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This paper provides a new approach to detect changes in the groundwater radon
concentration related to an earthquake. We express changes in radon concentration in
a radon-detection chamber by using stochastic linear differential equations. These
equations are represented by the state space notation, and then its solution is replaced
by an estimation of the state vector at discrete points in time with an assumption that
the coefficients describing the stochastic differential equations are constant for a
sufficiently small time interval. Since the solubility of radon in water depends strongly
on temperature, the separation of radon from liquid water, which is necessary for radon
detection, causes fluctuations in the observed radon concentrations due to water
temperature changes in the chamber. We applied our procedure to some actual data
sets on groundwater radon concentration with those on simultaneously observed water
temperature, and found that the temperature effects on the fluctuations in the observed
radon concentration can be satisfactorily described by our procedure. Furthermore, we
were able to estimate the original radon concentration in groundwater before it was
introduced into the radon-detection chamber, which was not affected by water
temperature changes. The obtained original radon concentrations are very stable during
normal periods, and anomalous changes associated with earthquakes were easily
detected. Our new method will be very useful to examine time-variation patterns of
changes in groundwater radon and will provide important information about the
mechanism of radon changes related to earthquakes.

Introduction

Recently, reports on earthquake-related changes in groundwater radon, including

preseismic and coseismic, have increased (e.g., Wakita et al., 1989, 1991; Igarashi and
Wakita, 1990; Igarashi er al., 1993). It is now certain that the correlation between
groundwater radon changes and earthquake occurrences is statistically significant.
However, it is still poorly understood what mechanisms lead to changes in groundwater
radon before and at the time of earthquakes. More detailed examinations of radon
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changes such as time-variation patterns may provide important information about the
mechanisms of radon changes related to earthquakes.

Continuous measurements of groundwater radon are usually carried out by
introducing groundwater into a radon-detection chamber, where separation of radon
gases from liquid water occurs. Then, the radon concentration in the gas phase of the
chamber is measured by an a-ray detector mounted at the top (e.g., Noguchi and Wakita,
1977). Because the degassing flux of radon from liquid water depends on temperature,
the measured radon concentration can fluctuate due to temperature changes even if the
original radon concentration in groundwater remains constant. ‘Furthermore, the time
required to replace radon atoms in the radon-detection chamber with those degassed
from newly introduced groundwater should be taken into account since this may re-
sult in a time delay between the observed radon changes and those in the original
groundwater. Hence characteristics of a radon-detection system should carefully be
evaluated before examining time-variation patterns of earthquake-related radon changes.

In this study, we express radon concentration changes in a radon-detection cham-
ber by stochastic differential equations. We introduce the state-space notation
(Kalman,1960; Jazwinski, 1970; Gelb, 1974; Anderson and Moore,1979) for solving
these equations. Kalman (1960) advanced optimal recursive filter techniques based on
the state-space formulation to estimate the state of the linear system. To measure the
goodness of fit of the model to data, we adopt an information criterion which determines
the optimal form for describing system and observation errors (Akaike, 1980; Gersch
and Kitagawa, 1988). Then, by applying it to some observed radon data, we attempted
to examine precisely the temperature effect and time delay in the measured radon
concentrations, and to estimate time-variation patterns of original radon concentrations
in groundwater before it is introduced into the radon-detection chamber.

2. Stochastic Differential Equations

We consider a radon-detection chamber whose inside consists of two homogeneous
phases, gas and liquid phases. Figure 1 is a schematic figure of the chamber developed
by Noguchi and Wakita (1977). Radon concentration changes in the chamber can be
expressed by the following differential equations (Igarashi ef al., 1993),

ng—cg= —AV,C,+FS (1)
ds '
dC
V,d—t'= —AV,C,—FS—QC,+ QC, . )

Table 1 gives the notation for these equations. Since an a-ray detector is mounted at
the top of the gas phase, what we can observe as radon concentration is C,. We do
not have direct observational data on C, and C,.

According to Liss and Slater (1974), gas exchange through the boundary between
the gas and liquid phases is controlled by a very thin liquid surface layer where material
movement is subject to molecular diffusion, and gas flux from the liquid phase can be
approximated as
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Fig. 1. Schematic figure of a radon-detection chamber.
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Table 1. Notation for describing groundwater radon monitoring system.

Values for the KSM station

Gy Radon concentration in the gas phase

G Radon concentration in the liquid phase

Co Original radon concentration in groundwater

F Radon flux through the phase boundary

Hg, Henry’s low constant of radon solubility in water

Q Flow rate of groundwater 24 cm3/min

S Area of the phase boundary 3.14 x 10*cm?
T, Temperature in the liquid phase

v, Volume of the gas phase 1.57 x 103 cm?
v, Volume of the liquid phase 1.57 x 102cm?
k, Gas exchange constant 0.086 cm/min*
A Decay constant of 222Rn 1.26 x 10~ %/min

* The optimal value estimated by minimizing 4/C.

szl(cl_cg/HRn) s (3)

where k, is a gas exchange constant for the liquid phase and Hg, is the Henry’s law
constant of solubility of radon in water (Hg, = C,/C, in an equilibrium state). Although
there are some empirical estimates of gas exchange constants appropriate for the sea
surface (Liss and Slater, 1974), it is not certain whether we can apply those empirical
estimates to the radon measuring system. Therefore, we will use an empirical estimate
of k, (0.144cm/min for 222Rn) as an initial value and will estimate the optimal value
of k,. The Henry’s law constant Hp, is a function of temperature. To calculate Hp,
from observed values of water temperature in the chamber (7', [°C]), we use the following
formulation,

Heo(T) " 1=0.50774—2.836 x 10" 2T, +4.683 x 10”* T, —4.058 x 10" ° T}, (4)

Vol. 43, No. 2, 1995



120 T. Higuchi et al.

which we determined from the data tabulated in Wilhelm et al. (1976).
Putting Eq. (3) to Egs. (1) and (2), the differential equations for describing the
physics of our problem are rewritten as

dc,
=aC,+bC 5
dt a g 1 ()

d—?=ng+eCl+fCo, 6)

where

k.S
a=—</l+ kS ), b=—r,
HRnV VE

8

kS
a=_rS_ e=_(1+_Q_+;>, =2 )
HRnI/l Vl Vl

In these equations, C, represents the system random disturbances. Although we
can consider a number of models for system disturbances, we here assume that C, is
represented by a random walk process. Accordingly, its system dynamic (differential)
equation is given by

dC,

=W, ®)
dt ‘

where w, is the scaler white noise with the autocorrelation function of E[ww,]=

126(t—t'). E[ -] denotes the operation of an expectation, an &(t) is the Dirac delta
function.

3. State Space Representation

We here introduce the state-space notation which offers the advantage of
mathematical and notational convenience for solving the system dynamic (i.e.,
vector-matrix differential) equation (Gelb, 1974). We define the state vector at time ¢
to be x,=[C,, C}, C,]", where T denotes a transposition. The first-order linear, lumped
differential Egs. (5), (6), and (8) are represented by the first-order vector-matrix
differential equation

dx,

=Fx,+Gw,, ©
dt '
where F, is the system dynamic matrix defined by
abo
F=| def (10)
000
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and G, is the time-independent matrix defined by G,=G=[0, 0, 1]7. In other words,
the rate of change of the state vector consists of two terms. The first, F,x,, would be a
deterministic rate of change if F, were known. The system dynamic matrix F, is considered
to vary with temperature. The second term is random noise.

The first step for solution of the system dynamic equation is to get the transition
matrix which allows calculation of the state vector at some time =¢;, given knowledge
of the state vector at t=1¢,, in the absence of w,. When the matrix F, is time-invariant,
the transition matrix, ®(¢,, t,), is determined by

B(t,, tg)=e"t171 (11)

In our case, when the temperature can be assumed to be constant during a small interval
between f, and ¢,, F, becomes the time-invariant during this interval. Hereafter we,
explicitly indicate this time-invariant matrix F, between ¢, and ¢, by F,,. Derivation of
&(t,, to) is given in Appendix A.

The obtained transition matrix yields the solution of the dynamic equation of Eq.
(9) given by

at

&(ty, 5)Gwds=, (4 t)x,o+J D, (EGw,, _.dE. (12)

0

Iy

x‘l :(p(tl, to)xto'{"J\

to

This representation provides the discrete state space representation

x, =&, (A0)x, +u

Lo

y“:H'vll-*_v‘l’ (13)
where

U, 10— Jm (ptl(é)GW:,(é)th] —¢ dé

0
H=[1,0,0]. (14)

u, ., and v, are called the system noise and observation noise, respectively. y,, is an
observation at time ¢t =t¢,.

The (i, j) element of the variance and covariance matrix of u, ,, designated O}/, |
is determined by calculating E[u}, ,, *u! ,,], where u}, , is the i-th component of the

vector u, .. Derivation of @/, is given in Appendix B.

ti,to* ti,lo

4. Estimation of the State Vector

The measurements in this study are taken with the equal sampling interval 4¢, and
then we denote the state vector and observation at time t=¢,, x,_and y,, by x, and y,,
respectively. Thus, the observation in our problem is designated by Yy=[y,, -, yxl,
where N is the total data number. Similarly, the observation of temperature in the
liquid phase at time ¢=¢, is specified by T,,. Since there is no need to explicitly indicate
a dependency on the interval 4t for @, (4¢) and Q,,(4¢, t*), we denote them by &, and
Q,.(z?), respectively. By this notation, the state space representation given by Eq. (13)
can be rewritten as
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Xy = @nxn— 1 +un
yn=Hx,+v,, (15)

where u, corresponds to #, , . Of course, the variance and covariance matrix of #, is
Q.(z%). This representation enables us to use an efficient computation algorithm for
estimating the state vector, namely the following Kalman filter algorithm (Anderson,
1979; Kitagawa, 1983; Gersch and Kitagawa, 1988; Higuchi, 1991).

prediction

Xan-1=PuXy—1ju—1
Va-1= @V 10— 1P + Q,(7%) (16)
filtering
K=V tH'(HV - (HT+ 1)}
Xpin=Xppn— 1+ K,y — HXpp - 1)
Van=U—=KH)V,, 1, 17)

where x,,_, and x,, denote the estimates of x, given the observations Y,_,=
s 5 Vu-1] and Y,=[yy, """, y,—1, ¥,], Tespectively. Similarly, V,,-, and V,,
stand for their corresponding estimation error covariances. The estimates of x, and
V, based on all the available information Yy=[y,, -, py], X,n and V,, are also
obtained by the following recursive algorithm:

fixed-interval smoothing

An= n|n¢;§. Vn_+11|n
xnlN=xn|n +An(xn+ 1|N_xn+ lln)
anN: Vn|n+An(I/n+ 1IN I/n+l|n)"4: . (18)

The optimal value for 2 is easily identified by evaluating the following log-
likelihood, '

N
Z(YNITZ, g‘z)zlogP(yl)+ Z logP(ynl Yn—l) (19)

n=2

with

1 g2
P(ynl Yn— l)= 3 EXpy\ — >
2no‘y

2
. 20°v,

vn=HVn|n—1HT+ 1 ’
€y :yn_Hxnln— 1- (20)

It is interesting to note that both v, and ¢, appear in Eq. (17). ¢ is the variance of the
observation noise v, and its estimate is given by
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N 82

Z o 21
1= 1 v"
by maximizing Eq (19). By inserting Eq ( 1) into Eq. (20), the log-likelihood of the

hyper-parameter 7> can be expressed as

N 1 X
[(Yy|t?) = —7(log27t6'2+1)~7 Y logv,. (22)
n=1
We can obtain the optimal t? by maximizing Eq. (22) or by minimizing the Akaike
(Bayesian) information Criterion, called A/C,

AIC= —2max!(Yy|t*)+2 (number of hyper-parameters) (23)

with respect to 2. When there exists uncertainty about the initial given value of any
constant, we can correct its estimate by treating it as a hyper-parameter and minimizing
Eq. (23). As mentioned in Sec. 2, we do not have a reliable estimate for the gas exchange
constant &, in Eq. (3); we will determine an optimal value of k, by minimizing 47/C with
respect to k.

The nonlinear optimization for determining the hyper-parameter is performed in
this study by using the Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm to
implement the quasi-Newton methods (e.g., Press et al., 1988). The state vector obtained
by the smoothing algorithm, x,y, at the value of hyper-parameter maximizing Eq. (23)
is specified by £, Correspondingly, the estimators for C,, G, and C,, are denoted by
C,, €, and C,.

In the actual computation shown above, the initial state vector and variance-
covariance matrix, Xo;o and Qg o, are required and given in this study by the back-
ward Kalman filtering. The initial estimate of C, in the process of the backward
Kalman filtering is set to yy. Other initial estimates for x,, C,, and C,, are determined
by setting d/d¢ in Egs. (5) and (6) to zero. The initial estimate for Q,, Oy)o. is simply
set to the diagonal matrix with equal large diagonal values such as 10°.

5. Results and Discussion

We applied our method to actual radon concentration data obtained at a monitoring
station named KSM, which is located in northeast Japan. A detailed description of the
station can be found elsewhere (Igarashi and Wakita, 1990). The instrument for radon
monitoring is NW101 Aqua Radon Meter (Aloca Co.); some values about the size of
the radon-detection chamber are listed in Table 1. The observation well is a 200-m deep
artesian well of 10 cm in diameter. A strainer is positioned at a depth from 124 to 129 m.
The groundwater, welling up with a flow rate of about 24 cm?/min, is introduced into
the radon-detection chamber. The observed radon concentration (C,,,) at the KSM
station is shown in Fig. 2(e) for the period from January 1 to March 31, 1987. Because
of the small groundwater flow rate, the temperature of the water is easily affected by
environmental temperature changes. The temperature in the radon-detection chamber
is monitored together with the radon concentration as shown in Fig. 2(d).
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1987. 1.1 - 3.31
a) Co (cpm) M6.7, 130km
6000 Ms.6, 260km y M6.4, 130km

575.0 |-
550.0

5250
500.0 +

475.

>0 JAN FEB MAR
b) Ci (cpm)
575.0
525.0 -
500.0 |-

4750
450.0

JAN FEB MAR

c) Cg (cpm)
2000.0
1900.0
1800.0
1700.0
1600.0

1500.0
JAN FEB MAR

d) Water-T (°C) -
20.0
18.0
16.0
14.0
12.0
10.0
JAN FEB MAR

e) Cobs (cpm)
2000.0
1900.0
1800.0
17000
1600.0

1500.0
JAN FEB MAR

Fig. 2. An example of the analytical results and observed data for the period
from January 1 to March 31, 1987: estimated values of, (a) original, (b) liquid
phase, and (c) gas phase radon concentrations, and observed values of, (d)
water temperature and (e) radon concentration. The data were taken at the
KSM station, northeast Japan (Igarashi and Wakita, 1990). Radon
concentrations are expressed as cpm (count per minute). Major earthquakes
are shown with their magnitudes (reported by Japan Meteorological Agency)
and hypocentral distances from the KSM station.

The measurements of y, (C,,,) and T,, (Water-T) are taken hourly, and in our
case this leads to a poor assumption for temperature invariance during the sampling
interval. As a result, the transition matrix @, defined by 7, is inappropriate for the
transition matrix applied throughout the interval ¢, _, and z,. To deal with this problem,
we generate the minutely temperature data by linearly interpolating an original time

“series, T,,. Namely, we make a minute data T,(m=1,---,60xN) from T,, (n=
1, -+, N). This manipulation is quite natural, because the dependency of temperature
on time is definitely gradual in our problem and then the temperature in the liquid
phase during a minute can be satisfactorily approximated to be constant.

Correspondingly, we make a new time series y, (m=1,---,60xN) from the
hourly data y,. It should be noted that we do not have to interpolate y,, and we simply
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treat y,, for Mod(m, 60)#0 as a missing value. Consequently, we apply the procedure
for estimating the state vector, explained in Sec. 4, to these newly generated time series
G T) (m=1, -, 60x N).

In Fig. 2(a), (b), and (c), we show the solution of the maximum A/C with respect
to hyper-parameters 7 and k,. The obtained optimum values of the hyper-parameters
are ©2=5.64 x 1073 and k,=0.086 cm/min. The value of &, is about 40% smaller than
the initial value that is estimated from measurements of gas exchange through the
air-sea interface. It is interesting that the gas exchange constant estimated for the radon-
detection chamber is within a factor of two of that for the sea surface.

Since 62 with the minimum AIC is very small, the estimated Cg is almost identical
to the observed radon concentration C,. It is easily recognized that a large part of
the fluctuations in Cg(: C,bs) 1s caused by changes in temperature in the chamber.
Complementary fluctuations can be seen in C,. As a result, the original radon
concentration C, was estimated to be nearly constant, except for two changes associated
with earthquakes. The amplitude of random fluctuations remaining in C, is characterized
by the hyper-parameter 7. A standard deviation of C, from March 1 to 31, when no
earthquake-related change was observed, is about 1% of the average concentration.
Statistical errors in counting a particles, which correspond to the square roots of the
total counts every hour, are also about 1%: that is, it is impossible to reduce the
background fluctuations to less than 1%. Hence, we have succeeded in estimating the
original radon concentrations in groundwater to a level of precision equal to that of
the instrument’s ability.

Characteristic time constants of response of C and C, to changes in temperature
and C, can be expressed by reciprocals of the eigen values of the matrix F, , i.e., wy '
and w;! (Appendix A). Putting the value of %, and other constants, we obtain

w;'~5h and w;'~2min. The large value of w{l can be attributed mainly to
the small k, and large V. Thus, it is expected that there exists a significant time delay
in the response of C to changes in temperature and C,. Flgure 3 is a close-up of the
estimated values of radon concentrations in the chamber (C,, C C), and the observed
values of radon concentration (C,,,) and water temperature (Water T), when the most
remarkable post-seismic change occurred. It can be seen that daily variations in C,,
lag behind the temperature variations by several hours. Furthermore, it should be noted
that the post-seismic decrease detected in the estimated C, started several hours earlier
than the apparent decrease in C,,,. In fact, a correlation coefficient between C, and
C,ps becomes largest when a time lag of Sh is assumed. Thus, our method appears
to be very useful for closer examination of the characteristics of actual changes in the
original groundwater, which will provide important information about the mechanism
of radon changes caused by earthquakes.

6. Conclusions
By applying our new method of time series analysis to an actual data set on
groundwater radon concentration obtained at the KSM station, northeast Japan, we

have drawn the following conclusions concerning the characteristics of the radon
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1987.2.5-2.10
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b) Ci (cpm)

5750

550.0 F
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17000

1600.0 |

15000 5 6 7 8 9 10
d) Water-T (°C)

20.0
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17000 |
1600.0 r
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Fig. 3. A close-up of an earthquake-related radon change (February 5 to 10,
1987): estimated values of, (a) original, (b) liquid phase, and (c) gas phase
radon concentrations, and observed values of, (d) water temperature and (e)
radon concentration,

measuring system and the relationship between the observed and original radon
concentration of groundwater.

Most of the fluctuations in the radon concentration observed at the KSM station
can be explained by changes in radon flux through the interface between the gas and
liquid phases in the radon-detection chamber, which is caused by temperature changes.
The exchange constant of radon through the interface was determined to be
k,=0.086 cm/min, which is within a factor of two of that estimated for the sea surface
(Liss and Slater, 1974).

Fluctuations in the estimated value of the original radon concentration in
groundwater is about 1% of the average value, which is as small as the statistical error
of a-ray counting. Thus, the original radon concentration in a normal condition can
be regarded as constant within the instrumental uncertainty. Anomalous radon changes
associated with earthquakes can be clearly identified in the estimated original radon
concentration. There is a time delay of about 5h in the response of the observed radon
concentration to changes both in temperature and the original radon concentration,
which can be attributed to the small value of radon flux through the interface between
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gas and liquid phases in the radon-detection chamber.
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APPENDIX

A. Derivation of the Transition Matrix &(¢,, t,)

Suppose we transform the matrix F,, according to J,,=U, 'F, U,, for some
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transformation matrix U,,. Accordingly, the exponential e”*" is determined through the
following useful relation

. _ 1, _ _
qu(h lo)=eUz11q-Un (ty 10)=U“e-hl(t1 lo)Ut!l. (AI)

If we are able to calculate matrix e’«:“* ~'@ analytically, an analytic form of efu:(1 7% ig

easily obtained through Eq. (Al).
Although the matrix F, issingular, wecan find the matrix J,, with a convenient form,

w, 0 flp
Jo = 0 w, —f/p ) (A2)
0 0 O
with the transformation matrix U, ,
b b 0
U,=| w,—a w,—al , (A3)
0 0 1

where ; (i=1, 2, 3) as the eigen values of the matrix F, and given by

_ate+. /(a—e)’+4bd

Dy 5
a+e—./(a—e)>+4bd
w?_——_ 2
w3=0, ' ' (A4)

and p is w, —w,=./(a—e)*+4bd. It should be reminded that both w, and w, are real
for any F, in our case and that there is no equal root. Here, for the following convenient
notation, we set Q, =w; —a and Q, =w, —a. Then, the inverse matrix of U, is

—Q,/(bp) l/p O
uil=| @/p) —1/p0 |, (A5)
0 0 1

To get the matrix exponential e’©', we compute the J,, power to n and get

o, 0 foi"l/p _
Ji=| 0 oy —foip |, (A6)
0 0 0

Hence, by using the matrix exponential series expansion

1 1
O =[], (1 —to) + IR — 1)+ i~ L) (AT)
2! n.
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g’ =) i written as

g@1{t1~to) 0 f(ewl([l_‘o)_l)/(wlp)
elu(ti—to) — 0 e®@2(t1—to) _f(ewz(n—to)_ 1)/((02,0) . (A8)
0 0 1
Since the transition matrix depends only on the interval ¢, —t, as a function of time,
we then set d¢=t,—1t, and specify ®(z, t5) by @, (4¢). It should be noted that the
subscript of @, (41), t,, explicitly indicates that the transition matrix is defined by using
F,,. According to Eq. (Al), we get the transition matrix &, (41),
(Qlewzdt _Qzewldz)/p b/p . (ewlm_emzm)
Bt 16)=B, (A1) = Upe Uy = | 0,0, —e” 4)/(bp) (2,6 — 2ye™*)/p

0 0
bA(e”  w, —e**|w,)/p + 1/(@,w,)) B
f/P'((91‘3“’1&/0’1_Qzewzm/wz)‘*‘(gz/mz_Ql/wl)) s (A9)

1

B. Derivation of the Variance and Covariance Matrix Q;/_

Before calculating Q!+, , we rewrite «! , in the clear form as follows:

1,0 T1.l0
. At
uf,,,.,=f (pe®*+qe“* +r)w, _dE, (B1)
0

where

pr1=bf/(w,p) q,=—bfl(»,p) ri=bff(w,w,)
P2=12/(wyp) qr=—fQ/(w;p) ry=flp* (2;/w,—Q,/w,) (B2)
p3=0 q;=0 ry=1.

By this substitution, E[u! , *uf

Li.lo L1,to

] is rewritten as

at

At
E[u:hlo ) u{hll)] = EI:J J\ (piewlé + qiewﬁ'*' ri) Wi, —é(pjewm +q}ew2'l + rj) Wn —ndédr’}
0 Jo

At (ae
= Jl) J (pe®'*+qe®** +rw, -~ (P +qe M +rw, _,)
0

X E[w,, -, —,]d&d7 . (B3)
By using the properties of the delta function, E[w,w,.] =t2(¢— ') mentioned in Sec. 2,
we can perform this integration:

at (“dt

E[ufl.zo : u{l-lo] =7’ J (P +qe® +r) (P "M +qe®"+r))0(L —n)dédn
o Jo
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a4t
=12 f (pe® b +qe”®+ry) (pe”*+ gt +r)ds. (B4)
0
Consequently, we obtain

P.‘f]j'" qiPj (e(wl +wndt _ 1)

ij Pilj qi4;
iJj ,L_Z =IZ J eZa);At_l + J eZandl_l +
th.lo( ) {2 . ( ) 2602( ) wl+w2

w
+ pi"j""‘in (e“"‘“—l)+ qirj"l‘r;dj (emzdt_ 1)+rirjAt}
W, W,
(for i=1,2,3, j= 1,2,3).
as a function of time, and henceforth

(B3)

0,,..,(t?) also depends only on the interval 1, —?o
we specify it by Q,,(4t, 7%).
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