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Abstract

This article is addressed to the problem of modeling and exploring mean value
structure of large-scale time series data and time-space data. A smoothness prior
modeling approach [13] is taken. In this approach, the observed series are decom-
posed into several components each of which are expressed by smoothness priors
models. In the analysis of POS and GPS data, various useful information were
extracted by this decomposition, and result in discoveries in these areas.
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1 Introduction

In statistical information processing, introduction of the information criterion
AIC [1,19] facilitated to compare various types of statistical models freely and
changed the conventional paradigm of statistical research which consisted of
estimation and statistical test. It revealed the importance of proper statistical
modeling, and the use of parametric models become very popular since then
[4,14]. AIC criterion suggests that if the available data set is short, we have to
use simpler model to obtain reliable information from that data. However, by
the progress of various measuring devices, it has become possible to use huge
amount of data in various fields of sciences and societies. In this situation, a
more important problem is to extract useful information from huge amount
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of data, which is difficult to achieve by a simple parametric model. Namely,
in this situation, modeling with small number of parameters is sometimes
inadequate and a more flexible tool for extracting useful information from
data is necessary.

In an analysis of input-output relationship of econometric time series, Shiller
[20] introduced the notion of “smoothness priors”, and considered constrained
least squares problem. A similar concept has already appeared in Whittaker
[22] addressing a problem of the estimation of a smooth trend. The trade-
off parameters were determined subjectively until Akaike [2,3] proposed the
method of choosing the trade-off parameters or hyperparameters in a Bayesian
framework, by maximizing the likelihood of a Bayes model [18]. The calcu-
lation of the likelihood of a Bayes model for time series requires intensive
computation, of which burden Gersch and Kitagawa [6] eased by employing
a state space representation of the model and recursive algorithm of Kalman
filtering [11].

In this paper, we will present applications of this smoothness priors approach
for exploring large-scale time series data or space-time data. Specifically, we
consider the POS (Point of Sales scanner) data and GPS (Global Positioning
System) data, because automatic transaction of these data is one of the most
attractive and potential targets in statistical science. By the analyses of these
data, it will be shown that by removing trend and seasonal components by
a proper smoothness prior modeling, useful information such as the trading
day effect (for economic data), competitive relation (for POS data) and local
fluctuation associated with an atmospheric condition (for GPS) are discovered.

2 Smoothness Prior Modeling

2.1 Flexible Semi-Parametric Modeling

A smoothing approach attributed to [22], is as follows: Let

Yn = fn+6En, n=1,.,N (1)

denote observations, where f, is an unknown smooth function of n, and ¢, is
an independently identically distributed (i.i.d.) normal random variable with
zero mean and unknown variance o2. The problem is to estimate f,,n =
1,..., N from the observations, y,,n = 1,..., N, in a statistically sensible way.
Here the number of parameters to be estimated is equal to the number of
observations. Therefore, the ordinary least squares method or the maximum
likelihood method yield meaningless results. Whittaker [22] suggested that



the solution f,,n = 1,..., N balances a tradeoff between infidelity to the data
and infidelity to a k-th order difference equation constraint. Namely, for fixed
values of A\? and k, the solution satisfies
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The first term in the brackets in (2) is the infidelity-to-the-data measure, the
second is the infidelity-to-the-constraint measure, and A? is the smoothness
tradeoff parameter. Whittaker left the choice of A\? to the investigator.

2.2 Automatic Parameter Determination via Bayesian Interpretation

A smoothness priors solution [2] explicitly solves the problem posed by Whit-
taker [22]. A version of the solution is as follows: Multiply (2) by —1/(20?)
and exponentiate it. Then the solution that minimizes (2) achieves the maxi-
mization of

exp{ i }exp{ i AFf) } . (3)

Under the assumption of normality, (3) yields a Bayesian interpretation

(fly, X%, 0% k) o< plylo®, f)m(fIN?, 0% k), (4)

where 7(f|\?, 02, k) is the prior distribution of f and p(y|o?, f) the data dis-
tribution, conditional on ¢% and f, and m(f|y, A\?, 02, k) the posterior of f.
Akaike [2] obtained the marginal likelihood for A? and k by integrating (3)
with respect to f. This facilitates an automatic determination of the tradeoff
parameters in constrained least squares which has been treated subjectively
for many years and eventually led to the frequent use of Bayesian method in
statistical and information science communities. Several interesting applica-
tions of this method can be seen in [4].

2.8 Time Series Interpretation and State Space Modeling

Consider a problem of fitting polynomial of order & — 1 defined by

Yo =tn +En, tn=ag+an+---+ap 0L (5)



where &, ~ N(0,0?). It is easy to see that this polynomial is the solution to
the difference equation

AFt, =0, (6)

with appropriately defined initial conditions. This suggests that by modifying
the above difference equation so that it allows for a small deviation from
the equation, namely by letting A¥t, ~ 0, it might be possible to obtain a
more flexible regression curve than the usual polynomials. A possible formal
expression is the stochastic difference equation model

A*t, = vy, (7)

where v, ~ N(0,7?) is an i.i.d. Gaussian white noise sequence. For small noise
variance 72, it reasonably expresses our expectation that the noise is mostly
very “small” and with a small probability it may take a relatively “large”
value. Actually, the solution to the model is, at least locally, very close to a
(k — 1)-th order polynomial. However, globally a significant difference arises
and (7) can express a very flexible function. For k = 1, it is locally constant
and becomes a well-known random walk model, t, = t,_1 + v,. For k& = 2,
the model becomes t,, = 2t, 1 — t, 2 + v, and the solution is a locally linear
function.

The models (5) together with (7) can be expressed in a special form of the
state space model

Tn=Fx, 1 + Gu, (system model),
yn=Hz, +w, (observation model), (8)

where v,, ~ N(0,72), w, ~ N(0,0%) and z, = (tp, ..., tn_+1)" is a k-dimensional
state vector, F', G and H are k x k, k x 1 and 1 x k matrices, respectively.
For example, for £k = 2, they are given by

tn 2 -1 1
Ty = , F= , G= , H=][1,0]. (9)
th1 10 0

One of the merits of using this state space representation is that we can use
computationally efficient Kalman filter for state estimation. Since the state
vector contains unknown trend component, by estimating the state vector z,,
the trend is automatically estimated. Also unknown parameters of the model,
such as the variances 0? and 72 can be estimated by the maximum likelihood
method. In general, the likelihood of the time series model is given by
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n=1

where Y,_1 = {y1,...,yn_1} and each component p(y,|Y,_1,6) can be ob-
tained as byproduct of the Kalman filter [11]. It is interesting to note that
the tradeoff parameter A\? in the penalized least squares method (2) can be
interpreted as the ratio of the system noise variance to the observation noise
variance, or the signal-to-noise ratio.

The individual terms in (10) are given by, in general p-dimensional observation
case,

1

Yo 1,0) = — [Wypn-

p(yn| n—1, ) (\/ﬂ)p ‘ njn—1

where €,n—1 = Yn — Unjn—1 is one-step-ahead prediction error of time series

and yp|,—1 and V,,_; are the mean and the variance covariance matrix of the
observation v, respectively, and are defined by

_1
2

1 _
eXp{_§6,n|n1Wn|;_16nnl}a (11)

Ynjn—1 :Hxn\nfla (12)
Wopn-1=HVyu 1H' + 0. (13)
Here z,,_1 and Vj,,_; are the mean and the variance covariance matrix of the

state vector given the observations Y,, ; and can be obtained by the Kalman
filter [11].

If there are several candidate models, the goodness of the fit of the models
can be evaluated by the AIC criterion defined by

AIC = —2log L() + 2(number of parameters). (14)

AIC is derived from an asymptotically unbiased estimate of the expected log-
likelihood, or equivalently the Kullback-Leibler information of the model, and
the model with the smallest AIC is considered to be the best one [1], [19].

2.4 Modeling of Space-Time Data

Let Z!, (n =1,...,N;i = 1,...,I) be scalar observation at a discrete time
of n for a station (site) 7. Along the line mentioned above, we consider the
following model to decompose Z: into trend, T, and irregular component,
D', namely,

ZL=T!+ D: Di~ N(0,0%. (15)



A direct approach to realize the Bayesian space-time (space-temporal) model
is given by considering the following system model for each n

T:=2T: | —T: ,+E' FE.~ N(0,7*) forV 4, (16)
T —TI =V, Vi~ N (0,(¢(AY))%s?) for V (i, 5),(17)

where A¥ is some measure of a distance between station ¢ and 7, and ¢ is usu-
ally assumed as a linear function truncated at A, which is set to be the mean
of distance between the neighboring points. Although this approach is desir-
able from the statistical viewpoint, its numerical realization on computer is
impractical due to large memory required for a large number of I =~ 1,000 that
we usually deal with. For a case with lower dimensional model like I < 100, a
simple approach to deal with T,, = [T}, T2,..., 7! | T} |, T? ,,..., T || as
a state vector can be implemented on a computer with large memory [12].

A simple way to mitigate this computational difficulty in the direct Bayesian
approach for a case with I ~ 1,000 is to assume that each time series Z° =
[Z¢,Z3, ..., ZY] is mutually independent vector. This assumption allows the
smoothness priors approach mentioned earlier to be employed. Then we use
the system model given by (16) only. The maximum likelihood estimates for

o®" and 7>* are denoted by 6** and 7%, respectively. The Kalman filter and
smoother with 62 and 72¢ yield the estimates for the trend component, TZ
The estimated irregular components Dz = 7! — Tz is called the residual
hereafter. A vector of the residual components for a station 7 is denoted by
D’ and the median of TZ for each n, by T,. Similarly, their percentile points
corresponding to +¢ and 420 intervals of Tz versus n are denoted by 7' and
T2 respectively.

The next step for exploring the mean structure of the space-time data is to
examine the spatial correlation of the residual components in terms of a cor-
relation coefficient C¥ between D* and D’. For a fixed station i, a spatial
distribution of C* as a function of a distance measure A% has to be examined
visually. In fact, a large number of C*/ hampers such kind of visual exami-
nation. Therefore, a plot of C% versus A% guides us to further improvements
on the mean structure of the space-time data. Obviously, when there appear
many points with high correlation in the small value of A, taking the spatial
correlation into account would improve an initial estimate on the mean struc-
ture of the space-time data, TfL Such kind of improvements can be realized by
considering the following smoothness priors model for a spatial data

Ti=pi + UL, UL~ N(0,7?) for V i,

o . (18)
b = My =Vo, Vi~ N(0,((AY))s?) for V (i, ),



where p¢ is an improved trend component. The iterative procedure mentioned
above is practical for improving the estimates of the mean structure of the
space-time data set [9].

3 Applications

3.1  An Illustrative Example: Seasonal Adjustment

The smoothness priors method has been applied to many real world problems
[4,13]. Most of the economic time series contain trend and almost periodic
components which make it difficult to capture the essential change of eco-
nomic activities. Therefore in economic data analysis, removal of these effects
is important. In our modeling it is realized by the decomposition

where t,, s, and w, are trend, seasonal and irregular components. A reason-
able solution to this decomposition was given by the use of smoothness priors
for both ¢, and s, [6]. The trend component ¢, and the seasonal component
s, are assumed to follow

=2t 1 —th o+ Un,
Sp = _(Sn—l + e+ Sn—ll) + Up, (20)

where vy, u, and w, are Gaussian white noise with v, ~ N(0,72), u, ~
N(0,72) and w, ~ N(0,0?).

We fit this model to BDHWWS (Wholesale Hardware Sales, U.S. Bureau of
the Census, January 1967 — February 1989) data. The variance of the irregular
component, the log-likelihood and AIC of the model are 0.001193, 454.6 and
3095.2, respectively. Fig. 1A, B and C show the log-transformed original data
and the estimated trend, seasonal component and the irregular component,
respectively. The estimated seasonal component is very stable over the whole
period and the trend clearly captures the depression of the sales in 1975 and
1982. The irregular component is small compared with the seasonal variation.
Although, by this seasonal adjustment, it is possible to extract or remove
seasonal component, we can extract more information by a smoothness prior
modeling. Many of the economic time series related to sales or production
are affected by the number of days of the week. For example, the sales of
a department store will be strongly affected by the number of Sundays and
Saturdays in each month. Such kind of effect is called the trading day effect.



To extract the trading day effect, we consider the decomposition

Yn = tn + Sp + td, + wy, (21)

where t,, s, and w, are as above and the trading day effect component, td,,
is assumed to be expressed as

7
tdy = Bidjn, (22)

i=1

where dj, is the number of j-th day of the week (e.g., j=1 for Sunday and
j=2 for Monday, etc.) and (3, is the unknown trading day effect coefficient. To
assure the identifiability, it is necessary to put constraint that 8, +---+3; = 0.
The variance of the irregular component, the log-likelihood and AIC of the
model are 0.000602, 515.4 and 2985.7, respectively. The reduction of the vari-
ance and the AIC value clearly indicates the existence of the trading day effect.
Fig. 2A shows the estimated trading day effect coefficients 8;,7 =1,...,7. It
reveals that Sunday (j=1) and Saturday (j=7) have negative effect. This sug-
gests that many wholesale stores are closed on Sunday and Saturday. The
coeflicients for the weekend are positive. However, those of Monday, Wednes-
day and Friday are close to zero.

To check the reliability of these coefficients, we considered a constrained model
that assumes

Br=Br, Po=Ps=0s= L= Ds. (23)

The variance, log-likelihood and AIC of this model are 0.000636, 512.8, 2980.9,
respectively. Since AIC of the model is smaller than the former model, it
indicates that this constrained model is better than the former one. Namely,
the difference of the trading day coefficients within weekdays and also that
of Sunday and Saturday are not significant. Fig. 2B shows the trading day
coefficients obtained by this model.

Fig. 1D and E show the trading day effect and the irregular component ob-
tained by this model. The trend and seasonal components are visually indistin-
guishable from the ones shown in Fig. 1A and B. The trading day effect is very
small compared with the seasonal variation. However, the irregular component
becomes considerably small. Actually the variance of the residual becomes a
half. Fig. 1F shows the plot of the seasonal component plus trading day effect.
Comparing with Fig. 1A, it can be seen that the seasonal component plus
trading day effect reproduces the detailed behavior of the series.

Since the numbers of day of the week are completely determined by the cal-



A: Data and Trend
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Fig. 2. Trading day effect coefficients. A: 7-factor model, B: 2-factor model.

endar, if we obtain good estimates of the trading day effect coefficients, then
it will greatly contribute to the increase of prediction ability.

Similar decomposition methods are developed for the analysis of earth tide



data and groundwater data. In these applications, the time series is decom-
posed as

Yn =tp + Pn +en + 1y + Wy, (24)

where p,, e, and 7, are the barometric air pressure effect, the earth tide
effect and the precipitation effect, respectively [4]. By the decomposition of
10 years groundwater data with this model, the effects of earthquakes are
clearly detected, and various knowledge on the relation between occurrence of
earthquakes and the groundwater level are obtained [14,15].

3.2 Analysis of POS Data

Analysis of Point-of-Sales (POS) scanner data is an important research area
of “data mining” and discovery science, which may provide store managers
with useful information to control price or stock levels of goods. The effect
measurements responding to price changes and semi-automatic sales forecasts
of each brand may be useful in order to pursue price promotions efficiently
and reduce the risk of “dead-stock” or “out-of-stock”.

POS data set consists of a huge number of items and the analyses so far
are mostly concentrated on the detection of mutual relation between items.
In this subsection, we will show that, by the smoothness prior modeling of
multivariate time series which takes into account of various components such
as long term baseline sales trend, weekly pattern and competitive effects, it is
possible to discover the effect of temporary price-cut and competitive relation
between several items.

Assume that y, = [yV),...,yO]" denotes £ dimensional time series of sales of
a certain product category, and p, = [pgl), . ,pg)]’ the covariate expressing

the price of each brand. The generic model we consider here for the analysis
of POS data is given by

Yn = tn +dp + Ty + wp, (25)
where t,, d,, r, and w, are the baseline sales trend, weekly pattern, sales

promotion effect, and observation noise, respectively. Each component of the
baseline sales trend, tg), is assumed to follow the first order trend model

t9) =49 4w, (26)

The weekly pattern, dg), can be considered as a special form of seasonal com-
ponent with period length 7 and is assumed to follow



Fig. 3. Decomposition of the brand B1 (left) and B2(right). Top plots: observed
series, second plots: baseline trend plus weekly pattern, third plots: category expan-
sion, fourth to sixth plots: brand substitution, positive due to own price-cuts and
negative due to competitors’ price-cuts.
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Fig. 4. Competitive relationships between four brands.




d0) — —(diﬁl IS d(jlﬁ) + W), (27)

The price promotion effect is assumed to be expressed by a linear function of
nonlinear transformation of the price (price function)

In the analysis that follows, we assume that the price function is given by

F(pn)? = exp {~y(n — o)} Is (ApY) — ) (29)

where Apgj) denotes the temporary price-cut from its regular (precisely the
maximum) price, vy, a parameter, ny a starting point of price-cut, cg) a condi-
tion that a price-cut is effective to cause sales increases, and I4( ) an indicator
function. In actual modeling, this price promotion effect is further decomposed
into x,, = g, + 2, where g, is the category expansion effect and corresponds
to the contribution to the increase of total sales. On the other hand, z, is the
brand switch effect which is the increase of the sales of a brand obtained at
the expense of the decrease of other brands and does not contribute to the
increase of category total.

This model can be conveniently expressed in linear state space model and
thus the numerically efficient Kalman filter can be used for state estimation,
namely for the decomposition into components, and parameter estimation.
Within various possible candidate models, the best model was found by the
AIC criterion.

The presented model was applied to scanner data sets of daily milk category,
for the period of 1994/2/28 — 1996/3/3 (N=735). Five-variate series consisted
of top four brands and the others total were analyzed. Only two brands Bl
and B2 are shown on top of Fig. 3. The second plots show the estimated
baseline trend components plus the estimated weekly pattern. Only about
20% of the variation of the original series is explained by this day of the week
effect. However, for other stores where the prices of brands did not change so
significantly, the weekly pattern contribute much more than this present case.

Fig. 4 shows the detected competitive relationship among four major brands
discovered via identified model. The competitive coefficients are shown as well.
The brand, B3, is a low fat type of B2 and is identified to be independent of
other brand’s price promotion due to the type difference. Price-cut of B4 (B2)
increases sales of B4(B2), but reduces those of B1 and B2 (B1). Price-cut of
B1 increases sales of B1 and does not affect the sales of the competitive three
brands.



The decomposition of price promotion effect into brand switch effect and cat-
egory expansion effect is achieved by using the category total sales instead
of the others total sales with a zero constraint on the brand switch effect of
the category total for each price function. The third plots of Fig. 3 show the
estimated category expansion effect. The price-cuts of B1 and B2 contribute
to the expansion of category total. The fourth plots show the estimated brand
switch components, being positive by own price-cuts, and the fifth or sixth
plots, being negative by the competitors’ price-cuts.

The brand switch components of B1 and B2 are quite different. The plot for
B1 indicates that the price-cut of B1 slightly contributes to the expansion of
its own sales. However, B1 is vulnerable to the price-cut of B2 (see the fifth
plots) and B4 (see the sixth plots). On the other hand, the price-cut of B2
considerably contributes to the increase of the own sales (see the fourth plots)
and B2 is slightly affected by the price-cut of B4 (see the fifth plots) .

3.3 Analysis of GPS Data

The GPS (Global Positioning System) is one of the most interesting and im-
portant data set which allows us to investigate a global change in environment
precisely. Its high precision information on positions of permanent stations can
be supplied by signal processing of microwave signal from GPS satellite. Sev-
eral physical quantities of media existing between the GPS satellite and ground
stations, such as electron, water vapor, and so on, affect phase information of
microwave signals and result in propagation delays [5,8,10]. Therefore, a care-
ful treatment of propagation delays is required to extract reliable information
as to measurements of the positions.

Dominant sources to bring about propagation delays are (1) ionosphere origin
and (2) troposphere origin, such as atmospheric pressure and atmospheric
water vapor [21]. The propagation delay generated by the atmospheric water
vapor, called the wet delay, is most difficult to evaluate among these factors. A
good estimation on the propagation delay can be given to the ionosphere origin
and atmospheric pressure origin sources, by utilizing other physical quantities
measured simultaneously. As a result, the wet delay turns out to appear as
“noise source” in the processing of the GPS data and has to be subtracted
prior to diagnosing the GPS data in terms of information on positions.

In Japan, considerable efforts to establish a nationwide GPS array has been
kept making by the Geographical Survey Institute of Japan (GSI) [7]. The
Japanese GPS array is characterized by its high spatial resolution; the array
is composed of nearly one thousand stations separated typically by 15-30 km
from one another [21]. Then, a proper processing of the GPS data set taking
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Fig. 5. The median, +10, and +20 percentile points of the estimated trend of the
up-down component versus n, T, Tir!, and T2,

the wet delay effect into account allows us to estimate a high-frequent spatial
pattern of the atmospheric water vapor, in particular, precipitable water vapor
(PWV) which plays an important role in forecasting a weather map. Actually,
an approach to extract information concerning the PWYV from the GPS data
draws much attention in a field of the meteorology and now is referred to as
the GPS meteorology [5,8,21].

Many previous works to infer a quantitative relationship between the PWV
and GPS data used the hourly GPS data sequences for some special events in
limited local areas, because an association of space-time variation of the GPS
data with other information obtained by radar echo and radiosonde measure-
ments would be useful and direct approach [8,10,21]. Our objective in this
study is aimed at finding empirical rules to give a quantitative description for
the relationship between the fluctuations observed in the GPS data and PWV.
We begin with a statistical analysis of the daily GPS array data provided by
the GSI. Let U’ be the nth day starting from January 1st, 1996 at the station
(site) i:

U! =[X: Y5 7)) i=1,....,;n=N!...,N! (30)

e

where X, Y, and Z correspond to the north-south, east-west, and up-down
components, respectively. N¢ and N! represent the starting and last date of
the GPS data available to us now. [ is the number of stations.

Our preparatory analysis shows that the fluctuations associated with the PWV
are most clearly seen in the up-down component, Z*, among the three compo-
nents. Then, in this study, we focus on the up-down component Z. Unfortu-
nately, the original GPS array data contains the outliers as well as the missing
observations. These unsatisfactory cases can be easily treated by smoothness



Fig. 6. Plots of A¥ versus C%.

priors approach with the state space model, presented in Sect. 2.3, which
provides us with the reasonable interpolated data (see [4] for details). De-
noising procedure based on another modeling approach has been proposed
to deal with an identification of outliers and discontinuities and has pro-
duced the similar estimates on T} [16]. The interpolation allows us to de-
termine T, T=!, and T? systematically. In Fig. 5 we show T,, T', and
T*? obtained by applying the smoothness priors approach to Z:. A seasonal
pattern, which is expected to be associated with the PWYV, is clearly seen
in this figure. A spatial distribution of T, can be illustrated by a GIF ani-
mation (http://www.ism.ac.jp/ higuchi/GPS/SpaAll.gif). In addition, a
relatively significant amplitude of the seasonal variation is found to be larger
than the typical amplitude of the residuals, which can be approximated by a
mean of the standard deviation of D?. Therefore, it is apparent that an ex-
traction of precise information on the position from the GPS array requires
an elimination of an effect of the PWV from the GPS data. A power spectrum
analysis is performed on the T,, component and find no eminent peak except
for a yearly cycle in a frequency domain. A detail investigation is being made
on this figure to discover with what factors is associated from the viewpoint
of a climatology.

Fig. 6 shows a plot of A¥ versus C%, where a unit of A is degree; roughly
speaking, a distance of a degree corresponds to 111 km. In this figure, only
10,000 points that are randomly drawn from about 180, 000 C* are shown for
the sake of reducing a file size for this figure. An appearance of many points
with high correlation in a small value of A clearly suggests that a residual
sometimes shows a similar fluctuation with that in the neighboring stations.



Three lines superposed on this figure are:

C(A) = exp (—%) [Exp. dacay type] (Thin line),
C(A) = (0.82)2 [AR type] (Broken line),  (31)
C(A)=1-0.36-(A)"* [Long Memory type] (Thick line).

The horizontal line indicates a value of 1/e. Each curve represents a correlation
function induced from a model denoted in bold face. The thin and thick lines
are drawn so as to have them resemble an envelope of the upper bound and
+20 percentile as a function of A in a range of A < 10. A good agreement of
the thick line to +20 envelope would imply that a long-memory-type spatial
correlation (H ~ 0.15) [17] happens to be observed for an atmospheric spatial
pattern. An examination of the weather map for these cases is interesting, but
the detailed discussion will be left to other places.

4 Conclusion

The key to the success of a statistical procedure is the appropriateness of the
model used in the analysis. The smoothness prior approach facilitates to de-
velop various types of models based on prior information on the subject and
the data. In this paper, we applied the smoothness priors method for the mod-
eling of large scale time series and space-time data with mean value structure
and competitive relations between variables. In the analysis of POS data, the
time series is decomposed into several components and various knowledge to
make a strategy concerning price promotion and risk control of dead-stock
are obtained. By the analysis of GPS data, a useful information for making
a conjecture on the relationship between the propagation delay and PWV is
successfully extracted based on the detailed investigation on the trend and
residual components.

Softwares based on the smoothness prior approach are available at the follow-
ing Web sites. The seasonal adjustment method discussed in section 3.1 can
be directly performed on Web-Decomp (http://www.ism.ac.jp/ sato) with-
out installing any software. Some other models based on the smoothness prior
approach or state space modeling can be run on the Web site of Institute of
Geoscience, National Institute of Advanced Industrial Science and Technology
(http://150.29.8.26/GSJ_E/analysis/index.html).
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