, 6,~ U(0, 360]), and
(0,0, =08y, X(j) is identical with the BLF
curve. In this case, the relation between a and D
is defined by a =5 —2D for the definition do-
main 1 <a < 3. All time series with a power law
index within 0 <a <1 possess D=2 and this
degeneration can be resolved by calculating Dy,
which is the fractal dimension of the integrated
time series, because Dy maps « one-to-one. On
the other hand, although any time series within
3<a <5 corresponds to D=1, a can also be
estimated through Dy, which is the fractal di-
mension of the differenced time series.

Finally, for the time series with a characteristic
frequency where the power law index abruptly
changes, the relationship between the power law
index and the fractal dimension was also exam-
ined by using numerical experiments. In this case,
we extended the definition of the fractal dimen-
sion from D to D(r). The fractal dimension,
D(7), is defined as a function of 7, representing
the irregularity of the fluctuations with a time
scale of 7.
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