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Magnetopause shape determinations from measured position
and estimated flaring angle

H. Kawano,2 S. M. Petrinec,® C. T. Russell,* and T. Higuchi®

Abstract. In this paper we unify two approaches to determining magnetopause shape
and location from observations by fitting one model simultaneously to both the crossing
data and the calculated data of magnetopause flaring angle, to achieve more accurate
magnetopause shapes. We prepare two magnetopause models, each of which is an ellipsoid
from the subsolar point to the position where the distance of the ellipsoid from the X axis is
maximum. The model magnetopause beyond this position is a cylinder attached to the edge
of the ellipsoid at this location. This choice of shapes makes it easier to compare our results
with earlier work which fit ellipsoids to (only) crossing data. In one of our two models,
the focus of the ellipsoid lies at the center of the Earth, whereas in the other it lies at a
position determined from fits to the data. We use a statistical criterion (called AIC) that lets
us objectively determine which model better fits the data. As a result, we find that a model
with an off-center focus better expresses the nature of the observed data. Despite differing

mathematical formulations, our model results generally resemble those of Petrinec and
Russell [1996]. Consequently, the mathematical expression is not the major reason why
these models flare more (less) than the model of Roelof and Sibeck [1993] for very small

(large) solar wind dynamic pressure.

1. Introduction

In magnetospheric physics it is important to have a con-
cise model for the shape of the magnetopause, because when
one studies magnetospheric or magnetosheath phenomena
observed in situ one often needs an estimate of the mag-
netopause location. Magnetopause models can also help us
understand the nature of the solar wind-magnetosphere inter-
action. Thus several recent papers have presented models for
the shape of the magnetopausc. Most of these models have
adopted an ellipsoidal magnetopause [e.g., Petrinec et al.,
1991; Roelof and Sibeck, 1993] and fit this model to subsets
of observed magnetopause crossings. However, the input
data sets consist principally of dayside magnetopause cross-
ings, owing to the orbital coverage of the satellites used. As
a result, it is not clear to what downtail distance the models
are valid.

To increase the number of postterminator data usable for
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the model fitting, Petrinec and Russell [1996] (referred to as
PR96 below) employed a method using the lobe magnetic
field data, first used by Fairfield [1985] in a case study and
by Nakai et al. [1991] in a statistical study. That is. by us-
ing the lobe field data observed by the ISEE 2 spacecraft and
the simultaneous solar wind pressure data from IMP 8, PR96
calculated the magnetopause flaring angle, a, which was de-
fined as the angle between the solar wind flow direction and
the tangent to the magnetopause, by assuming that (1) the
lobe magnetic field is uniform from the satellite position to
the tail magnetopause, that (2) the lobe magnetic pressure
balances the solar wind pressure impinging onto the mag-
netopause, and that (3) the solar wind pressure is approxi-
mated by the sum of solar wind dynamic pressure, thermal
pressure, and magnetic pressure.

Because lobe field observations were made continuously
for each ISEE 2 pass through the magnetotail, PR96 were
able to substantially increase the amount of data in the range
0 Rg > X > —-22 Rg (in the aberrated GSM coordi-
nate system). They used the data to determine the magne-
topause shape: By modeling the X dependence of « and by
integrating the modeled o down the magnetotail, PR96 ob-
tained the radius of the postterminator magnetopause as a
function of X. As the initial value of integration at the ter-
minator (X = 0), they used the distance at the terminator
of the model magnetopause of Petrinec et al. [1991] and
Petrinec and Russell (1993], determined from a geocentric
ellipsoid fit to ISEE 1 and 2 magnetopause crossings (mainly
dayside). The functional form of the postterminator magne-
topause was empirically determined from the distribution of
a, and its radius had an X dependence in the form of
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where Cy, C,. C3, and Cy, are constants (for a given solar
wind condition). This tail radius approaches an asymptotic
value for X — --o00 because C, is always positive in their
model. On the other hand. the same functional form cannot
be used for the dayside. because it causes a discrete jump in
the normal direction at the subsolar point.

We note that Sibeck et al. [1986] used empirical models
of the lobe field strength and nominal values of the solar
wind parameters (o obtain nominal magnetopause flaring an-
gle profiles as a function of X, and then calculated tail mag-
netopause shapes by integrating the obtained flaring angle
profiles with X,

Compared with the model of Roelof and Sibeck [1993]
(referred to as RS93 below), who fit a geoeccentric ellip-
soid to the largest data set of the magnetopause crossings in
the literature, the PR96 model agreed very well in the range
0 Rg > X > —-30 Rg for a nominal value of the so-
lar wind pressure. On the other hand, when the solar wind
pressure values were much smaller (larger) than the nomi-
nal value, the PR96 model flared much more (less) than the
RS93 model. However, the difference may partly come from
the quite different mathematical forms of the two models.

The purpose of this paper is to incorporate both the posi-
tion data of Petrinec and Russell [1991] and the a data of
PR96 in the ellipsoidal model, and to compare the results
with other models. Since the ellipsoid is usable from the
subsolar point to the point of the maximum tail radius, there
is no need to connect two models at X = 0 like PR96 did,
which causes a discontinuous shape (a bump or a dip) of
the magnetopause at X = 0. In the region tailward of the
maximum radius point, we will just use a cylinder with a
constant tail radius given by the maximum tail radius of the
ellipsoid. We do this in order to avoid a downtail decrease of
the tail radius. There is no bump or dip in the magnetopause
shape where the two parts are connected, that is, at X where
the tail radius of the ellipsoid reaches maximum. By fitting
the “dayside” magnetopause crossing data of Petrinec er al.
[1991] along with the a data, we increase the reliability of
the fit model.

We also address the problem of how meaningful it is to
move the focus of the ellipsoid away from the center of the
Earth. If one fixes the focus of the ellipsoid at the center of
the Earth, one has two model parameters. the ellipticity, «,
and the minimum radius from the focus, ro. For example.
Holzer and Slavin [1978] and Petrinec et al. [1991] used
such a model. On the other hand, for example Slavin et
al. [1983] and Roelof and Sibeck [1993] also used the focal
point of the ellipsoid, zg, as a third parameter to fit. How-
ever, the addition of zo was inade without testing whether
the new parameter was necessary. In general if one fits mod-
els to a data set, it is a matter of course that the mean square

“residual of the data from the model decreases with an in-
creasing number of model parameters. However, this does
not mean that the addition of a new parameter always im-
proves the model: The addition tends to decrease the pre-
cision/reliability of already existing fit parameters. For ex-
ample in our case, the addition of zq tends to decrease the
precision/reliability of fit € and r¢, as we will show later (in
Figures 3 and 5). In this paper we present an objective ap-
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proach to judge whether the 3-parameter model fits a data set
better or worse than the 2-parameter model.

2. Data

The magnetopause crossing data set used in this paper is
the same as that used by Petrinec et al. [1991], The data set
of « is the same as that used by PR96. Both data sets
are associated with 5-min averaged data of solar wind dy-
namic pressure, Psw,dyn = pv?gw, where p and vgw are
the ion mass density and the bulk speed of the solar wind,
and Bz, in GSM coordinates, of the interplanetary magnetic
field (IMF). The position of the satellite is expressed in the
aberrated GSM coordinate system, in which the X axis is
aberrated by ~ 4° to account for the average deflection of
the solar wind from the Sun-Earth line. More details on the
data sets can be found in the above papers.

Only data when the IMF was northward are used in this
paper to study the Psw,d4yn dependence of the magnetopause
shape, and no distinction is made between any two data asso-
ciated with the same Psw 4y, and different IMF values. We
apply this restriction in order to simplify this paper and con-
centrate on the two major points of this paper, as described
in last two paragraphs of section 1. We note that Petrinec
and Russell [1993] have suggested that the (dayside) mag-
netopause shape is not affected much by the IMF when it
is northward. If that is the case, the magnetopause shape
obtained below is not just an averaged shape but an actual
shape common to wide variety of the IMF B, > 0. How-
ever, we also note that Sibeck et al. [1991] and RS93 have
suggested that the subsolar magnetopause moves outward
for increasing IMF B, > 0. If that is the case, the mag-
netopause shape obtained below is the average shape which
would be close to the shape under the data-averaged value of
the northward IMF B,.

The solar wind thermal pressure, Psw,p, is not treated
as a control parameter for the magnetopause shape in this
paper (although Pgw n is taken into account when we cal-
culate o from each data point, as stated below). Most previ-
ous models (e.g.. RS93; PR96) did the same. Psw,¢p should
scarcely affect the dayside shape of the magnetopause, be-
cause Psw s is less than a tenth of Psw 4y, there. On the
other hand. Psw 4 is an important factor in the distant tail,
because the magnetopause there is fairly parallel to the solar
wind flow and thus Psw,dy, is small there. We will further
discuss this point at the end of section 5.2.

3. Methodology

In this section, we first describe the magnetopause model
which is fit to both data sets of the crossing positions and «
values, and then describe how to fit the model to the data.
The model magnetopause is assumed 10 be axisymmetric
with regard to the X axis, and thus the spacecraft position
is referred to as (z, R), where R = 1/y? + 22. The magne-
topause model is ellipsoid-shaped, until it reaches the maxi-
mum distance from the X axis, and the distance of the model
magnetopause from the focus of the ellipsoid, Tydel, 18 €X-
pressed as
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To(l =+ E) :

Tmodel = Tmodel (9) = T+ecosd’

@
where 8 refers to the solar zenith angle (aberrated ~ 4°, as
stated above).

The ellipticity £ and the "minimum radius” rq are the
model parameters. The position z and R of the model mag-
netopause are given as

T = 3:(9) = rmodel(e) cos @+ g 3)
R= R(H) = Tlnodel(e) Siﬂg, @)

where zq is the third parameter of the model, describing the
X position of the focus of the ellipsoid. This parameter will
be either fixed at zero (2-parameter model) or fit to the data
(3-parameter model).

The model ellipsoid (equation 2) has a maximum R,
Rpax. at 8, which satisfies

cosf = —¢. &)
At this 0,,
. £
Iy = 1:(0:) = —To m + z9 (6)
l1+¢
Rnax = R(6) =1 1—_¢ )]

hold true. For all 8 > 6,, our model magnetopause satisfies
R = Ry, (cylindrical tail).

Given the shape of the magnetopause described above
and given a crossing data point, one can calculate
Tobs. Which refers to the distance from the focus
of the model ellipsoid to the crossing position, and
Tmodel, as follows: Tobs =[R2y, + (Tobs — Z0)?] vz
6 = tan™! [Robs/(Zobs — Z0)], and Tinodel is calculated by
substituting the obtained 8 into equation (2) (if 8 < 8,) or by
Tmodel = Rmax/ sin @ (if 6 > 6,).

One can also calculate the model value of a, cyqel, given
the shape of the model magnetopause, as described above,
and an observed a, aops. (More precisely, each agps in our
data set was not directly observed but is estimated from a set
of observed data). The procedure to calculate ap,ode corre-
sponding to each aops is related to the procedure to estimate
the aobs from a set of observed data. Thus we first discuss
the latter procedure. and then explain the former.

Each aops in our data set is determined so that it satisfies

Bhsw
210
+ nk(Tisw + Tesw)  (8)

2
BT,lobe

2 s 02
=  Pugw SIN° Qobs +
2[1.0

(e.g., equation (5) of PR96), where BT obe is the magnetic
field strength observed by ISEE 2 in the lobe. and Bp sw,
n, Ti,sw, and T, sw are the magnetic field strength, num-
ber density of ion, ion temperature, and electron tempera-
ture simultaneously observed by IMP 8 in the solar wind. It
is noted that each aops has a corresponding position in the
lobe where the observing spacecraft (ISEE 2) was located.
As we stated in section 1, the above procedure to cal-

culate ogps assumes that the lobe magnetic field is uni-
form from the satellite position to the magnetopause. As
pointed out by Roelof and Sibeck [1995], this assumption
could lead to some bias in the obtained a,ps, because the ac-
tual magnetic field lines in the lobe are more or less curved.

V(B2%/2) = (B - V)B + B x rotB holds true. and its first
term is nonzero if the magnetic field lines are curved even
if there is no current (5 'rotB) in the lobe. However, Fig-
ure 3 of PR96 shows that the effect of the field line curvature
is not large: Their Figure 3 shows that the lobe magnetic
field strength measured by ISEE 2 is fairly constant along
the lines perpendicular to the tail magnetopause.

Another assumption in the above procedure to obtain agps
is that the draping effect of the IMF over the magnetosphere
is not included in (8). The draped IMF applies an anisotropic
pressure to the magnetosphere. We appreciale its importance
in determining the magnetopause shape [e.g.. Michel and
Dessler, 1970; Sibeck et al., 1986], but the main purpose
of this paper is to improve the magnetopause model in the
class of axisymmetric models. and it is beyond the scope of
this paper to extend the model to axi-asy nmetric shapes.

To calculate apodel corresponding to each aons. We first
define a plane which includes the spacecraft position (in the
lobe) corresponding to the agps and the X axis. and we do
all the following calculations in this plane. Next we draw a
straight line from the spacecraft position to the model mag-
netopause so that the line makes a right angle to the mag-
netopause where the line crosses the magnetopause. Finally,
we calculate a of the model magnetopause at the crossing
point: This is the definition of ay0del.

In this way, for any given set of model parameters (g, 7o)
or (g,79, Tqg). we can calculate 7y,54e1 for each rqps. and also
Qmodet for each apps. Figure 1 illustrates the above explana-
tion of the magnetopause model, and how to calculate 7y 0de]
and Gmodel-

Having described the model magnetopause used in this
study, the next question is how to fit the model to data. In
order to make the following formulation meaningful in the
context of statistics, we assume we are observing a joint dis-
tribution of r and a. That is, we will deal with the two-
dimensional distribution of

NORCIE

Next we assume that the residual of £ from the model value
Enodel = (Tmodel: Cumodel) T, Where the superscript 7’ means
transposition from a row vector to a column vector, follows
a (two-dimensional) Gaussian probability distribution. That

18,
1

fe(€) = ———=
= e
1 -
X exp [_5 (£ - Emodel)T ! (6 = £model)] v (10)
where
o2 o2
zs(y y) (1
031 T22
is the error matrix of £, with cr;';-'meaning the covariance of
(& — Emodel,i) and (€5 — €model,j), |Z] is the determinant of
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ellipsoid + cylinder
magnetopause model

g : ellipticity of ellipsoid

Rgs= Xo+ ro : subsolar distance

focus of
ellipsoid

Figure 1. Illustrates the model magnetopause, and how to calculate Tmodel and Qtmodel- See text for

details.

%, and (£ —£,,,40;)T means the transposition of (§—&,,0del)
from a column vector to a row vector.

We further assume that (1 —imodet) and (0t — Qumodel) have
no correlation, or in other words, that they are independent.
This is a natural assumption, because the two observations
are made independently. Then, 012 = 02; =0, and

fe€) = fr(r): fala) (12)
1 (7 — Tmode1)?

flr) = mexp{—T‘“} (13)
— 2

hold true, where 011 = o, and g92 = 0,. Note the model
has parameters, (g,79) or (€, 7o, Zo), which are to be fit to
data, although not explicitly shown in these equations.

The strategy to find the optimal model parameters is

to find those which maximize E( ff(g)), or equivalently

E(log fg(g)), where E refers to the “expectation” in the

terminology of statistics. Akaike [1974) has shown that the
following approximate equation generally holds true:

k

N
1
B(log £e(&)) ~ & ;mg feléobss) =5 (9

where the subscript “obs” refers to the observed data, and N
refers to the number of the observed £ = (r, @) data. As
stated above, k refers to the number of model parameters. (In
a strict sense, this approximation holds true only for model
parameters which maximize the first term of (15), but it is
all right to use this approximation at this stage, because the
second term is unchanged while one tries to maximize the
first term: the second term is fixed for a specific model, and
is meaningful only when one compares different models.)
By substituting (12) into (15), we obtain

F = -BE(logfe())
= % [1 + log {%ﬁ i— (Tobs,m — Tmodel,m)z}]
m=1
+ % [1 + log {%ﬂ é(aobs,n - amodel,n)z}:l
T (16)

(see Appendix for the derivation). We minimize this ¥ to
obtain an optimal set of model parameters. Note that the
second and fourth terms tend to decrease with increasing k,
because models with a larger number of parameters become
more adaptive to the data. On the other hand, the fifth (i.e.,
the last) term increases with increasing k. It is therefore un-
clear whether an increased k increases or decreases F', until
an actual fit is made to the data set in question and F is eval-
uated, In other words, the data itself chooses the best model.

We note here that the quantity —2NE (]og fg(é)) is called

AIC (Akaike information criterion) and is widely used in
statistics.

It is also important that r and « should always be paired
for (15) to be valid. However, in the real world the number
of r data, Ny, is different from that of the o data, N,. Then,
the smaller of N, and N, will be used for the number of
€ = (r,a)T, N, but in order to fully use the obtained data,
we will adopt a technique similar to the bootstrap technique
[e.g.. Kawano and Higuchi, 1995). That is, we (1) randomly
sample one data point from the data set of r; (2) randomly
sample one data point from the data set of a; (3) repeat (1)
and (2) N times and obtain N data of £ = (r,@)T: (4) fita
model to that data set. We repeat this procedure 500 times.
(As stated above, N = N, when N, < Ny, and N = N,
when N, > N,.) We note here that this procedure assumes
that the = data and « data are sampled under the same so-
lar wind conditions. As a result of repeating the procedure
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500 times, we obtain 500 sets of resulting model parame-
ters. Then, for each parameter, we use the median of the
500 values as its most probable estimation. We also use the
15.87-84.13 percentile range of the 500 values as the stan-
dard error of the parameter. As for the number of repetitions,
statisticians’ experience is that 25-200 is enough for obtain-
ing the median and the standard error [e.g., Efron and Tib-
shirani, 1993), but we use 500 for the sake of safety, because
our approach includes extracting N, data from a data set of
N, data (when N, < N,), which is not done in the usual
bootstrap method.

In this way, we can calculate F' for any given value of the
model parameters, and thus can find its minimum point in
parameter space. The actual minimization is done numeri-
cally because Tiodel 2nd unodet are not linear functions of
(g, m0) or (g, 70, Zp). and thus do not allow the analytical so-
lution of

oF

Oe
and so on. We will use the so-called BFGS algorithm of
the quasi-Newton method for the numerical minimization,
whose concise explanation is found in the work of Press
et al. [1992]. Since this algorithm is well established, we

will not describe the actual minimization process but simply
show the fitting results in the next section.

0 an

4, Data Analysis
4.1, Binning Study

First, we have divided the data with IMF Bz > 0 nT into
five bins according to Psw,qyn: the ranges of the pressure
and the number of data in each bin are listed in Table 1, along
with the median Pgw qyn of each bin data. Then we have
applied the above method to the data in each bin, assuming
that they were obtained under the same Psw,qyn condition
and that the IMF does not affect the magnetopause shape. As
a result, we have obtained optimum model parameters and
F, along with their standard errors, for both the 2-parameter
model and the 3-parameter model.

Figures 2-5 show the fitting results: Figure 2 shows
R,s = 19 + x0, Figure 3 shows rg, Figure 4 shows zg, and
Figure 5 shows ¢, for the five bins. R, is the geocentric dis-

Table 1. Number of Events for IMF Bz > 0 (nT), in Solar
Wind Dynamic Pressure Bins

Psw,dyn Range, Number of  Numberof  Median
nPa Crossing Flaring Psw,ayn,
Data Angle nPa
Data
< 2705 13 285 0.62
2708 g0s 69 1183 1.1
205 - s 100 947 20
218 928 58 331 3.7
> 228 9 145 6.7
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Rgs [Re)

0.6 1 2 3 4 56 10
Psw, dyn [nPa]

0.4

Figure 2. Shows geocentric distance of subsolar magne-
topause, R,,, in (top) the 2-parameter model and (bottom)
the 3-parameter model of the magnetopause, fit to the five
bins listed in Table 1. Each bin is associated with different
range of solar wind dynamic pressure, Psw dyn, as shown
in the horizontal axis. More detail is given in section 4.1.
The solid lines show (top) the 2-parameter and (bottom) the
3-parameter model, fit to all data. Table 2 lists the param-
eters of the models. See section 4.2 for details of the lines.
The dashed lines show R, of Petrinec and Russell [1996).

tance of the subsolar magnetopause. The top panel of each
figure shows the results of fitting the 2-parameter model, and
the bottom panel shows the results of fitting the 3-parameter
model. The horizontal axes of the four figures are the same
and show representative values of Psw dyn and their stan-
dard errors for the five bins. That is, for each bin, we have
500 resampled data sets, for each of which we can calcu-
late the median Psw,qy,. Thus we can calculate the median
of the 500 Psw,ayn values. It is the representative value of
Psw,dyn for the bin. We can also calculate the 15.87-84.13
percentile range of the 500 Pgw ayn values as the standard
error of the above obtained representative Psw, dyn. The
standard error is shown in each of Figures 2-5 as a horizon-
tal error bar. The horizontal axis is drawn on a logarithmic
scale. The lines in the figures are the results of fitting to
entire data set at once, and will be discussed in section 4.2.

Figure 2 shows the Pgw qyn dependence of R4,. In ad-
dition to the horizontal axis, the vertical axis is drawn on a
logarithmic scale. For both models, the bin-wise fit values
of R, are well aligned in the figure. Because the figure is
plotted on a log-log scale, the linear tendency indicates that
R,, is proportional to the power of Psw,qy,. Note that the
standard error in R is large at the edge bins due to the small
amount of data in these bins.
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Figure 3. Same as Figure 2, except that the “minimum ra-
dius of the ellipsoid,” rg, is shown.

Figure 3 shows the Psw, dyn dependence of rg. The ver-
tical axis is drawn on a logarithmic scale. For both models,
the bin-wise fit o values are well aligned in the figure, as
R, values are in Figure 2. Note in Figure 3 (and in Fig-
ure 5 below) that the error bars in the 3-parameter model
(bottom) are much longer than corresponding error bars in
the 2-parameter model (top). This indicates that the reliabil-
ity/precision of already existing fit parameters tends to de-
crease with the addition of an extra parameter, as we stated
in the last paragraph of section 1.

Figure 4 shows xq as a function of Psw,dyn. The vertical
axis is plotted on a linear scale. In the top panel, zq is always
zero, which is a matter of course, because in the 2-parameter
model g is fixed to zero. In the bottom panel, that is, in the
3-parameter model, we find that the standard errors in g are
so large in general that the Pgw,4y, dependence of xg is not
uniquely determined from the data. However, since R, and
To show a power law dependence on Psw.dyn, 2o = Rss—1g
can also be assumed to have a power law dependence on
PSVV,dyn-

Figure 5 shows ¢ as a function of Psw.ayn. The verti-
cal axis is linear. In both panels, it is clear that € decreases
with increasing Psy,dayn. This means that the magnetopause
shape is not self similar under ditferent Psw,ayn. This point
will be discussed in section 5.

As we described above, the goodness of the two models
can be judged by comparing the quantity F' (equation 16)
for the two models. Here we write F' for the 2-parameter
model as F(2). and F for the 3-parameter model as F|(3),
and show in Figure 6 F'(2) — F(3) for the five Psw,ayn bins.
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2 parameters

X0 [Re]

3 parameters

0.6 1 2 3 4 56 10
Psw, ayn [nPa]

0.4

Figure 4. Same as Figure 2, except that the X position of the
focus of the ellipsoid, zg, is shown.

In (16), k is set to 2 for the 2-parameter model, and 3 for the
3-parameter model. Figure 6 shows that the median, or in
other words, the statistical estimate, of F(2) — F'(3) is posi-
tive for all five bins. This means that the 3-parameter model

2 parameters

Ak

0.95 1

0.85 1

4

e
b}
n

3 parameters

Ellipticity,

0.95 1

0.85 1

0.75 1
04

4 56 10

0.6 1 2 3
Psw, dyn [nPa]

Figure 5. Same as Figure 2, except that the ellipticity of the
ellipsoid, ¢, is shown. )
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Figure 6. Shows the difference between the 2-parameter
model and the 3-parameter model in the value of the F' quan-
tity of (16), for the five bins.

fits better than the 2-parameter model in general. However,
the error bar, or in other words the 68% confidence interval
of the estimate, crosses the zero line for the first, fourth, and
fifth smallest Psyy,qy, bins. Thus F'(2) — F(3) is not signifi-
cantly positive for these bins. Because different bins provide
a difference in the order of significance, it is unclear if the
data, in whole, suggest using the 2-parameter model or the
3-parameter model.

4.2. Using All Data

In the preceding section we have found that there are
Psw ayn dependences in the bin-wise fit model parame-
ters. In this section we explicitly use this information to
express g, g, and € as functions of Psw,dyn, and de-
termine the coefficients of the functions from data fitting.
This enables us to express the magnetopause shape in a bin-
independent form, and enables evaluating the goodness of
the 2-parameter model versus the 3-parameter model based
on all available data.

Because Figure 2 suggests a power law dependence of
Rss on Psw,dyn, we express the relation as

Psw.ayn \ %
Rss - Ac ( SW.dy])
Po

(13)

where A, and B, are parameters to be fit to data, while pp is
not a fitting parameter but a normalization quantity. We set
Po as a nominal value of Psw gy, that is,

po =2 nPa. (19)

Similarly, since Figure 3 suggests a power law dependence
of o on Psw, g4yn. We express the relation as

B.
P il
o = Cc ( SW,dyn) v
Po

20

where B, and C, are parameters to be fit to data. We assume
here that Ry, and rg have the same coefficient B.. This
simplifies the calculation of zy from R, and ro:
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P.S'W dyn B
Io = (Ac - CC) (_'_> ' (20
Po

and it would be natural to think that the two quantities zg and
70, closely related to the size of the subsolar magnetopause,
have the same Psw, 4yn dependence. Of course, this assump-
tion must be consistent with the actual observations, which
we will test below.

The above equation for zg is, of course, for the
3-parameter model: For the 2-parameter model, zg is always
fixed to zero, and thus 7 = Rs,.

Finally, as 1o £, we assume the following relation:

P
e=D.+E.log (—%""—") . (22)
0

Using this equation corresponds to drawing a best fit line to
a panel of Figure 5. A linear fit is the simplest, and we do
not see any special Psw,dyn dependence in Figure 5 which
requires fitting more complicated curves.

In summary, in the 2-parameter model, the model parame-
ters to be fit to data are now not (&, rg) but (A, Be, D¢, E.),
and in the 3-parameter model, the model parameters to be
fit to data are now not (g, 7o, Zo) but (A., Be, Ce, De, E¢).
That is, the 2-parameter model actually has four model
parameters now, and the 3-parameter model actually has
five model parameters now. Still. we will use the terms
“2-parameter model” and “3-parameter model,” for the sake
of convenience.

The actual procedure to fit the models to the data is very
similar to that described in section 3. That is, for example
when N = N, < N, (where N, and N, are now the total
number of the r data and that of the o data, and N, < N,
is actually the case for our data set (N,=249, N,=2891)),
we (1) randomly sample one data point from the data set of
r; (2) sample one data point from the data set of a which is
associated with the same Psw,qyn value as that associating
the r data sampled in (1); (3) repeat (1) and (2) N times and
obtain N dataof & = (r, a)T; (4) fit a model to that data set.
We repeat this procedure 500 times.

Note that every £ can now have different Psw,gyn. For
each &, its corresponding Psw,qyn is put into equations (18)
through (22) to obtain (e, rp) or (&, 79, Zo), and then Tinedel
and amodel are calculated. With the N sets of &, Thodel,
and ameodei, F in (16) is calculated. We set k = 4 for the
2-parameter model, while k = 5 for the 3-parameter model,
in (16).

Step (2) above requires elaboration. As explained in sec-
tion 3, r and « should always be paired, and should be re-
garded as those observed under the same solar wind condi-
tions. Since the 7 and « are in fact obtained independently,
there is no pair of r and a which are taken under exactly the
same Psw qyn. Thus the following approximating procedure
is taken; (for example) when N, < N, there is more than
one a measurement that can be assigned to each r datum,
We sort the r data according to associated Psw,dyn. in an
ascending order, and use the mean values of each two neigh-
boring values of Psiy,dyn as border values to group the a
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data. For example, if the i-th 7 data, r;, is surrounded by the
two border Psw,dyn values F) and Py, then all o data asso-
ciated with Psw,ayn between F; and P, are able to make a
pair with 7;, and one of them is randomly selected each time
T; is selected in the above procedure (1). Then, the average
of the two values of Psw,dyn associated with the selected
data and the « data is used as that associated with this &.

In this way, we have fit the parameters (A.. B, D, E.)
(2-parameter model) or (4., B, C., D., E.) (3-parameter
model) to all data. The results are summarized in Table 2.
In addition, solid lines in Figures 2 through 5 illustrate the
results. The solid lines in Figure 2 show (18) with A, and
B, listed in Table 2. The dashed lines will be discussed in
section 5. The solid lines in Figure 3 show (20) with B, and
C listed in Table 2. The solid lines in Figure 4 show (21)
with A.. B, and C. listed in Table 2. The solid lines in
Figure 5 show (22) with D, and E, listed in Table 2.

In Figures 2-5, the lines fit to all data pass through the
error bars of the bin-wise fit points. This justifies the as-
sumptions introduced in (18) through (22).

5. Discussion i
5.1. Model Shape in the Region Covered by Data

The bottom row of Table 2 shows F(2) — F(3) calcu-
lated using all data. Even taking into account the standard
error, or in other words, with the confidence level of 68%,
F(2)—F(3) is positive. Thatis, F'(3) is significantly smaller
than F(2). Thus we can objectively decide now that the
3-parameter model is better than the 2-parameter model. In-
clusion of the off-geocentric focus of the ellipsoid is mean-
ingful when fit to the data. In the following we only look at
the 3-parameter model, fit to all data, whose parameters are
shown in Table 2.

It is of interest to see how the observed data are actually fit
by the model. Because it is difficult to show all data associ-
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ated with a wide variety of Psyw,dyn, we use the five binned
subsets used in section 4.1 and show how they are fit. Fig-
ures 7a through 7e show the observed magnetopause cross-
ing positions and the model magnetopause shape for the five
bins. The model curves are from the (3-parameter) model
fit to all data, not from the models fit to each bin data. For
compari'son, we have also plotted the magnetopause shape of
RS93 and that of PR96 for IMF Bz = 2.6 nT. This quantity
2.6 is the median value for our data set, as is listed in Ta-
ble 2. Because the other two models are dependent on Bz,
we use this median value so that we could expect closest
predictions.

It is noted in Figure 7 that, when Psw, dyn is small, our
model tends to return a subsolar magnetopause closer to the
Earth than the other models. This tendency is also found
in the bottom panel of Figure 2. That is, the dashed line
in the bottom panel of Figure 2 shows R, of PR96, and
the dashed line shows larger values than the solid line for
Psw,dyn < 4.2 nPa. However, if the error bars of the PR96
model are comparable to those of our model, the error bars
would overlap. In addition, Figures 7a through 7e show that,
in the dayside region, the distribution width of the observed
data is comparable to the differences in the three curves.
Thus, in the dayside region, the difference in the three mod-
els are not extremely large.

We also note in the bottom panel of Figure 2 that the
slope of the solid line (our model) is less steep than that of
the dashed line [Petrinec and Russell, 1993, 1996], which is
—1/6. (They a priori fixed the slope 1o —1/8, according to
a theoretical expectation.) As shown in Table 2, the slope is
—0.130 with a standard error range (i.e.. 65% confidence in-
terval) of —0.142 to —0.119. In fact, even the 3-sigmarange
(i.e.. 99.7% confidence interval) (—0.161 to ~0.097) does
not include —1/6. This difference from —1/6 may therefore
be real. ‘

A possible explanation for the above difference is the ef-

Table 2. Resulis of Fitting to All Data

Parameter/Quantity Unit Estimate Standard Error Range
Data median Psw,dyn nPa 1.97 190 — 2.08
Data median IMF Bz nT 2.6 2.5 — 2.8
2-parameter model, A. Rg 9.16 9.07 — 9.25
2-parameter model, B NoDim  -0.131 -0.148 — -0.115
2-parameter model, C. Rg 9.16 9.07 — 9.25
2-parameter model, D,  NoDim 0.801 0797 — 0.805
2-parameter model, E. NoDim  -0.013 -0.020 — -0.007
3-parameter model, Ac Re 10.10 998 — 1024
3-parameter model, B NoDim -0.130 -0.142 — -0.119
3-parameter model, C, Rg 6.64 636 — 6.96
3-parameter model, D. NoDim 0.902 0.890 — 0913
3-parameter model, E. NoDim  -0025 -0.032 — -0.019
F(2) — F(3) NoDim 0.10 006 — 0.15

NoDim, nondimensional.
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Figure 7. Comparison of the observed magnetopause crossings and the 3-parameter model magnetopause
fit to all data. The five panels correspond to the five bins of Table 1. Models by Roelof and Sibeck [1993]
and Petrinec and Russell [1996] for B, = 2.6 nT are also shown. See text for details.

fect of Psw,ayn On the post cusp reconnection rate. Scurry
and Russell [1991] suggested that a large Psw,qyn enhances
the subsolar reconnection rate when the IMF is southward.
On the other hand, when the IMF is northward, it is widely
believed that reconnection takes place near the polar cusp
[e.g.. Kessel et al.. 1996, and references therein]. If a large
Psw,dyn enhances the cusp reconnection rate when the IMF
is northward, that could then increase the closed magnetic
flux in the dayside magnetosphere via simultaneous recon-

nection at northern and southern cusps [Song and Russell,
1992]. That would make R;, larger than that when there is
no cusp reconnection for a large Psw,dyn. leading to the less
steep slope noted above.

We note that the RS93 model is more or less against this
possibility. That is, Figure 17b of RS93 shows that the abso-
lute value of the power law constant in their model increases
as the IMF B, increases from a negative value toward a pos-
itive value. This is opposite to what is expected from our
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Figure 8. Comparison of the flaring angles of the magnetopause, a, estimated from the pressure balance
- between the solar wind and the lobe, and the modeled a. Our 3-parameter model fit to all data, Roelof and
Sibeck’s [1993] model, and Perrinec and Russell's [1996] model are shown. The five panels correspond

to the five bins of Table 1. See text for details.

above conjecture. We think it is worthwhile to study whether
the same tendency is found or not from our data, by includ-
ing IMF B, as a control factor in our model. This is a topic
of future research.

Figures 8a through 8e show crops and cunodel values. The
scaling of the vertical axis, showing e, are arranged so that
the PR96 model is expressed by straight lines in Figure 8.
That is, the vertical scaling is lincar to log(sin® @), as in

Figure ¢ of PR96. (Note in Figure 8 that the lines of PR96
are shown only in the region of X < 0. We have skipped the
X > 0 part, because it has a different mathematical form.)
The bottom and top of the panels correspond to & = 1.9°
and o 90°. The dots show aqps values at the positions
of the satellite. The crosses show them mapped onto our
model magnetopause, as iliustrated in Figure 1. Of course,
the value of aops is unchanged by this mapping.



KAWANO ET AL.: DUAL FITTING OF THE MAGNETOPAUSE SHAPE

We note in Figures 8a, 8b, and 8e that the curves of
the RS93 model miss the region where our a,ps values are
mainly distributed: The RS93 model gives o predictions
smaller (larger) than the data in Figures 8a and 8b (Fig-
ure 8¢). The RS93 model is therefore inconsistent with our
Qobs values when Psw gyn is much higher or lower than
its median value. Their model is consistent with their data
where there is coverage, but when we look at the distribu-
tion of their data, we find that the number of data points is
small in this region. If we count the number of data points
at X < —10 Rg, Psw,dyn < 1 nPa, and IMF B; > 0 nT
in Figure 8a of RS93, we obtain 2; if we count the number
of data points at X < —10 Rg. Psw,dyn > 4 nPa, and
IMF B, > 0nT in Figure 8b of RS93, we obtain 7. Many
more crossings at these ranges are necessary for a significant
comparison with aeps values. In addition, at X < —10 Rg,
Psw,ayn > 4 nPa, and IMF B, > 0 nT, we can see the
seven crossing points located within their model magneto-
sphere on average. This implies some difference between
their observations and their model at this range, although
more data points are necessary for significant information.

We also note in Figure 8 that the PR96 model and our
model run near the center of the data distributions in all of
the five figures, which is natural because the two models are
fit to the same data set of aps. Still, if we look in more
detail, in Figure 8a (Figures 8d and 8¢) our model predicts
smaller (larger) o than the PR96 model does in the region
of the crosses. This is because our model is also fit to the
magnetopause-crossing data at the same time. In Figures 8a
through 8e. the curve of our model reaches the top border of
the figure (@ = 90°) at the subsolar point and is “anchored”
there due to the requirement that the model must fit well with
the magnetopause-crossing data. The slope of the curve is
also partly controlled by the crossing data where they exist,
mainly at X > 0. Thus our model cannot be closer to the
center of the data distribution than the PR96 model. For ex-
ample in Figure 8a, our model cannot be located as high as
theirs at X = 0, because the part at X > 0 is confined by
the magnetopause-crossing data. Their model can be located
higher in Figure 8 at X = 0 than ours, because a can dis-
cretely jump at X = O (see, e.g., Figure 7a). This difference
in a at X = 0 is partly compensated by the gentler slope
of our model curve at X < 0 than theirs, but our qyodet is
still lower than theirs at the region of the data distribution
(crosses).

Another difference between our model and the PR96
model! apparent in Figure 8 is that the slope of the curves
is always the same in their model (see the same slope of the
dashed lines in the five panels), while it becomes steep with
increasing Psw dyn in our model (for example, it is more
steep in Figure 8e than in Figure 8a). A steep slope means
that the tail reaches its asymptotic state rapidly with increas-
ing distance from the Earth, In the PR96 model, the slope is
assumed to be independent of Psw,dyn.

5.2. Extrapolated Model Shape

Although our model was developed for the region from
the subsolar point to the ncar-Earth tail, it is interesting and
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important to see if the model could be applied to further
downtail distances. It is believed that a well-constructed
model of the magnetopause developed from observations
can be extrapolated farther downstream than is supported
by observations and still provides a reasonable estimate for
the shape of the magnetotail, unless the actual magnetopause
shape bends away from the modeled shape in the unobserved
region. (Note it is our assumption that there is no such bend.
This point will be further discussed near the end of this sub-
section.)

Figures 9a through 9e¢ show the three model magne-
topause shapes, for the same set of Psw,dyn and IMF Bz
as in Figures 7 and 8, but in wider X range. that is, in the re-
gion of X > —140 Rg. The RS93 model is drawn up to the
point where its tail radius reaches the maximum. When one
looks at the entire shape of the models, our model is simi-
lar to the PR96 model. We also note that the RS93 model
gives a smaller (larger) tail radius than the other two models
do when Psw,dyy is small (large). Such a difference in the
low-Psw,dyn (high-Psw,dyn) case is apparent in Figure 9a
(Figure 9e).

When one looks at the shape of the near-Earth tail mag-
netopause (—10 Rg < X £ 0 Rg)in Figure 7, one would
find basically the same similarity/difference among the three
models as stated above. However in Figure 7e. our model
looks rather closer to the RS93 model than to the PR96
model. (However, as one sees in Figure e, the similarity
of the former two models only lasts until X ~ —20 Rg,
and farther than that our model approaches the PR96 model.)
The difference between our model and the PR96 model for
high Psw,dyn in the near-Earth tail may come from the as-
sumption of the PR96 model that the slope of the & curve in
Figure 8 is independent of Psw,dya. That s, in Figure 8e. it
is possible to draw a straight line running though the data
distribution, with a sieeper slope than that of the line of
PR96, and with a larger «« at X = 0. This larger o around
X = 0 would cause a more flared tail in the near-Earth re-
gion, as in our model. (The difference in the slopes of a(x)
between our model and the PR96 model causes a very small
difference in the asymptotic tail radii of the two models, as
seen in Figure 9¢, because the asymptotic radius is related
to the integral of tan a(z) with z. thus is related to the area
between the curve of a(z) and £ = 0.)

The asymptotic tail radius in our model is given by (7).
which indicates that Ry,ax has the same Psw qyn depen-
dence as rg on condition that ¢ is independent of Psw,dyn-
However, ¢ is in fact dependent on Psw,qyn, as shown in
Figure 5 and Table 2. That is, our magnetopause model
is not self-similar with regard to Psw,dyn. We want to
study the difference in the dependence on Psw,dyn of Rss
and R,,ax. but substituting (22) into (7) does not provide
an equation such that R,,,ax is proportional to the power of
Psiy,qyn- However, if we return to the original data, we can
fit a power law function to them. Instead of using (22), we
then use

PSWdyn H
Rmax = Gc (—"> (23)

"Po
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Figure 9. Shows the modeled magnetopause shapes, the
same as in Figure 7 but for wider X range.
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Figure 10. Same as Figure 5, except that the superposed
curve comes from the model whose parameters are enlisted
in Table 3.

and fit (A.. B., Ce, G, H.) to all data. The result of doing
so is summarized in Table 3.

The bottom row of the table shows the difference in the F
quantity between the two models (3-parameter model with
(Ac, Be. Ce, D, E;), or that with (A, B,.C., Gy, HC).
Since each F value is close to 5 (not shown), the difference
is negligible. That is, the two models are almost equivalent.
Another proof of this equivalence is the great similarity of
Ag, Be, and C, in Table 2 and 3. We have confirmed that we
get almost the same figures as Figures 2, 3, and 4 for R,;,
7q. and zg (not shown). In the (A, B., C;. G., H.) model e
is calculated by

R2 _e2
e= —max 70 24)
RFnax + TO

which is the algebraic deformation of (7), and rg and R jax
are calculated by (20) and (23). Figure 10 shows the model
curve of € in this model, in the same format as that of Fig-
ure 5. The model curve is similar to that in Figure 5. In
this way, the two types of the 3-parameter models are almost
equivalent. and thus one can use either type (the 3-parameter
mode! in Tables 2 or 3).

Having confirmed that the two types are equivalent,
we resume the discussion of the Psw .y, dependence of
Rinax. As one can see in Table 3, Ry, is proportional to
Psw’dyn’o'zm. Since Ry, is proportional to Psw,dyy —0.130
as is shown in the same table, Ryax is much more af-
fected by Psw,dyn than R, is. This feature was also found
by PR96. Looking at their Figure 10 and thinking of our

Table 3. Results of Another Way of Fitting to All Data

Parameter/Quantity Unit Estimate Standard Error Range
3-parameter model, A, Re 10.12 9.98 — 10.24
3-parameter model, B, NoDim  -0.130 -0.142 — -0.119
3-parameter model, C. Rge 6.62 633 — 6.94
3-parameter model, G, Rg 29.5 28.9 — 304
3-parameter model, H, NoDim  -0.267 -0307 — -0.228
F(Ac B.,C.,Gc, H.) — F(Ac, B.,Cc. D E;) NoDim  -0.001 -0.004 — 0.001
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standard error range of the power law constant, —0.307 ~
—0.228, the power law constant itself is also similar to that
of PR96, and to that of Lui [1986], who obtained it from 12
magnetopause crossings near X = —17.5 Rg observed by
the IMP 6 spacecraft (which had an apogee of 32.2 Rg).

On the other hand, as discussed by Petrinec and Russell
[1995], Roelof and Sibeck [1995], and PR96, the tail radius
of the RS93 model at —20 Rg < X < —15 Rg shows
much less dependence on Psw,ay, than PR96 and our model
do. As seen in Figure 2 of Roelof and Sibeck [1995], the
crossing data of RS93 for high Psw,qyn are closer to the
PR96 model than to the RS93 model, and vice versa for
low Psw,dyn. Their data distribution for low Psw qy, may
be biased toward a small radius because of the limited or-
bital coverage of the satellites they used, as discussed by
Petrinec and Russell [1995]. That is, the data set of RS93
consists of magnetopause crossings observed by many satel-
lites, and many of the satellites did not reach the area where
the PR96 model and our model magnetopause are located for
low Psyy,dyn. because of their apogee limitation. (For ex-
ample, ISEE 1 and 2, AMPTE CCE and IRM had an apogee
less than 30 Rg.) Another possibility is the effect of the
curvature of the lobe field 'lines, which we discussed in sec-
tion 3. Even though it is found to be small for nominal
Psw,ayn (see Figure 3 of PR96), it would increase as the
X dependence of the tail radius becomes large, and that hap-
pens as Psw 4y, decreases. However we do not know to
what extent it is so (the curvature effect might be very small
even when Psw, gys is small), and the curvature effect does
not answer the question why the data of RS93 are closer to
the PR96 model than to the RS93 model for high Psw,qyn.
In any case, the number of crossing data at X < —10 Rg
during very high or low Psw 4y is quite small in the data set
of RS93, as stated earlier in this section; many more cross-
ing locations are needed for a significant comparison with
our data set of apps.

In Figure 9, one can find that z,, the = position where
the tail radius reaches a maximum, approaches the Earth as
Psw,ayn increases. This tendency is a matier of course if the
magnetopause shape is self-similar with regard to Psw,ayn
but, as stated above, our magnetopause model is not such.
As another support of this not being a matter of course, z;
of the RS93 model, which is not self-similar either, shows a
Psw,dyn dependence much different from ours, as one can
see in the same figure. Although this Psw dyn dependence
of z; belongs to the extrapolated information (because z,
lies in the region of no data point), its systematic behav-
ior implies it has some reality. In addition, as discussed by
PR96, the asymptotic tail radius of our model (and the PR96
model. because the two are similar there), which also be-
longs to the extrapolated information, is in fact consistent
with the ISEE 3 distant-tail observations reported by Slavin
et al. [1985] (although Fairfield [1992] reported a smaller es-
timate): Slavin et al. obtained the radius of 30+3 Rg from
statistical distribution of the magnetopause crossings, while
Fairfield suggested a radius of 2442 Rg based on the rel-
ative frequency of observations of the magnetosheath and
magnetotail in the region. (As listed in Table 3 (as G,), our

asymptotic radius for Psw gyq = 2 nPais ~30 Rg.)

Sibeck et al. [1986] summarized previously reported dis-
tant magnetopause crossings. Their summary (their Ta-
ble 1) shows the radius along the Y axis to be 20 to 38 Rg
and the radius along the Z axis to be 19 1o 30 Rg for
X < —60 Rg. These ranges include the asymptotic tail ra-
dius of our model for Psw,qyn = 2 nPa (~30 Rg). Naka-
mura et al. [1997] presented statistics of the tail radius at
X = —83to —210 R observed by the Geolail spacecraft.
They obtained a result that the quiet time tail had the average
Y radius of 35 Rg and the average Z radius of 23 Rg. The
asymptotic tail radius of our model for Psw,qyn = 2 nPa
lies between these two numbers. In short, the asymptotic ra-
dius we have obtained is consistent with many of the actual
observations in literature,

As we mentioned at the beginning of this subsection, it is
our assumnption throughout this subsection that the ellipsoid-
plus-cylinder shape can successfully approximate the en-
tire shape of the magnetopause from the subsolar point to
the asymptotic tail. We think it is a natural assumption,
but it is impossible to prove or disprove this assumption
with our data set, of course. because our data set does
not cover the distant region: It might turn out in the fu-
ture that one needs more complicated model shape than
the ellipsoid-plus-cylinder shape to successfully approxi-
mate the actual shape. The extrapolated information in this
subsection should therefore be regarded as predictions based
on the above stated assumption, and must be tested in the fu-
ture by actual observations in the distant tail.

In fact, there already exist several reports on the distant
tail radius, as stated above, even though its dependence on
solar wind parameters has not yet been systematically sur-
veyed in literature. We have found, as stated above, that our
model for the nominal value of Psw,ayn. obtained by using
only the dayside and near-Earth tail data, gives R . Which
is close to the average of those reported values. This sug-
gests that the ellipsoid-plus-cylinder shape can successfully
approximate the entire shape of the actual magnetopause for
the nominal value of Psy,q4y,. We find no a priori reason to
expect that the magnetopause is close to the ellipsoid-plus-
cylinder shape only for the nominal value of Psw 4y, and
thus we think the shape could be a good approximation for
any value of Psw,dyn.

Finally, as we stated at the end of section 2, Pgy 4 is
an important control factor for Ry,ax, because the asymp-
totic tail magnetopause is parallel to the solar wind and thus
no dynamic pressure is applied; we did not treat Psw,p, as
a control parameter in this paper, because we were primar-
ily interested in the near-Earth magnetopause shape, but that
should be done in the future. In doing it, it should be taken
into account that Psw s is not independent of Psw,qyn. be-
cause both of the two include the number density of the solar
wind. In fact, for our lobe data set, the correlation coefficient
of the two is 0.76. We note here that the significant corre-
lation of Rmax and Psw,qy, in this paper could be (at least)
partly due to this correlation of Psy dyn and Psw :n. Dis-
tinction of the effects of Psw,dyn and Psw s is a topic of
future research. A related question to be answered in the fu-
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ture is whether the total magnetic flux in the asymptotic tail
is controlled by Psw,dyn and/or Psw,:n: the total flux also
affects Ryax.

6. Summary

We have applied a simple ellipsoid plus cylinder mag-
netopause model, similar to many old models in literature,
to both the magnetopause crossing data of Petrinec et al.
[1991] and the magnetopause flaring angle data of Petrinec
and Russell [1996] (PR96). We have tested two models;
one of which (2-parameter model) has the focus of the ellip-
soid fixed at the center of the Earth while in the other model
(3-parameter model) the focus position is obtained by fitting
the data. After looking at the nature of the Psw 4yq depen-
dence of the model through a bin-wise fitting study, we have
incorporated the Psw,dyn dependence into the models ex-
plicitly and fit the models to all available data.

As a result, we have first concluded that the 3-parameter
model, or the off-center focus model, is better than the
2-parameter model, or the centered focus model, based on
an objective criterion which is called AIC in statistics: It is
meaningful to place the focus of the ellipsoid away from the
center of the Earth. It is also notable here that AIC is useful
in that it provides a general and objective way to compare
any two models, if the two are applied to the same data sei.

Next we have compared our model with those by Roelaf
and Sibeck [1993] (RS93) and PR96. Although our model
is mathematically simple, it shows generally the same mag-
netopause shape as that of PR96 with a more complicated
functional form. That is, the mathematical form is not the
reason for the difference in the magnetopause shape be-
tween RS93 and PR96 when Pgw,dyn is extremely small
or large. We suspect this difference is due to the assumed
high-order dependence on Pgw 4y, of R§93’s model param-
eters. In their model, each geometrical parameter of the el-
lipsoid is expressed as an exponent of a quadratic function
of log(Psw,dyn). On the other hand, in our model, most
geometrical parameters (except €) are expressed as an expo-
nent of a linear function of log(Psw,dyn). Our results imply
that a linear function is good enough for actual observations.
If a quadratic function is used, it would show large devia-
tion from a linear pattern near and beyond the edge of the
Pgw,dayn range of the data to which the model was fit.

Our model and the PR96 model generally agree as we said
above, but if one looks in detail, there are some disagree-
ments. When Psw.dym is extremely small, our subsolar mag-
netopause lies a little closer to the Earth than that of PRJ6,
and the flaring angle of the near-Earth tail magnetopause is
a little smaller than theirs (see, e.g., Figure 7a). On the other
hand, when Psw,dyn is extremely large, the near-Earth tail
magnetopause of our model flares more than the PR96 model
(see, e.g., Figure 9¢). This difference may arise from the fact
that the X dependence of the slope of PR96’s model magne-
topause is independent of Psw,dayn (except for a shift in X,
or in other words the X offset). In any case, this difference is
limited to the near-Earth tail region; if we look at a wider re-
gion, our model and the PR96 model show good agreement,
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and thus their finding that their model is more (less) flar-
ing than the RS93 model when Psw 4y, is extremely small
(large) is also the case for our model.

In this paper we have limited our analysis to the data when
IMF Bz was positive. As we mentioned in section 2, this is
because we wanted to simplify this paper and concentrate on
its two major points. Taking into account the IMF Bz effect
is a topic of future research.

Finally, we note that Shue et al. [1997a) have proposed
yet another magnetopause shape model. This model makes
very similar predictions to the PR96 model for high Psw,dyn
[Shue et al., 1997Db].

Appendix: Derivation of F
By substituting (12) into (15), we get

F = 11 2 2+ 1 i (TOI::s.m""model,m)2
= 3 og2wo; N 27
m=1
+ 11 2 2 + 1 EN: (Cxol:os.n—‘lmodel,n)2
5 og 2na, N 57
n=1
k
+ N (Al)
Then, one can calculate o, and g, which minimize F, by
oF 0
?)
oF - 0
az)
solutions of which are
1 X
012- = ﬁ Z:("'cbs,m—"'model,rn,)2 (A2)
me=1

N
1
N Z(aobs,n - amodel,n)z . (A3)

n=1

Q
RN
|

Then by substituting (A2) and (A3) into (A1), we obtain
(16).
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