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We consider the generalized state space model (GSSM) which is an extension of the state
space model to the non-Gaussian and non-linear model. There are serious problems in
the GSSM approach because of the need for numerical integration over a state space. A
Monte Carlo method for filtering and smoothing. called the Monte Carlo Filter (MCF).
has been proposed to overcome this numerical problem. It has been pointed out that
there exists a close relationship between the MCF and the genetic algorithm (GA) and
that an essential structure involved in the MCF is quite similar to that in the GA. In this
study, we try to replace the step of the prediction by the mutation and crossover
operators in the GA. and demonstrate their performance as the system noise. We
furthermore propose a smoothing algorithm in which a massively simple parallel
procedure plays an important role. The proposed method is first applied to a simple
problem and then to a seasonal adjustment for quarterly data sets in order to illustrate
its broad applicability.

Kevwords: Bayesian approach: generalized state space model (GSSM): genetic algori-
thm (GA): self-organizing; seasonal adjustment

1. INTRODUCTION

The state space model (Anderson and Moore (1979)) has become a
useful and powerful tool for modeling a non-stationary time series and
then has been used for a wide variety of applications. because such
models are typically very flexible thereby enabling a very good fit to
data (e.g., see references in Gersch and Kitagawa (1988), West and
Harrison (1989) and Harvey (1989)). In a case where the system is a
linear and noise processes are Gaussian, optimal conditional mean
estimates are provided by an efficient recursion known as Kalman
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filter and smoother (Kalman (1960)). Along the line of state space
model, many authors attempted to consider extensions to nonlinear
and non-Gaussian systems (e.g., see the references in Fahrmeir (1992)).
In this article, we deal with this extended state space model which is
sometimes called the generalized state space model (GSSM) (Kitagawa
(1987, 1989)). The nonlinear model known as a dynamic generalized
linear model (DGLM) (e.g., West er al. (1985). West and Harrison
(1989), Fahrmeir (1992), Frithwirth-Schnatter (1994)) is expressed as a
special case of the GSSM.

Consider the GSSM, in which we allow for nonlinear model
structure and non-Gaussian distribution for specifying both system
and observation noises,

system model x, = f (xn_| , v,,), and

(1)

observation model 'y, ~r(:|x,), n=1,...,N

where x,, is the k£ x 1 state vector, y, is the univariate observation at
discrete-time of n. Although we deal with only scaler observation, a
description discussed below can be easily extend to the vector
observation. {v,} is the / dimensional independently and identically
distributed (i.i.d.) sample with v, ~q(-|\;), where A; is an unknown
hyperparameter vector for describing a form of ¢ (Lindley and Smith
(1972)). r(-) is the conditional distribution of y,, given x,, with an
unknown hyperparameter vector A,. Typically unknown forms for g (-)
and r (+) are selected among competing candidates, for an example, the
appropriate distribution families on a basis of maximizing the data-
based model likelihood (e.g., Kitagawa (1987), Frithwirth-Schnatter
(1994)).

In a framework of the GSSM, the distribution of x, conditional on
Y, =[¥1s - ¥a), i.€., posterior density p(x,|Y,) is easily determined
from p(x,_1|Y,—1) by a sequential scheme (recursion) composed of
two steps: prediction and filtering (Kitagawa (1987), Harvey (1989)).
There are serious limitations to the approach by this recursive formula
because of the need of numerical integration of order k& (Fahrmeir
(1992), Friithwirth-Schnatter (1994)). Actually, a simple but flexible
approach based on a piecewise linear approximation to the conditional
distribution is feasible only for lower dimensions (k <2) (Kitagawa
(1987)). To avoid numerical problems due to repeated multidimen-
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sional integrations, new algorithm based on a Monte Carlo method,
called the Monte Carlo Filter (MCF) here, has been proposed
(Kitagawa (1993, 1996), Gordon et al. (1993)). Gordon et al. (1993)
called it the Bootstrap filter. In the MCF any conditional probability
density function is approximated by many of their realizations.
Alternative approximate filters to deal with higher-dimensional
problems are attractive and see West and Harrison (1989). Carlin
et al. (1992), Fahrmeir (1992), Frihwirth-Schnatter (1994) and refer-
ences therein.

To review the MCF, suppose that p(x,|Y,_;) and p(x,|Y,) are
approximated by the m realizations

zW={%i=1...,m} and
zP = {zfi=1,...,m}, )

respectively. The subscripts, P and F, mean the prediction and
filtering, respectively, and the superscript (n) is a discrete-time n. At
each n the recursive calculation for estimating p (x,|Y,) is realized in
two steps (Kitagawa (1993, 1996), Gordon et al. (1993), Higuchi
(1996)):

prediction
Get Z} ) of which each element is obtained by /.(") =f(zf (" Dy,

filtering
Obtain Z( ) by resampling z w1th the probability in proportion to

r(yalz 3% - (1/m)
(a2 8 - (1/m)
r(y,,lz (n))

= . 3
Zm r(}"|z(”)i) ( )

P = 2| Y) =

Here v( " is a realization drawn from q(-)-

A similar structure to the algorithm of the MCF appears in the
Genetic algorithm (GA) (Holland (1975)) that is a population-based
search procedure developed in analogy to genetic laws and natural
selection. In general the GA is characterized by keeping the m
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candidates for optimal solution at each iteration composed of three
steps: crossover, mutation, and reproduction (or selection) (Holland
(1975)), Goldberg (1989), Davis (1991), Whitley (1994)). It has been
pointed out in Higuchi (1996) that the filtering procedure is identical
to the reproduction procedure by regarding r(-)/m as the evaluation
function in the GA and that the prediction plays a similar role to
mutation and crossover operators in giving a wide variety among
population.

Using an analogy between the MCF and GA, an interpretation of
the MCF from the viewpoint of the GA has been presented and several
practical issues concerning its implementation has been investigated
(Higuchi (1996)). For example. several schemes for the reproduction in
the GA are available for the resampling scheme in the filtering
procedure of the MCF. In this study, we make more ambitious use of
the analogy to overcome the intrinsic problem of the MCF such that
the sampling error inherent to the Monte Carlo approximation to any
conditional distribution appears in an evaluation of the likelihood and
makes it impractical to optimize the hyperparameter values according
to the likelihood. One of possible mitigations is to an effort to estimate
the likelihood more precisely by increasing the number of particles and
performing an evaluation of the likelihood as many times as we can
do. However, more sophisticated way to include a procedure capable
of a self-tuning on the hyperparameter values in the MCF is desirable.
Since the crossover, which is usually considered the distinguishing
feature of the GA, possesses the self-organizing mechanism to reach an
optimal solution, we will make use of this self-organizing effect in the
prediction step of the MCF. Finally. the crossover operator will be
expected to deal with more complicated situation where the system
parameters depend on time.

Our goal throughout this article is to replace the prediction
procedure by the genetic operators such as the crossover and
mutation. Section 2 provides a methodology to accommodate the
genetic operators to the GSSM. In Section 3, we present a method for
the smoothing algorithm including genetic operators. In Section 4 we
begin our illustrative analysis with a smoothing of a time series and
consider an effect of mutation and crossover rates on a performance of
the proposed method. In addition we apply it to more complicated
model, seasonal adjustment.
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2. GENERALIZED STATE SPACE MODEL
WITH GENETIC OPERATOR

In this section we propose a new algorithm that accommodates the
genetic operators to the MCF. For convenience we call it Genetic
Algorithm Filter (GAF) henceforth.

2.1. Coding

Any type of the GA requires a design of effective codings that is
problem dependent. In this study we consider an unsigned fixed-point
integer coding with /, bits which is usually adopted (e.g., Stoffa and
Sen (1991)). A possible range of each component in the state vector
xo(k') (K'=1,...,k), [Unin k> Umaxx], is encoded and mapped
linearly onto the interval [0, 2*—1]. Clearly, we have to control this
specified range with care. Note that /. is also chosen to give sufficient
(or desired) precision for an estimate of each component of the state
vector. In this study we set /. =8 for all component.

2.2. Growth Operation

In the MCF, the state vector x, evolves according to the system model
at each time, and contributes to the displacement of the bulk of the
distribution of x, in the k-dimensional space. For example, when we
treat the usual state space model with a system model given by
x,,=Fx,_; + Gv,, the Kalman filter provides us with an estimate of the
mean value of p (X,|Y,—1), Xujn—1, defined by x,,—1 = FX,_yjn—1, Where
F and G are k x k and k x [ matrices, respectively, and x,,_j},—1 is, of
course, the mean of p(x,_,|Y,—;). This recursive form obviously
indicates that the system model in the GSSM produces the bulk
motion of the distribution of x,,. It turns out that, in the MCF, an
apparent movement of the population at each step is induced by the
systematic behavior of each particle which is driven by f(-) with v,,=0
in the prediction.

On the other hand, in the GA, there is no such movement in model
space that is independent of any performance of optimization. We
therefore have to include a special step for the GAF in which Z;’{;I)
moves according to the system model just before undergoing the
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crossover. Specifically we denote the resulting particle by Z(G”.)i; 1.e., we
obtain & by

1

Z(cl;l,)f =f(7«$g71), V,(") =0) fori=1,...,m. (4)

o

In this step zgf;]) suffers from no random change due to the system

noise. and thus we call this step growth operation.

2.3. Crossover

We have to accommodate the genetic operators to the GAF with the
multi-dimensional state vector. To explain it, let zg'.)i(k’ ) denote the

k'th component of zo:

0 = 20.m),.. 28w, (5)

where ¢ is a transposition. Usually the binary codes for each
component are concatenated resulting in a long string binary numbers,
and then a crossover operator is performed on this long string. This
means that a crossover site is selected somewhere within the long
string. Such crossover operator is not suitable for the GAF, because it
does not deal with a situation of the GSSM where some component is
updated deterministically in the prediction process without any
random change due to the system noise. Namely a crossover operator
should be performed on each component with each crossover rate
Pc(k'). We explain it by taking an example of the seasonal
adjustment.

The primary object of the seasonal adjustment is to estimate a trend
component with removing a seasonal effect in data, and usually
achieved by decomposing a data into at least three components: the
trend, seasonal, and observation noise components: y,=1,+s,+w,.
We assume that the trend component satisfies a second order
stochastically perturbed difference equation. In this study, we treat
the quarterly data y,. and then the seasonal component (of which the
period is four) is represented by the four stochastic difference
equation.

This decomposition is realized by using the following state space
model (Kitagawa (1989)):
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system model

Iy 2 -1 0 0 0 Lh—1 1 0O
Li—1 1 0 0 0 0 th—2 0 0
vu(1)
s, |=|0 O -1 -1 -1 Sp—1 |+10 1 [ ], and
v, (2)
Sn—1 0 0 0 0 Sp—2 0 O
| sn2] [0 0 0 1 0 |sw—3] O O
(6)
observation model
B
In-1
ym=[10100]| s, | +wn, n=1,...,N, (7)
Sn—1
| Sn—2 |

where v, (1) and v,(2) are assumed to have each own probability
distribution function. Clearly x,=[t,, t,_1, Sn Su—1, Sn—2]’. While, in
this model, two components, ¢, and s, suffer from a random effect due
to v,, other components are updated deterministically. As a result,
these components free from a random change should be prohibited
from receiving any genetic operator causing a random change. Taking
account of this fact, we perform a crossover only on ¢, and s, in this
case. In other words, a crossover is performed on other components
with a probability of the crossover rate Pc(k’)=0. Generally a
crossover is operated only on components which receive a random
effect through a prediction process.

A detail explanation of the crossover we are proposing is as follows.
First we select two parent particles (strings) (z(é")i, :(G")j) randomly and
get m/2 pairs undergoing a mating. While there is a mating scheme in
which some parent is permitted to mate twice (i.e., bigamy), three time,
etc, but we allow a parent to mate only once with randomly selected
spouse. This mating scheme is accomplished by permuting zg),.
randomly and by paring two particles. An efficient algorithm for a
random permutation is realized as follows. First we draw m uniform
random numbers €;,...,¢,, between 0 and | and make a pair of

(zg’),., g;). Next we sort m pairs in order of ¢;. Then we get the pair of

n n o
Z(G,)2i’—l’ Z(G,)zi') fori'=1,...,m/2.
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There are various mating schemes to make an original GA more
efficient (e.g., Goldberg (1989)). Most of them are, however, proposed
on a basis of an optimization and then need not be considered in the
GAF. In this study we propose a minor modification of the mating
scheme mentioned above. The proposed mating scheme is that because
a crossover has no effect on identical particles, we prohibit a parent
from mating with an identical particle in order to keep a diversity
within population (prohibition of intermarriage).

A crossover that is performed on the selected pair (z0,,_,, Z(G",)z,")
proceeds as follows.

1. For each component, draw a uniform random number Ur~ U
[0,1). If Uc< Pc(k"), do the following crossover.

(a) Choose a crossing site /¢ by drawing a uniform random integer
between | and /,—1.
(b) Swap all bits less than /- inclusively.

The resulting crossover yields two new particles (Z(c",)zi'-n Zgl.)zi') which
we call offsprings or children. It should be noticed that a subscript C is
used to indicate the crossover.

2.4. Mutation

The following mutation procedure is performed on each particle
zg)i(iz l,...,m). A probability of mutation is defined for each
component according to the same reason as explained above. For a
component that needs no stochastic fluctuation in the prediction
process, we set a mutation rate Py, (k’)=0. A mutation is carried out
as follows. '

1. For each component, draw a uniform random number U, ~U[0,1).
If Ups<Pps(k). do the following mutation.

(a) Choose a mutation point /p; by drawing a uniform random
integer between 1 and /..
(b) Flip the /' bit.

The particle which goes through a process of the mutation is specified
by ZS\’}) -
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2.5. Analogy with Natural System

As mentioned above, the GA is a population-based search procedure
developed in analogy to genetic laws and natural selection, and thus it
is obvious that there exists a correspondence between the GA and
natural system. In this study we interpret the operators involved in the
GAF in terms of the terminology in natural system. Figure 1 shows a
schematic explanation of the procedure of the GAF together with a
correspondence of the operators to their terminology in natural system
which is denoted in the parentheses. The procedures which are
indicated by a shadow are introduced into the GAF to replace the
prediction procedure of the MCF. Words of “Marriage” and *Birth”
are pasted on this figure simply to help the readers understand a series
of steps of the GAF.

While a qualitative interpretation of the parallel drown between the
prediction in the MCF and the crossover in the GA is obvious, a
quantitative discussion on the differences of these as an operator to act
on the state vector is usually difficult. This is due to a fact that the

N\
(Marriage)

\

Filtering
(Selection)

(Birth) =

FIGURE | Analogy with natural system.
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crossover, which is the distinguishing feature of the GA, is defined as a
mutual action between two strings. and not as an action independent
of an individual string like a system noise in the MCF. However, an
understanding of the effect caused by the crossover in the GAF is
possible in a context of the MCF by investigating the difference
between the state vector before and after the crossover step. For
example, when we consider the simplest GSSM that will be treated in
Section 4.1, a quantity given by fr,(.") =0 zg’_),. has been examined
and it was found that a distribution of fr,('S’ Dbossesses the eminent non-
Gaussian characteristics such as having a heavy tail (Higuchi (1996)).
An analytic form of a distribution of ﬁ,("), given special assumptions,
can be also derived for this problem (Higuchi (1996)).

On the contrary to the crossover, the mutation is easily understood
in the framework of the MCF, because the mutation is an operator
which acts on each individual string without involving any other
string. Actually, a coding scheme determines an analytic form of the
distribution of the difference of the state vector before and after the
mutation. The definition of the mutation clearly indicates that an
apparent feature of the non-Gaussian distribution always appears as
having much probability on giving larger noise, compared with a case
of the Gaussian. Based on these results, the genetic operators such as
the crossover and mutation are here employed in attempt to induce
the stochastic fluctuation in the system model with the non-
Guassian characteristics, without making any assumption on a form

of g (vp|Ag)-

3. PARALLEL SMOOTHING PROCEDURE

In this section we describe a fixed-lag smoothing procedure, based on
the original smoothing algorithm of the MCF (Kitagawa (1993,
1996)), capable of implementing it on a parallel computer easily. In
fact, any calculation carried out at j™ parallel processor, described
below, corresponds to the j™ trial on the single processor in this study.
Gordon et al. (1993) has not dealt with the smoothing problem, but
according to their line Doucet er al. (1995) has proposed the
smoothing procedure that is identical to Kitagawa’s one.
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3.1. Estimate of the State Vector

At each parallel processor, we do the following calculation. The
recursive calculation for the fixed L-lag smoothing begins by defining a
quantity T,(_LH:O) for i=1,...,m, called the

history
L+1:0 L+l +2 0
e T YRS S v ¢! (8)
where zgfiL+]), . 1(5 need not be specified, but only 54(5(,)3~ namely an

initial distributlon of the state vector, must be given prior to the
following recursion.

The fixed-lag smoother is realized by repeating the following steps
forn=1,... N—L. First we perform a growth. crossover and mutation
operators to Z(" D and then get Z SW), where the population composed
of ﬁg", D(i=1,...,m)is denoted by Z""". Adding the particle 2\, to
the end of hlstones T(" Ln=D) e make a new history

n—L:n n—L n—1 n
U( )—[-‘ ""Zc(S,i )’ZSW),:']- 9)

Next we obtain 7" "™ for j=1,...,m by resampling U" =" with
the probability in proportion to

_ Ol - (1/m)
S ralz$2 ) - (1/m)
’(}n|— M, ,)

Zm l(yn (lz)) .

M.i
The denominator (1/m)-> 7, r(yy, | :f{}), gives us a numerical evalua-
tion of the likelihood of y,, given Y,,_i, p(ry.Y,._1) (Kitagawa (1993,
1996), Higuchi (1996)). For simplicity, we henceforth denote its
logarithmic value by /MEF®,

The each component of the resulting T

(10)

"(n=Lin) is specified by

T/(n L) U(n —L:n)

|:__ (n=L) _(n=-1) _ () ] _ |:7 (n—L) (=10 ) (1 l)

Zori rreeaZgri 2L g S N AN RRREE LN A L
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where i’ is some i between 1 and m selected by a random number
device. The first component zg'f;L) is interpreted as a particle zgf,TL) ina
context of the fixed lag smoother. The estimate of the state vector is
therefore determined by taking an average or median of each
component of z\ bt ), and denoted by Zg 2071 Once 3 ( L) is calculated.

_L+1:
we set T (n—L1:n) T'(" L+1n) hich means

T(n—L+l ) - T,(”—L+ 1:n)

i

_(n—=L+1) _(n=1) _(m) _(n=L+1) _(n=-1)y _(n
Zgi e Zs ,~51] “ I:‘é’.i cezphz gl (12)
and return to the growth operation mentioned above.
As a result of this fixed L-lag smoother, we get a trajectory of the
state vector fg") for n=1,..., ,N—L together with the log-likelihood
IMCF that is defined by

[MCF Z [MCI'(n (13)

n=|

The estimation of the state vector for n=(N—-L+1), (N—-L+2),...,
(N-1), (N) is determined by taking an average or median of each
component of :g"? in T,(N—L'H:N) for each n. An alternative way is to
perform a backward fixed-lag smoother.

3.2. Final Estimate of the State Vector

The procedures for estimating :g-) is common to all parallel processor
(number of parallel processor is specified by N,), and so that we
specifically indicate fg’) at the j j1h parallel processor by :g')m
Accordingly the log-likelihood / e obtained at the jth processor is
also denoted by / mCF In this study the final estimate of the state
vector —f ]) is defined by a trajectory with the maximum log-likelihood.
We denote the parallel processor having the maximum / MCF by % and
then “[*l) is given by 2 s% " In the actual application, there is no general
criterion that can tell us the rough minimum N, necessary for
obtaining the satisfactory result. Several rules gathered from many
experiences with various GSSM models are only available; usually

N, > 100 is recommended.




GENETIC ALGORITHM OPERATORS -13

3.3. Efficiency of Implementations

The difference between the GAF and MCF exists only in the
prediction step in the MCF. Consider we deal with only scaler system
noise v, in the system model. While the MCF requires the specification
on the system noise distribution ¢ (v,|A;). two values, Pc and Pjy,.
should be specified for implementing the GAF. Since the number of
hyperparameters, i.e., the dimension of A, is two or three in a case of
g (v4|A;) being the Pearson system that is frequently used in the GSSM
(e.g., Kitagawa (1987)), an efficiency of implementing the GAF on the
computer is almost same as that for the MCF. As for the required
computational tasks under fixed p (v,|As) and fixed value of (P¢, Pay).
these two algorithms relies heavily on a pseudo random generator
devices, and there is no significant difference between them as to the
computational time.

As mentioned in Introduction, the value of /MF, that plays an
important role in identifying the hyperparameters, is subject to an
sampling error inherent to the Monte Carlo approximation to any
conditional distribution. In particular, when we adopt the non-
Gaussian distribution for ¢ (v,|A), the sampling error is too large to
evaluate /™MCF. As a result, a large number of evaluations for / MCF
usually achieved by using the parallel computer, is necessary for
searching for the best hyperparameters values. However, we are
usually interested in the estimate on the state vector and not in the fine
search for the hyperparameter values. In other words, an assumption
such that the state vector suffers the random fluctuation due to the
system noise following v, ~ g(v,|\s), is simply introduced for the sake
of convenience in order to realize the stochastic fluctuation in the
system model numerically. In such case practically, we are satisfied
with a sequence of p(x,|Y,_) (n=1,..., N) resulting in yielding the
larger value of /MCF,

The GAF takes advantage of this practical request. Since the
random effect produced by the crossover in the GAF is determined by
a mutual action among many particles, there appears the self-tuning
on how wide the system gives a variety among population. In short,
the characteristics of a stochastic fluctuation induced by the crossover
can evolve and it is possible that the resulting random effect seen at
time of n=N shows quite different behavior from that at an initial
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time. Hence, the GAF is a robust approach in terms of obtaining the
final estimate on the state vector, with much less effort made to search
for the system parameters to give the larger /™CF, rather than the
MCEF. As a result, the required computational time for the GAF is
expected to be smaller than that for the MCF finally. Of course, if we
deal faithfully with the GSSM, the GAF cannot be employed from
this viewpoint.

When the hyperparameter is allowed for the time-varying structure,
the usual type of the GSSM should be extended to include the time-
dependence structure of hyperparameters, but it is difficult to
determine how to realize this idea in the GSSM numerically. In
contrast. based on a merit that the stochastic property of the random
effect generated by the crossover is allowed to change itself, and then
the GAF can deal with this problem. Although this self-tuning
mechanism realized by the crossover is useful for an analysis of the
time series with a gradual change in the system parameters, the
crossover no longer produce enough variety among the population
after the selction concentrates the m particles on a few particles. Once
such concentration occurs, only mutation in the GAF can produce the
variety among identical particles. Meanwhile, the system noise in the
MCF always produces the variety even if the filtering step allows only
a few particles to survive under a given circumstance.

4. APPLICATION

4.1. Simple Example

We illustrate the performance of the GAF by taking the following very
simple model for smoothing a time series. Figure 2(a) demonstrates the
artificially generated data which is obtained by adding the i.i.d. white
Gaussian noise with a variance of 0.1 to the step function with a jump
of 1 at n=>51. The GAF begins by giving a time series model expressed
in terms of the GSSM. We consider the following model:

system model t, = t,—1 + vy (14)
observation model y, = t, + wp,
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FIGURE 2a Artificially generated data y,. The heavy curve indicates the resuit of the
smoother based on the piecewise approximation to the conditional distribution
(Kitagawa (1987)) for a case where ¢(-) and r(-) are a Cauchy and Gaussian,

respectively. The optimal hyperparameters are determined by maximizing the log-
likelihood.

where ¢, is a trend component at time of n and then x, = [t,].
Accordingly v, is the 1-dimensional white noise sequences, and thereby
requiring only two control parameters, the crossover and mutation
rates: P~ and P,,. It should be noticed in this case that no growth
operation is needed because of the simplicity of the system model.

In this figure we show a curve which is obtained by applying the
smoother based on the piecewise linear approximation to the
conditional distribution (Kitagawa (1987)). Optimal forms for
describing the distribution functions of both system and observation
noises are objectively determined by maximizing the log-likelihood.
For simplicity, we fix r( y,,]t,,)ecgvr(w,, =y, — ty) to be Gaussian. In
this case, a Cauchy distribution is selected for the better system noise
form, compared with the Gaussian distribution. Of course, an optimal
value of the hyperparameter is determined so as to maximize the log-
likelihood. The heavy curve shown in this figure is the result of the
smoother for the best model.
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The parallel smoothing procedure with N,=100 and m= 10% is
applied against several values of (Ps, P)) and yields lmCF as a
function of (Pc, Pyy). A grid search in the (P, Pjy) space is conducted
and then the maximum / %CF is obtained for (Pc, Py)=(0.05, 0.15).
The heavy curve in Figure 2(b) shows zE:]) with these optimal control
parameter values. The solid curve is the worst process which is given
by ';(;)Lil with the minimum log-likelihood for the same value of (P,
Pys). The broken curve is obtained by taking an average of all process
with (P, Par)=(0.05, 0.15).

The discrepancy of the heavy curve from the result for the Cauchy
distribution is quite small. The worst case suggests that, when a
population cannot fit the drastic change in the environment such as the
jump of the trend. a crossover operator is incapable of generating a
new individual particle (string) with good fitness to the new
environment after 7=151. Only mutation has a chance to drive the
population toward 7, ~ 1. Namely, unless a mutation operator forces a

e
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<

2]
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=8
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ol'-
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FIGURE 2b :[(f]) is defined by f‘;f‘] that has a maximum log-likelihood among N,
processor. In addition, we superpose two curves E(S"fgmean] and f(;[)woml .onto this figure.
ngg“,oml is given by fg'[)ﬂ with the mintmum log-likelihood and f;(me anj 81€ determined by

taking an average of all fgib] G=1...., Np).
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particle to skip from ¢, ~0 to #,~1, a reproduction is going on among
individuals which cannot accommodate their-self to the data.

4.2. Effect of Mutation and Crossover Rate

Figure 3 shows a distribution of IB.I]CF as a function of P for the fixed
value of Py,=0.15. The dot and cross denote the maximum and mean
values of / ‘;’.ICF , Tespectively. Each error bar corresponds to the 0.23,
0.5 (median), and 0.75 quantiles of / B.I]CF, respectively. N, under the
fixed value of (P¢, P,y) is 100. While the mean (or median) is sensitive
to Pc, the maximum value significantly changes in a response to the
larger value of 0.7 < P.. This means that even inappropriate value of
P has the small possibility to yield the relatively larger / f‘}IICF .

Figure 4(a) demonstrates the contour map of the maximum value of

[MCF j mCF , as a function of P and P,,. The horizontal and vertical
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FIGURE 3 Distributions of Ii\j‘CF as a function of Pc for given Py = 0.15. For
fixed values P¢ and Py, N, =100: ]The dot and cross denote the maximum and mean ol
IMCF . respectively. Each error bar indicates the 0.25. 0.5 and 0.75 quantiles of / aalt
respectively. ‘
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FIGURE4a Contour of the maximum /MCF /MCF aga function of (P¢, Py). For given

(Pc, Pu). we calculate 100 values of / mCF and determine / f‘f]CF. The section in Figure 3 is

overlaid in this figure.

axes denote P and P,,, respectively. The section in the previous figure
are overlaid in this figure. It is clearly seen that as demonstrated in
previous figure, / mCF is insensitive to the smaller Pc and shows a fairly
flat in this region. It should be noticed that / ff]CF depends mainly on
Pc, not on P,,. We investigate in detail a dependence of lff]CF in the
portion with P less than 0.6. It is again seen that a dependence of

[ ff]CF on P, is minor, compared with the variation of /MCF against Pc.

From this figure, we can also identify a tendency that lf‘f]cp becomes

smaller as increasing in Pc.

4.3. Seasonal Adjustment

We show two examples of an application of the GAF to the seasonal
adjustment. First we consider the GSSM explained in the Section 2.3.
Figure 5(a) is the increase of inventories of private company in Japan.
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FIGURE 4b A detail dependence of IEV,']CF in the portion with P¢ < 0.6.

The trend jump up seen in this figure comes from the oil shock (crisis).
The seasonal pattern also changed significantly during this period.
Results of the GAF are demonstrated in Figures 5(a)—(c). Of course,
the parallel smoothing procedure are made against several control
parameters sets; in this case, there are four control parameters due to
the presence of two system noises: v, (1) and v, (2). The estimated trend
component is superposed in Panel (a). Panels (b) and (c) show the
seasonal and residual components, respectively.

The next application is based on more complicated model in
which another component ¢, is added to the observation model:
Yn=t,+5,+c,+w, This component is used for representing a
biennial oscillation with a period of T, which can be expressed by
the following special autoregressive (AR) model:

Ch =a-Cp_] — Cp—2+ vn(3)> (,15)
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FIGURE 5 (a) The data and estimated trend component. (b) The seasonal component.
(c) The residual component.

where a=2 cos 2n/T.). Accordingly, x,=[t,, Th—15 Sns Sn—1s Sn=2> Cn;
cn—1]’. For the quarterly data, T, is set T,=8. This model is very
suitable for the oscillation with the time-varying amplitude and with a
drastic change in the phase (e.g., Higuchi et al. (1988), West and
Harrison (1989) and West (1995)). Figure 6 shows an simulated data,
original and estimated trend components. Figure 7 demonstrates an
original given curve and estimated component for the trend, seasonal,
and biennial components, respectively. These results are obtained with
m=13%10* and N,= 10°. We can see a good agreement between the
given and estimated curves.

5. CONCLUDING REMARKS

We would like to emphasize that because a final result zg"]) depends
weakly on control parameters, the GAF is simply conducted against
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several sets of (P¢, P,s) and does not require a fine optimization over
control parameters. This is due to a fact that when N, is sufficiently
large, even inappropriate control parameters have a chance to yield a
good result of zg:]) that has a larger l?f]CF . This comes from a self-
tuning on how much the system maintain the diversity among the
population, so-called the self-organizing effect in the GAF. The
applications of the GAF, proposed in this study, were limited only to
three cases and then we need more numerical investigations as to

whether the GAF can provides us with a satisfactory estimation for
any kind of the GSSM.
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