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Abstract. We propose a robust estimation method of gene networks
based on microarray gene expression data. It is well-known that microar-
ray data contain a large amount of noise and some outliers that interrupt
the estimation of accurate gene networks. In addition, some relationships
between genes are nonlinear, and linear models thus are not enough for
capturing such a complex structure. In this paper, we utilize the mov-
ing boxcel median filter and the residual bootstrap for constructing a
Bayesian network in order to attain robust estimation of gene networks.
We conduct Monte Carlo simulations to examine the properties of the
proposed method. We also analyze Saccharomyces cerevisiae cell cycle
data as a real data example.

1 Introduction

In recent years, estimation of gene networks based on microarray gene expression
data has received considerable attention and the use of various computational
methods, such as Boolean networks [1], differential equations [2, 3] and Bayesian
networks [5, 6, 9, 10, 16], have been proposed in bioinformatics. In the estimation
of gene networks based on microarray data, we need to consider two issues:
One is how to capture the nonlinear relationships between genes. Due to the
nonlinearity, the methods based on linear transformation of the data cannot
be guaranteed to give sufficient results. The other problem arises from outliers
included in microarray data. The outliers sometimes inhibit correct relationships
or lead to spurious correlations between genes.

To estimate gene networks from microarray data, Bayesian networks [12]
provide a probabilistic framework that is suitable for extracting effective infor-
mation from high-dimensional noisy data. Unlike Bayesian network models based
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on linear regression, the discrete Bayesian networks [5, 6, 16] can capture nonlin-
ear relationships between genes. However, since microarray data take continuous
variables, the discretization possibly leads to information loss. Furthermore, the
threshold values and the number of categories for discretization are parameters
that should be optimized. To avoid the discretization and capture the nonlinear-
ity, Imoto et al. [9, 10] proposed a Bayesian network and nonparametric regres-
sion model for estimating gene networks. However, a problem that still remains
to be solved is how we treat the effect of outliers. Since nonparametric regression
model employed in a Bayesian network is based on the Gaussian distribution, the
outliers in microarray data sometimes affect the resulting networks. Therefore,
development of statistical methods that can handle outliers and nonlinearity
appropriately is considered as an important problem.

In this paper, we propose the use of moving boxcel median filter and residual
bootstrap [4] for constructing Bayesian networks aimed at robust estimation of
gene networks. By using the moving boxcel median filter, we can reduce the ef-
fect of outliers and can estimate nonlinear relationships between genes suitably.
Residual bootstrap virtually realizes a model for measurement noise included
in microarray data and gives a stable estimation of gene networks. In Section
2.1 we give the explanation of Bayesian networks. Since microarray data con-
tain measurement noise, we introduce a “virtual sample method” to realize a
measurement noise model in Section 2.2. The moving boxcel median filter and
the residual bootstrap are introduced in Section 2.3 and 2.4, respectively. A
greedy hill-climbing algorithm for choosing the optimal graph from candidates
is introduced in Section 2.5. We conduct Monte Carlo simulations to show the
effectiveness of the proposed method in Section 3.1. In Section 3.2, we analyze
Saccharomyces cerevisiae cell cycle data collected by Spellman et al. [19] as a
real data example.

2 Proposed Method

2.1 Bayesian Networks

In the context of Bayesian networks, we consider the directed acyclic graph
(DAG) encoding the Markov assumption between nodes, i.e. a graph contains
no cyclic regulations and a node depends only on its direct parents. In the
Bayesian network models, a gene is regarded as a random variable and shown
as a node. Under above assumptions, we can decompose the joint probability of
all genes into the product of the conditional probabilities as

P (X1, ...,Xp) = P (X1|parent(X1)) × · · · × P (Xp|parent(Xp)), (1)

where Xj (j = 1, ..., p) is a random variable and corresponds to the jth gene, de-
noted by genej , and parent(Xj) is a random variable vector of the direct parents
of genej . For example, if gene2 and gene3 are the direct parents of gene1 in the
DAG, G, we then have parent(X1) = (X2,X3)T . Therefore, an essential prob-
lem for constructing a Bayesian network is the computation of each conditional
probability P (Xj |parent(Xj)).
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The computation of P (Xj |parent(Xj)) is essentially the same as the regres-
sion problem. In general, a regression model can capture the relationship between
Xj and parent(Xj) as

Xj = hj(parent(Xj)) + εj , (2)

where εj is noise satisfying E[εj ] = 0 and V (εj) = σ2
j , and hj(parent(Xj)) is

a function that describes the structure between Xj and parent(Xj). Imoto et
al. [9, 10] gave hj(parent(Xj)) as the additive form

hj(parent(Xj)) = hj1(parent(Xj)1) + · · · + hjqj
(parent(Xj)qj

), (3)

where parent(Xj)k (k = 1, ..., qj) is the kth parent of genej , and hjk(x) is a
smooth function from R to R. For the noise, Imoto et al. [10] assumed the
heterogeneous error variances for reducing the effect of outliers in microarray
data. In the next section, we introduce the moving boxcel median filter to achieve
more robustness in the estimation of the relationships between genes against
outliers.

2.2 Virtual Samples

Suppose that we have p genes’ expression data observed by n microarrays. That
is, xi = (xi1, ..., xij , ..., xip)T is a p-dimensional gene expression vector from ith
microarray and X = (x1, ...,xn)T is an n × p gene expression matrix whose
(i, j)th element, xij , is an expression value of genej of ith microarray. Since
microarray data contain various noise including measurement noise, we can de-
compose

xi = xinternal
i + ηi, (4)

where ηi is a p-dimensional noise vector. By using xinternal
i and density func-

tions instead of probability measure in (1), the purpose is to express a Bayesian
network model as

f(xinternal
i ) =

p∏
j=1

fj(xinternal
ij |pinternal

ij ),

where pij is a parent gene vector of genej of ith microarray, i.e. if parent(X1) =
(X2,X3)T , we have pi1 = (xi2, xi3)T , and pinternal

ij is defined by the same as
(4). In previous works, Bayesian network models are expressed as f(xi) =∏p

j=1 fj(xij |pij). Therefore, one of the differences between the proposed method
and previous works [9, 10] is in (4). However, gene expressions are observed by
a few (typically one) microarrays for an experimental condition. Therefore, it
is difficult to separate the true signal, xinternal

i , from the noise like (4). As an
alternative approach to realize the model (4), we make virtual observations for
each gene as follows: We generate M virtual samples, {x∗1

ij , ..., x∗M
ij }, for each

observation, xij , from the following system

x∗m
ij = xij + ε∗m

ij , m = 1, ...,M, (5)
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where ε∗m
ij depends independently and normally on mean 0 and variance σ2

j0
.

For the setting of σ2
j0

, we set σ2
j0

= α
∑

i(xij − ∑
i′ xi′j/n)2/n with α = 0.2

empirically. However, it is often the case that the setting σ2
j0

is inappropriate.
We then update x∗m

ij ’s by using the residual bootstrap described in Section
2.4. By using the system (5), we can model the measurement noise included in
xij virtually. In standard regression methods, the measurement noise is usually
ignored. On the other hand, the proposed method allows the measurement noise
and estimate the relationship between variables suitably.

2.3 Moving Boxcel Median Filter

For constructing hj(x) in (2), we apply the moving boxcel median filter to
((p∗m

ij )T , xij) for i = 1, ..., n; m = 0, ...,M , where p∗0
ij = pij . To explain the

moving boxcel median filter, we consider a simple example that gene1 has one
parent gene, gene2. The moving boxcel median filter estimate (X1 = ĥ1(X2)) is
obtained as follows: First, we compute

∆xj =
max

i=1,...,n
(xij) − min

i=1,...,n
(xij)

2λ
,

for j = 2. Here λ is a constant and we set 20 as an appropriate value in the later
section. The estimated value at a, i.e. ĥ1(a), is the median of the observations
of xi1 whose parent observations x∗

i2 are included in the interval I∆x2(a) = [a−
∆x2, a + ∆x2], where a ∈ V al(X2) = [mini(xi2),maxi(xi2)]. The moving boxcel
median filter curve is thus obtained by moving the interval [a − ∆x2, a + ∆x2]
from a = mini(xi2) to a = maxi(xi2). Figure 1 shows an example of the moving
boxcel median filter estimate. Figure 1 (a) is the scatterplot of the expression
data of gene2 and gene1, which are generated numerically. Figure 1 (b) is the
scatterplot of {(x∗m

i2 , x∗
i1)|i = 1, ..., n;m = 0, ...,M} with x∗0

i2 = xi2. We set
α = 0.2, λ = 20 and M = 10, and generate virtual samples. In Figure 1 (b),
the moving boxcel median filter estimate at X2 = a is given as the median of
the data in the shadowed area. In Figure 1 (c), the true relationship between
gene1 and gene2 is shown as the dotted curve and the moving boxcel median
filter estimate is the solid curve. It is clear that the moving boxcel median filter
can reduce the effect of the outliers (in right-bottom) and construct a suitable
relationship, which is close to the true one.

The moving boxcel median filter can be easily extended for more than two
parent genes cases. If gene1 has three parents, gene2, gene3 and gene4, the in-
terval defined above is extended as

I∆x2(a) ⊗ I∆x3(b) ⊗ I∆x4(c)

with a ∈ V al(X2), b ∈ V al(X3) and c ∈ V al(X4). Note that, by using the
moving boxcel median filter, we do not need to assume the additive form (3) as
a regressor and can model the relationship between genes by using more general
form given in (2).
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Fig. 1. Example of the moving boxcel median filter. (a) Scatterplot of {(xi2, xi1)|i =

1, ..., n}. (b) Scatterplot of {(x∗m
i2 , x∗m

i1 )|i = 1, ..., n; m = 0, ..., M}. (c) Solid curve:

moving boxcel median filter estimate, Dotted curve: true curve

2.4 Residual Bootstrap

Since microarray data contain various noise including measurement noise, we
model this fact by the model defined by (4) and (5). However, in the system
(5), we determined the volume of the error variance σ2

j0
empirically. Therefore,

it is often the case that σ2
j0

is not appropriate. Although the value of σ2
j0

can be
set as a somewhat appropriate value by using some information about the true
relationships or resulting networks, it is clear that this approach has a limitation
in practice. To solve this problem, we use the residual bootstrap method and
recreate M virtual samples for each observation.

Suppose that parent genes of each gene are temporarily obtained and the
moving boxcel median filter estimate for each relationship is computed, the pro-
cedure of the residual bootstrap can be expressed as follows:
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Homogeneous Error Variance Model
We compute the residuals for each gene as

ε∗ij = xij − ĥj(pij).

For each observation, we recreate M virtual samples {x∗1
ij , ..., x∗M

ij } by

x∗m
ij = ĥj(pij) + ε∗m

ij , m = 1, ...,M,

where ε∗m
ij is a bootstrap sample obtained by resampling from {ε∗1j , ..., ε

∗
nj} with

replacement. Hence, we obtain new virtual samples x∗m
ij (m = 1, ...,M) for xij .

Heterogeneous Error Variance Model
In heterogeneous error variance model, we assume that the distribution of εij de-
pends not only on the index i (gene), but also the index j (microarray). This situ-
ation is more natural than the case of the homogeneous error variance, e.g. Imoto
et al. [10]. First, we define the neighborhood of pij , denoted by Neighbor(pij),
by using ∆xj and the virtual samples p∗m

ij . For example, if pij = (xi2, xi3)T ,
then we have

Neighbor(pij) = {(x∗m′
i′2 , x∗m′

i′3 )|x∗m′
i′2 ∈ I∆x2(xi2), x∗m′

i′3 ∈ I∆x3(xi3)}.
By using the virtual samples included in Neighbor(pij), the residuals are ob-
tained as

ε∗m′
i′j = xi′j − ĥj(p∗m′

i′j )

with p∗m′
i′j ∈ Neighbor(pij). We then make M virtual samples for xij as

x∗m
ij = ĥj(pij) + ε∗m

ij , m = 1, ...,M,

where ε∗m
ij is a bootstrap sample from {ε∗m′

i′j }i′,m′ .

After updating the virtual samples, we will fit the moving boxcel median
filter described in the previous section to the microarray data and the updated
virtual samples. We repeat this iteration until the stable estimate is obtained.
Note that the moving boxcel median filter and the residual bootstrap can be
applied when we set the parents of each gene. In the next section, we describe
the selection of the graph structure and show an algorithm for estimating gene
networks by using the moving boxcel median filter and the residual bootstrap
method.

2.5 Graph Selection

In the estimation of gene networks from gene expression data, an essential prob-
lem is the choice of the optimal graph structure that gives the best approximation
of the system underlying the data. From a statistical view point, this problem
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can be considered as a statistical model selection problem. For the graph selec-
tion problem, we use the residual sum of squares as a criterion for choosing the
optimal graph structure

σ2
G =

1
p

p∑
j=1

σ̂2
j , (6)

where σ̂2
j is defined by

σ̂2
j =

⎧⎪⎨
⎪⎩

σ2
j0

/α for top genes,

1
n

n∑
i=1

{xij − ĥj(pij)}2 otherwise.

The optimal graph Ĝ is obtained as the minimizer of σ2
G. Note that the criterion

(6) can evaluate graphs that are obtained by the same λ, M and α.
When we focus on a small gene networks, the optimal graph structure can be

obtained by using a suitable learning algorithm, e.g. Ott et al. [15]. However, for
large gene networks, we use a greedy hill-climbing algorithm for learning graph
structures. Our greedy hill-climbing algorithm can be written as follows:

Initial Step
Step1. For all genes x(j) = (x1j , ..., xnj)T , create M virtual samples

x∗
(j) = (x∗1

1j , ..., x
∗1
nj , ..., x

∗m
1j , ..., x∗m

nj , ..., x∗M
1j , ..., x∗M

nj )T ,

where x∗m
ij ∼ N(xij , σ

2
j0

).
Step2. For each pair {(x∗m

ik , xij)|i = 1, ..., n;m = 0, ...,M}, apply the moving
boxcel median filter and take 10 best genes in terms of σ̂2

j as candidate
parents of genej . We denote 10 candidate parents of genej as “pajk” for
k = 1, ..., 10.

Learning Step
Step3. For each genej (j = 1, ..., p):

Step3-1. For each candidate parent pajk (k = 1, ..., 10):
Step3-1-(a). Test one of the following operations, apply moving median

filter, and calculate σ̂2
j,test.

− If pajk → genej does not exist, add this edge.
− If pajk → genej exists, remove this edge.
− If pajk ← genej exists, reverse this edge.

Step3-1-(b). If σ̂2
j,test < σ̂2

j , apply the operation in Step3-1(a) and set
σ̂2

j = σ̂2
j,test. Otherwise, no operation is conducted.

Step3-2. Update virtual samples for genej .
Step4. Repeat Step3 until σ2

G converges.

In the learning step of the above algorithm, the resulting network depends
on the learning order of genes. Therefore, we permute the learning order and
take the best network out of 10 networks as the optimal one.
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X1 = X2
2 + 2 sin(X5) − 2X7 + ε1, X2 = {1 + exp(−4X3)}−1 + ε2,

X3 = ε3, X4 = X2
5/3 + ε4, X5 = X3 − X2

6 + ε5, X6 = ε6,

X7 =

{−1 + ε7, X8 ≤ −0.5
X8 + ε7, −0.5 < X8 ≤ 0.5
1 + ε7, 0.5 < X8

X8 = exp(−X4 − 1)/2 + ε8, X9 = ε9, X10 = cos(X9) + ε10.

(d)

Fig. 2. True model and estimated networks of Monte Carlo simulations: (a) True net-

work. (b) Estimated network by the previous method [9]. (c) Estimated network by

the proposed method (n = 100, α = 0.2, λ = 20 and M = 100). (d) Functions between

nodes

3 Computational Experiments

3.1 Monte Carlo Simulations

We conduct Monte Carlo simulations to examine the properties of the proposed
method by comparing with the previous method [9]. The simulated microarray
data were generated from the artificial network of Figure 2 (a) with the functional
structures between nodes shown in Figure 2 (d). The observations of the child
variable are generated after transforming the observations of the parent variables
to mean 0 and variance 1. After generating the data from the true system and
making a matrix X ′ = (x′

1, ...,x
′
n)T , we then add the noise corresponding to the

measurement noise by

xi = x′
i + ηi, i = 1, ..., n,

where ηi = (ηi1, ..., ηip)T is a p-dimensional noise vector and ηij depends on the
mixture normal distribution of the form

ηij ∼ (1 − κ)N(0, {Rng(xij)/20}2) + κN(0, {Rng(xij)/10}2).
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Here we set κ = 0.05 and Rng(xij) = maxi(xij)−mini(xij). Hence a microarray
data matrix we used is defined by X = (x1, ...,xn)T . A network was rebuilt from
simulated data consisting of n = 50 or n = 100 observations, which corresponds
to 50 or 100 microarrays.

Figure 2 (b) and (c) are typical examples of the estimated networks for
n = 100. We tried various settings of α, M and λ and set α = 0.2, M = 100
and λ = 20 as appropriate values. In Figure 2 (b) and (c), the solid edges are
correctly estimated edges and the dotted edges are the falsely estimated edges
by the previous method [9] and the proposed method. It is clear that by adding
measurement noise and some outliers, the previous method estimated some spu-
rious relations that are false positives. On the other hand, by comparing with the
previous method, the proposed method can reduce the number of false positives.
We observe that a shortcoming of the proposed method from this simulation
that the proposed method sometimes estimates edges that are inverse direc-
tion. However, if we consider the estimated network as an undirected graph, the
sensitivity (the number of correctly estimated edges divided by the number of
the estimated edges) of the proposed method is much higher than that of the
previous method.

In the result of Monte Carlo simulations, it is shown that our method is
robust to the noise which is independent of fluctuations of the gene network.
Various instrumental and observation noises can be properly removed together
with constructing Bayesian networks for estimating gene networks, resulting in
giving robust and reliable estimates.

3.2 Real Data Example

In the real data example, we use Saccharomyces cerevisiae cell cycle data col-
lected by Spellman et al. [19] and focus on 52 genes. These genes made a subnet-
work estimated by Imoto et al. [9]. Figure 3 is the resulting network obtained by
the proposed method with the same α, M and λ in the Monte Carlo simulations
in the previous section.

The results of the real data example can be summarized as follows: In bud-
ding yeast, Saccharomyces cerevisiae, the homeodomain protein, YOX1, is a
repressor that restricts early cell cycle boxes (ECB)-mediated transcription to
the M/G1 phase of the cell cycle [17]. As a transcription factor, YOX1 binds
nearly 30 genes, including CLN2 [7], that are important for DNA synthesis and
repair. An ECB element (CLN3) activates SBF and MBF, two late G1-specific
transcription complexes. Both SBF and MBF cause a burst of transcription of
the late G1 cyclins, CLN1 and CLN2, and other genes required for S phase
(B cyclins), CLB5 and CLB6, respectively. The two late G1 cyclins, CLN1 and
CLN2, have important effects for progression into S phase, i.e. an increase in the
level of CLB5,6-CDC kinase activity sufficient to permit initiation of DNA repli-
cation [8]. In the resulting network shown in Figure 3, YOX1 connects directly
to CLN2 and CLN2 connects to CLN1 and CLB6, while the resulting network
of Imoto et al. [9] contains connections from CLN2 to CLN1 through YOX1. In
comparison with Imoto et al. [9], our network can reflect functional correlations
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Fig. 3. Resulting cell cycle gene network obtained by the proposed method

between YOX1 and the late G1-cyclins and B-cyclins more precisely. An inter-
esting relationship is found that the cell wall biogenesis gene CSI2 triggers many
genes in our resulting network, while only three genes are regulated by CSI2 in
the network of Imoto et al. [9]. Although the function of CSI2 as a structural
component of the chitin synthase 3 complex is still unclear, Friedman et al. [5]
showed that CLN2, RNR3, SVS1, SRO4 and RAD51 are highly correlated each
other and CSI2-SRO4 pair works together as cell wall regulation at the plasma
membrane. In addition, the yeast protein function assignment [21] by Marcotte
et al. [13] shows that CSI2 is functionally linked with vanadate sensitive sup-
pressor SVS1. Based on the resulting network in Figure 3, we may suggest that
CSI2 interacts many genes and may play an important role in cell cycle. Based
on those observations, our proposed methods are capable of extracting causal
relationships between genes effectively from gene expression data.

4 Discussion

We proposed the use of the moving boxcel median filter and the residual boot-
strap for constructing Bayesian networks aimed at robust estimation of gene
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networks from microarray data. Main difficulties of the estimation of gene net-
works based on microarray data are caused by the outliers and the nonlinearity
of the relationships between genes. We solved these problems by the proposed
method and attained an accurate gene network rather than the previous method.

We consider the following problems as our future topics: We set the pa-
rameters α, M and λ empirically. These parameters, however, could affect the
resulting networks and we need to develop a suitable criterion for choosing them
from a statistical point of view. Recently, researches have been focused on using
multiple types of genomic data such as binding site information, protein-protein
interaction and so on, together with microarray data for extracting more reliable
information [11, 14, 18, 20]. We would like to extend our method to handle such
genomic data for estimating more accurate gene networks.
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