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It was found that the LEP data was sometimes contaminated with unexpect-
edly larger noise mainly due to the geocorona EUV radiation. Its noise level is so
high that we are obliged to subtract the background noise in ground processing
when we intend to analyze such LEP data. We therefore propose an efficient and
useful procedure for eliminating this background noise, which is highly implemented
so as to reduce the computing time. This method is based on a Bayesian smooth-
ness prior approach with a state space modeling. The estimated background noise
component is easily realized as a fixed-interval smoothed value by using the recur-
sive Kalman filter and smoother algorithm. In addition, since we use an objective
criterion ABIC to choose the best model for the LEP data with the background
noise, then the background noise component is automatically and objectively (not
ad-hoc) subtracted according to the characteristics of noise such as the signal-to-
noise ratio, its intensity, and various nonstationarity. A detail description of the
whole procedure based on a Bayesian approach can be shown.

1. Introduction

The Japanese scientific satellite designated as EXOS-D (renamed Akebono after
launch) was successfully put into a semipolar, elliptical orbit to study the physical
mechanism of auroral particle acceleration. A general description of this satellite and its
onboard instruments can be found in the special issue for Akebono (EXOS-D) satellite
observations (Ova, 1990). In this paper we discuss data from the Low Energy Particle
(LEP) spectra analyzer. This instrument is designed to increase our understanding of
physical acceleration process. We refer the reader to MUKAI et al. (1990) for details
on the LEP instrumentation. Preliminary reports from the initial period of operation
can also be found therein.

The measured raw LEP data, which is a count number of charged particle, is
sometimes contaminated with increase in the background noise level (MUKALI et al.,
1990). This background noise can be attributed mainly to the geocorona EUV radi-
ation (MUKAI et al., 1990). The noise level is so high that we must subtract it in
ground processing prior to analyzing the LEP data. Great effort was made to remove
this background noise through conventional digital signal processing, however it was
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unsuccessful. The processed data still contained significant noise contamination. The
failure of conventional digital signal processing to remove the noise contamination may
stem from its inability to consider time-varying phenomena (personal communication
with Mukai). Since the component attributed to the background noise strongly de-
pends on time, it seems natural that we can not substantially subtract the background
noise with a conventional data analysis method. Moreover, whenever we decompose
the observed data into signal and noise components, the choice of an unknown signal-
to-noise (S/N) ratio, which we in general provide ad-hoc, becomes a significant problem
in conventional processing.

AKAIKE (1980) developed an effective and useful analysis method for nonstation-
ary time series. His method was based on a Bayesian smoothness priors approach which
is generally characterized by adding a smoothness constraint on the time series model
parameters (AKAIKE, 1980; SILVERMAN, 1985; TITTERINGTON, 1985). The example
shown below illustrates the Bayesian approach to a very simple problem to illustrate
the basic principles of the approach. We consider in the time domain the model

y(n) =t(n) +en) (n=12,...,N), (1.1)

where t(n) is a trend (drifting mean value function) and e(n) corresponds to observa-
tional errors. In this model, we treat the trend component t(n) (n = 1,...,N) as a
parameter vector and specify it §. We assume the t(n) is a smooth curve, and then
we add one of the smoothness constrains to 8, expressed by minimizing the sum of the
square of the distance between successive points in time

Z(t(n+ 1) — t(n))2. (1.2)

n

By this formulation, we explicitly incorporate the analyst’s expectation (in this case,
that the time series shows a smooth behavior). This assumption is therefore called
prior information. Of course, any other prior information can be added to parameters.

We furthermore assume that the trend component ¢(n) does not deviate far from
the observations, y(n). This assumption under smoothness constraint can be obtained
by minimizing

' E(@) = Z(y(n) - t(n)-)z-l- 7_—12 Z(t(n +1)— t(n))2 (1.3)

n

where 7 is a tradeoff parameter which controls the tradeoff between the goodness-
of-fit of the estimated trend component t(n) to the observations y(n) (expressed by
(1.1)) and the goodness-of-fit of ¢(n) to a smoothness constraint (expressed by (1.2))
(AKAIKE, 1980; GERSCH and KITAGAWA, 1988). The estimation of ¢(n) is reduced to
the well-known constrained least squares problem and solution is uniquely determined,
only if the tradeoff parameter 7 is given (AKAIKE, 1980; TITTERINGTON, 1985).

This trade-off parameter is called in Bayesian terminology hyperparameter
(LINDLEY and SMITH, 1972). The hyperparameter is sometimes called a smoothing
parameter, because it controls the smoothness (or stability) of the estimated t(n)
(WAHBA, 1980; SILVERMAN, 1985; TITTERINGTON, 1985). By this reason, it also
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called a reqularization parameter in the context of image reconstruction (TIKHONOV
and ARSENIN, 1977; MARROQUIN et al., 1987). The choice of hyperparameter essen-
tially corresponds to a selection of cutoff frequency when we apply the linear lowpass
filter to remove the higher frequency components from the observations (SILVERMAN,
1985; HiGucHI, 1991). In actual application of the lowpass filter, we often provide this
cutoff frequency subjectively and ad-hoc, according to the analyst’s tastes.

A key point in the Bayesian approach is to determine an optimal value of hyperpa-
rameter 7 objectively and automatically. The constrained least squares problem has a
clear Bayesian interpretation which facilitates the determination of the hyperparame-
ters (LINDLEY and SMITH, 1972; KITAGAWA and GERSCH, 1985a, b; SILVERMAN, 1985:
TITTERINGTON, 1985; GERSCH and KITAGAWA, 1988). We multiply (1.3) by —1/202
and exponentiate it. Then the minimization of (1.3) with respect to 6 is equivalent to
the maximization of

£0) = exp(-2)

= exp{ 55 3 (utm) — t(m)) ' } - exp{ 5y 32 (bm 4 1) — t(m)) '} .

for the fixed values of ¢ and 72. Here, for simplicity, we specify the observation vector
y(n) (n=1,...,N) by Y. The 6 that maximizes (1.4) under the fixed values of ¢ and
72 also maximizes the posterior distribution of 6, p(d|Y, o2, 72), which is proportional
to the product of the data distribution :

oz 3 (utm) - 1))} (15)

1
p(YIQ,O'z) = (\/77-)?8)(}){ pn n

and a prior distribution
' C 20272 Zﬂ ’

because the posterior distribution of € can be rewritten as

2 o p(Y.0l6%,7%)  p(Y|8,0%)p(6]0?,T2)
POV 05T = S s = p¥ion, 7

x p(Y18,0%)p(6]0*,7*) o £(6).
(1.7)

Of course, p(A|B) means the probability of an occurrence of A on the condition that
B is given. It should be noticed that C in (1.6) is a normalization factor required
for [ p(flo?,72)dd = 1 and that p(Y|o?,72) in (1.7) does not depend on 6§ obviously.
By using (1.3)-(1.7), it can be shown that the minimization of (1.3) over 8 is in the
Bayesian context equivalent to the maximization of the posterior distribution of §. In
addition, the constrained least squares approach implies that the observations Y and
parameter vector § are assumed to obey the multi-normal (-Gaussian) distributions.
In a Bayesian framework, the 6 obtained by the maximization of the posterior
distribution is called the maximum a posteriori (MAP) solution, being the mode of
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its posterior distribution (GEMAN and GEMAN, 1984; TITTERINGTON, 1985; BESAG,
1986; MARROQUIN et al., 1987). We call in general the data distribution p(Y|), like-
lihood. Thus it is easily understand that the constrained least squares approach to
maximize (1.3) can be interpreted as one of the mazimum penalized likelihood (MPL)
method (GooD and GASKIN, 1971; LEONARD, 1978), because (1.5) and (1.6) are a
likelihood of Y and a penalty function, respectively, and thereby the posterior distri-
bution also corresponds to the penalized likelihood function. In the MPL method, the
hyperparameter is called a roughness penalty.

The integration of p(Y,6|c?,7%) over 8 yields the likelihood of ¥ (called the
marginal likelihood) for the unknown o2 and 72,

L(chﬂ,#) = / p(0,Y|c?,7%)df = / (Y6, c%)p(8|02, 72)d8. (1.8)

We select the values 02 and 72 which maximize the logarithm of (1.8), log L(Y |a?, 72).
This concept was first introduced by Goobp (1965) and called Type II likelihood method.
AKAIKE (1980) has explicitly shown the closed form of this marginal likelihood when
both the data and prior distributions, p(Y'|d,0?) and p(8|o?,72), are normally dis-
tributed. In place of log L(-), we generally use

ABIC = —2log L(Y |02, T?) (1.9)

after Akaike, where ABIC represents the Akaike Bayesian Information Criterion. In
our smoothing problem, we choose the values of hyperparameter which minimize ABIC
and determine the trend component t(n) for fixed values of hyperparameters.

AKAIKE (1980) has shown several practical results of its application to nonsta-
tionary time series modeling. Since the number of parameter in a Bayesian approach
to nonstationary time series generally exceeds that of observations, such time series
model is satisfactorily flexible to the observations. Along the lines suggested by Akaike,
Akaike’s colleagues, primarily at the Institute of Statistical Mathematics, Tokyo, ex-
tensively applied this Bayesian smoothness approach to a variety of statistical problems
(ISHIGURO and ARAHATA, 1982; KASHIWAGI, 1982; ISHIGURO and SAKAMOTO, 1983,
1984; TANABE and TANAKA, 1983; NAKAMURA, 1986; TAMURA, 1987; SAKAMOTO
and ISHIGURO, 1988; HIGUCHI et al., 1988; KITA et al., 1989). In particular, Kitagawa
and Gersch have developed the Bayesian modeling to a variety of problems in nonsta-
tionary time series analysis (KITAGAWA, 1981, 1983, 1987, 1988, 1989a, b; KiTAGAWA
and GERSCH, 1984, 1985a, 1985b; KiTAGAWA and TAKANAMI, 1985; GERSCH and
KiTtacawa, 1988). It should be noticed that the modeling must be tailored to each
application. An efficient algorithm for calculating ABIC is extensively explored so as
to reduce a computing time and memory (KITAGAWA, 1981, 1983; ISHIGURO, 1984;
GERSCH and KITAGAWA, 1988).

The noise reduction technique based on the Bayesian approach has been also ap-
plied to optical data taken aboard a spacecraft, which suffers from an unexpected mod-
ulations synchronized with the rotation or wobble of the spacecraft (HiGUCHI et al.,
1988; KITa et al, 1989). In observations on board a spacecraft, it is very important
and inevitable to subtract an periodic noise associated with the spin and/or precession
of the spacecraft, because the objective quantity through observations is usually esti-
mated by using inversion technique which is quite sensitive to noise (TANABE, 1976;
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HiGucHI et al., 1988). By using ABIC, we can objectively determine the unknown
signal and noise (S/N) ratio and eliminate the periodic noise from the observed data
satisfactorily (HIGUCHI et al., 1988; KITA et al, 1989). In that model, the periodic
noise was assumed to behave locally as a sinusoidal wave, and thus its amplitude was
able to be estimated as a function of time. Obviously, except for the sinusoid, there
occurs the periodic noise which shows in time domain a square. triangle with definite
period. The Bayesian model for a seasonal adjustment is applicable and suitable for
this case (ISHIGURO, 1984; KITAGAWA and GERSCH, 1984; GERSCH and KITAGAWA,
1988). The method for reduction of the complicated background noise has been demon-
strated on a basis of the Bayesian approach (KITAGAWA and TAKANAMI, 1985). These
Bayesian approach is characterized by involving the nonstationarity of the noise.

In this paper, we will propose a useful and efficient method to subtract the back-
ground noise observed in the LEP data, along the procedure proposed by KiTAGAWA
(1981, 1983). A detail explanation of our method will be shown together with its re-
lation to the Bayesian approach along the Akaike’s formula. A special modeling for
the LEP data highly contaminated with the background noise will be presented to-
gether with its application to actual data. Some comments on practical application
will be also summarized to help the reader understand our procedure of removing the
background noise.

2. Data

For seeking of a spatial distribution of the particles as a function of time, Ake-
bono carries ten channeltorons with their configuration as seen in Fig. 2 of MUKAI
et al. (1990). Since we can not identify the channeltron only by its channel number,
we hereafter specify Channel J of the LEP—S2 by Channel J + 5; i.e., Channel 5 of the
LEP-S2 is indicated by Channel 10. Hence, the channeltron with the channel number
less than 5 (larger than 6) corresponds to one of the LEP—S1 (LEP—S2) hereafter. All
channeltron is installed in the same plane which contains the spin axis. Accordingly
all view direction (angle) of channeltron in a plane perpendicular to the spin axis is
coherent at any time. Both the count number for the ion and that for the electron are
simultaneously measured by each channeltron. Then the LEP data is a multivariate
time series which consists of twenty (2 x 10) components.

An E-t (Energy-time) diagram enables us to easily examine the energy spectrum
of the charged particle as a function of time. In order to make the energy spectrum,
the energy range covered by the channeltron is divided into 64 equally spaced steps on
a logarithmic scale and the count number is measured at each step. The energy step is
labeled the integral number between 0 and 63. Of course, many scanning patterns can
be considered. and the standard types among them are used in actual operation (MUKAI
et al., 1990). This energy scanning pattern is common to all channeltron. Since there
may be the energy dispersion, we collect the data with the same energy step number
from the original single time series, for each channeltron and each species. So that, the
number of newly constructed time series is sixty four for each channeltron and each
species. We specify the time series obtained like this by y,*(n) (n = 1,2,...,N),
where 7 and j denote the energy step and channeltron numbers, respectively, and k
represents the species of the charged particles (for the electron and ion, k¥ = 1 and
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k = 2, respectively). Then, obviously, yéo'z (n) is composed of the ion data with energy
step 0 and channeltron 10.

The sampling time of this newly constructed data y,”*(n), i.e., At(n), defined by
an interval of an observation time between y,”*(n) and that of y,”*(n — 1), seems to be
basically identical to the interval time required for fully energy scanning (indicated by
Tg hereafter), but in fact depends on the the energy scanning pattern. In particular,
for the scanning pattern as shown in Fig. 1 (on April 14, 89), the interval time also
depends on n; At(n) for n of the even number is different from that for the odd
number. This is very inconvenient for the subsequent procedures, then in this case
we distinguish between y,”*(n) with the even n (denoted by x in figure) and that
with the odd n (denoted by o). Namely we furthermore generate two time series (x
and o) from a single time series y,7*(n). In this study, these newly constructed time
series are distinguished by a subscript: yigi'; (n) and y;{é‘): (n), respectively. Then the
sampling time of the newly constructed time series comes to be constant with At = 2T
accordingly. In a case shown in Fig. 1, the sampling time At is given by 2Tz = 7.75
second. As seen in this figure, the number of energy steps used on April 14, 1989 is
thirty two. In short, no count number with an odd energy step number is measured
during this interval shown in Fig. 1. It should be noticed in Fig. 1 that this special
treatment for the sampling time is not necessary for the time series with the energy
step number of 0 and 62. Then, in this case, sixty two yi(j;)k (62=2+(32-2)x2)
are newly generated for each channeltron and each species. Consequently, since the
count numbers both for electrons and for ions are simultaneously obtained by each
channeltron, the number of the time series yi{";‘ is 2 x 10 x 62 = 1240.

April 14, 1989
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Fig. 1. The energy scanning pattern on April 14, 1989. The vertical axis denotes the energy step
number.

We show in Fig. 2(a) the newly generated time series, y010’2(n), observed on April
14, 1989. Since the energy scanning pattern at this period is the same one as shown in
Fig. 1, it is evident that there exists only one time series with the energy step number
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Fig. 2. (a) The ion count number obtained by the channeltron 10 (CH-5 of LEP-S2) for the energy
step 0. on April 14, 1989. (b) The view direction (phase)} in a plane perpendicular to the spin

axis, 030‘2(11). for given values of Tol?"bi = —220.4 [sec.] and 9(1)0'2 (0) = 87.43 [deg.).

0 for each species. As previously defined, this time series is the ion count number
for the channeltron number 10 and the energy step number 0. The background noise.
which is attributed mainly to an effect of the geocorona, can be seen in this figure
as a cyclically repeating pattern with period of approximately 220 second. The spin
period T, at this interval shown in figure is set to be approximately 7, = 8.014 second.
Because of a constant difference between 27 = At and T,, a view direction in a plane
perpendicular to the spin axis changes cyclically as a function of time. We denote
hereafter this view direction, i.e., phase in a plane, by 63°%(n) and set 6;°*(n) = 0 at
the time when the channeltron points just toward the background noise source. We here
take the satellite’s spin direction as positive orientation in a phase 9(1,0’2 (n). Of course.
the superscripts 10 and 2 indicate the channeltron number and ion, respectively. The
subscript 0 is required to specifically represent the phase for the energy step number 0,
because, for example, an observation time of yéo'Q(l) is obviously different from that
of y1%(1), as seen in Fig. 1. The period of the changing view direction, T}, is given by
. 21151ws
C2Ts-T,
where a sign of T, means the phase shift of the view direction relative to a direction
of satellite’s rotation. Since in our case shown in Fig. 2(a) 2T is slightly smaller than
T, and a sign of T, is negative, |T| is much larger than T, (|T] ~ 235 second). So
that 030'2(71) gradually changes in a negative direction; in other words, a view direction
rotates in a direction opposite to the satellite’s spin.

Ty (2.1)
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The period estimated by a visual inspection is approximately 220 second and
definitely shorter than |[Ty|. This discrepancy stems from a gradual change in the
satellite position relative to the background noise source during the interval shown
in Fig. 2(a). Namely, even if the satellite orients its view direction just toward the
background noise source at t = tg, the view direction at t = |Ty| + to is different from
that at ¢ = to; i.e., O30 2 (t = to) # 052 (t = |Tul + to)-

The position of the background noise source is previously unknown, and then an
effect of the change in the satelhte position on the phase 83°%(n) can not be a-priori
given. Hence, we describe 60 2(n) simply as a function of T, 262 and 6;°%(0) as follows:

0322 (n) = Mod (63°%(0) + %’%, 21), (2.2)

0,0bs
where 6;2%(0) is, of course, an initial phase for a time series yo22. ITOI?,E,I of course,
corresponds to the period previously estimated by the visual inspection into Flg 2(a).
A sign of T0 -+, has also the same meaning as that of Ty. Although Tgib{ 85" (0)
can be roughly given by checking the intervals between sharp peaks seen in F1g 2(a),
we treat them as parameters in the subsequent procedures and search an optimal value
for them. In order to show a good performance of the model for the phase 010 2(n),
which is defined by (2.2), we show in Fig. 2(b) 6;%%(n) for égbi = —220. 4[sec] and

6522(0) = 87.43[deg.].
3. Model for Decomposition

Hereafter we consider a time series for the fixed channeltron, energy step number,
and species (electron or ion) and subtract the background noise component from it.
Then the sub- and super-scripts to specify the channeltron, energy step number, and
the species are unnecessary for the following descriptions. In short, a single time series
data y(n) represents a certain yl(’l)" Accordingly, 6. (’,)" (n) and parameters for it, T‘(’l)"a,m

and 6, (Jz)k( ) are simply indicated by 8(n), Toss, and 6o, respectively.

3.1 The basic model for decomposition
3.1.1. Observation model

To subtract the background noise from an observed time series y(n) (n = 1,..., N),
we will here consider the model
y(n) = f(n)I(n) +t(n) + e(n), (3.1)

where the first term in (3.1), f(n)I(n), is the background noise component, t(n) is a
trend, and e(n) is an observational noise which is a white noise sequence with e(n) ~
N(0,0?). Of course, N(0,0?) is a Gaussian distribution with a mean of 0 and unknown
variance of 02. The assumption of Gaussian distribution implies that we intend to
apply the familiar least squares fit which minimizes 2;7:1 e(n)?. In other words, a
minimization of

i( (n) - f(n)I(n) — t(n)) (3.2)
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can be justified by the maximum likelihood method under the assumption that a de-
viation from the observed data, e(n) = y(n) — f(n)I(n) — t(n), obeys the Gaussian
distribution. It should be noticed that we need not give a value of 02 and that it
is naturally defined by the variance of the residual sequence e(n) which is derived
through estimating f(n), I(n), and t(n) (AKAIKE, 1980; KITAGAWA, 1983). It is in
detail explained hereafter.

As seen in (3.1), the background noise component is expressed by a product of
f(n) and I(n), where f(n) is an arbitrary periodic function which satisfies f(n) = 0 for
90° < |8(n)|, and I(n) is a time varying intensity of the noise source. The representation
like this for the background noise component implies that f(n)t(n) shows a cyclically
repeating pattern with period T,,, and that the form of cyclic pattern changes gradually
as well as the power of noise. The form of cyclic pattern moderately depends on f(n),
so that we select it without special care. In our case, any function can be a good
candidate for f(n) if it roughly approximates a cyclic pattern of the component which
is probably attributed to the background noise as seen in Fig. 2(a). For simplicity, we
therefore select the following function as f(n):

_ fcosfB(n) |6(n)| < 90°
fn) = {o 90° < |6(n)| < 180°, (3:3)

where the phase 8(n) is given by (2.2). Although we can take an alternative function
as f(n), such as cos? 8(n), exp(— sin® 8(n)), or quadratic curve, a choice is well justified
by using the minimum AIC procedure that was developed as a natural extension to
the maximum likelihood method (AKAIKE, 1973; SAKAMOTO et al., 1986). Here we
remark that a computational time for estimating the background noise slightly depends
on the function form for f(n). We can therefore search the best function form which
minimize AIC, without wasting more computational time. For the first step, we apply
for simplicity cosf(n) and cos? §(n), and the model with the smaller AIC is chosen as
f(n). We can consider a piecewise linear expression for an alternative approach to give
a form of f(n). This approach might be flexible for describing the form of f(n), but
unfortunately requires lots of computational time.

3.1.2. System model

We assume that the noise intensity and trend components, I(n) and t(n) change
gradually with time. Namely we consider that I(n) (t(n)) and I(n — 1) (t(n — 1)) are
approximately equal at each n. This assumption can be represented by stochastically
perturbed difference equation constraints

V* I(n) = u(n),

V*t(n) = w,(n), (3.4)

where k; and k. denote an order of difference for I(n) and t(n), respectively. In
(3.4), u;(n) and u,(n) are white noise sequences such that u;(n) ~ N(0,7%(n)o?) and
u,(n) ~ N(0,7202). 02 is, as hereinbefore defined, an unknown variance of observation
noise e(n), and 73(n) and 72 give a ratio of each unknown variance to o2 accordingly.
For a simple case of k; = k, = 1, these constraints of (3.4) imply that we intend to
minimize ( ) ) ( - : )
tn—tn—l) In—In—l))
> ) (2 +3° 5 : (3.5)
7¢ 77 (n)

n n
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It should be here remarked that a variance of u;(n) is a time varying one and thereby
(I(n) — I(n — 1))? is weighted and summed up at each n. We here remind the reader
that o2 is automatically defined through the residual sequence e(n). In short, a value
of 02 is unnecessary for estimating I(n) and t(n). On the other hand, the values of
72(n) (n=1,...,N) and 72 are intrinsically required.

To definitely specify a basic model for decomposition, it remains to determine
an order of difference, k; and k.. In this study, we take k; = 1 and k, = 1 because
a first order difference is convenient for subsequent calculations. This simplification
never reduce a goodness-of-fit our of model to data, and can be also justified by the
aforementioned minimum AIC procedure among various selections for (k;, k).

3.1.8. Constrained least squares approach

The constraints for I(n) and t(n) are given as expressed in (3.2) and (3.5), and
thereby a solution for estimating I(n) and t(n) is reduced to be the constrained least
squares problem in such a way that we minimize the quantity

o) =3 (41— T — o)+ o2 (D) 4 £
i=1 T
2
N z"’: ( (n) - I(n - 1)) . XN: (t(n) - :(: - 1)) 55)
i=2 t

2 2 N w2 =
:Ze<n)z+az<§7§-ll-;+%>+;.:;53+Z“;El‘”

i=1

over asy, where apy represents the parameter vector defined by aoy = [1(1),1(2),...,
I(N),t(1),t(2),...,t(N)], and « is constant for special treatments of I(1) and t(1). It
should be noticed that this problem is also a weighted least squares problem, because
each u?(n) = (I(n) — I(n — 1))? has its own weight, 1/72(n). This quantity x*(azn)
is a.lso called “chi-square” in terms of the Chi-Square fitting (PRESS et al., 1988).
If 72, 73(n), f(n) (n = 1,...,N), and a are given along with the observation y(n)
(n = 1,...,N), the solution of minimizing (3.6) is uniquely determined and takes a
simple form referred in AKAIKE (1980), KITAGAWA and GERSCH (1985b), HIGUCHI
et al. (1988), and HicucHI (1991). In other words, the solution to minimize (3.6) is
determined by giving values of parameters

=[T (1)? (2) "!T[(N) obs;oo] (37)

and supplemental parameter a.

The tradeoff parameters such as 72,73(n) (n = 1,...,N) balance the tradeoff
between infidelity to data, which is expressed by the minimization of (3.2), and infidelity
to the constraints given by minimizing (3.5), and thus it is obvious that the critical
idea in the constrained least squares approach is a proper selection of the tradeoff
parameters 72 and 73(n) (n = 1,..., N).

The constrained least squares problem has a clear Bayesian interpretation which
facilitates the determination of the tradeoff parameters (AKAIKE, 1980; KITAGAWA and
GERSCH, 1984, 1985b; TITTERINGTON, 1985; GERSCH and KITAGAWA, 1988). In de-
tail, the reader should be referred to KiTaGawA and GERSCH (1985b) and
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TITTERINGTON (1985). These tradeoff parameters are called as -a hyperparameter
in a Bayesian framework (LINDLEY and SMITH, 1972; TITTERINGTON, 1985; GERSCH
and KITAGAWA, 1988). A performance of the hyperparameters on the estimated pa-
rameters can be visually shown in AKAIKE (1980), INOUE (1985), TANABE (1985), and
HIGUCHI et al. (1988) for a simple case. HIGUCHI (1991) has examined the frequency
domain characteristics of the various Bayesian approach parametrically as a function of
the hyperparameters. In particular, the relationship between the hyperparameter and
the halfband width in the lowpass filter has been shown when we adopt the smoothness
prior model expressed by (3.4) (SILVERMAN, 1985; HiGUCHI, 1991).

3.1.4. Representation by the state space model

The Bayesian approach along the lines of AKAIKE (1980) has computational com-
plexity O(N3). Since the constraints between the estimated parameters are usually
local, as expressed in (3.4), in the Bayesian approach to model a time series, we can
reduce this complexity to be O(N) by the efficient scheme (ISHIGURO, 1984) and also
by the computationally efficient recursive algorithm based on the Kalman filtering
(KITAGAWA, 1981). The formulation by AKAIKE (1980), i.e., the constrained least
squares computational approach by using smoothness prior models (LINDLEY and
SMITH, 1972; O’HAGAN, 1976; AKAIKE, 1980; SILVERMAN, 1985; KITAGAWA and
GERSCH, 1985b), can be rewritten by the state space model (SSM) approach for the
linear model with Gaussian system and observation noises (GERSCH and KITAGAWA,
1988; KITAGAWA, 1989b). The SSM representation is very flexible enough to rewrite
any constrained least squares approach only if the relationships between the estimated
parameters are linear and local. Several examples for representations by the SSM en-
able us to understand the equivalence between the SSM and constrained least squares
approaches (KiTaGawa, 1981, 1989b; KiTAGAWA and GERSCH, 1984). The parame-
ters determined by the constrained least squares approach can be in the SSM approach
achieved by the Kalman smoother solution. The reader who is familiar with the con-
strained least squares approach along Akaike’s formulation should refer to KITAGAWA
(1981) and K1TAGAWA and GERSCH (1985b) in order to comprehend the SSM approach,
which is therein related to the constrained least squares approach.

We also rewrite the constrained least squares approach by the SSM approach. For
fixed values of T,,, and 8y, f(n) is definitely determined, and then our model of (3.1)
and (3.4) can be rewritten in the state space form

z(n) = Fz(n — 1) + Gu(n),

y(n) = H(n)z(n) + e(n) (3.8)

with the state vector z(n), and F, G, H(n) matrices given by

z(n)=(£((2))), F:G:(é ‘1)) H(n) = (f(n) 1). (3.9)

The vector u(n) is an uncorrelated sequence with

u(n) = ( ”’(n)> . (3.10)

u,(n)

where u;(n) and u,(n) are, of course, the identical in (3.4).
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3.1.5. Kalman filter

Given the state space representation, the estimates of I(n) and t(n) are easily
realized as the fixed-interval smoothed values by using the recursive Kalman filter and
smoother algorithms (ANDERSON and MOORE, 1979; KATAYAMA, 1983; KITAGAWA,
1989b) for the fixed A (see, for detail descriptions of the procedure presented hereunder,
KITAGAWA (1981, 1983) and KITAGAWA and GERSCH (1984, 1985a)). Since the system
and observation noises, u(n) and e(n), are Gaussian in this study, any conditional
probability density of z(n), given observations Y., = [y(1),y(2),...,y(n")], p(z(n)|Y.),
can be characterized by the mean vector and the covariance matrix. Here we denote the
mean vector and covariance matrix, given Y., by z(n|n’) and V(n|n’), respectively. If
we give an initial mean vector and covariance matrix, 2(0]|0) and V' (0]0). which represent
the distribution of an initial state vector z(0), we can define z(1]0) and V(1|0) through
a one-ahead prediction formula. Moreover, the filtering formula gives us z(1|1) and
V(1]1), from 2(1]0) and V(1|0). This recursive algorithm is as follows.

For one-step-ahead prediction (time update),

z2(njn—-1)=Fz(n-1n—-1), V(njn-1)=FV(n-1n-1)F*+GQ(n)G*, (3.11)

where (n) is a matrix defined by

Qun==(T%”) %). (3.12)

Tt
Of course, t denotes the transposition. For filtering (observation update),

K(n) = V(nln - 1)H*(n)/[H(n)V (nln — 1)H*(n) + 1],
z(n|n) = z(n|n — 1) + K(n) (y(n) — H(n)z(n|n — 1)), (3.13)
V(nln) = [I - K(n)H(n)]V(n|n - 1),

where I is an identical matrix. According to (3.11) and (3.13), we can estimate z(n|n—
1), z(n|n), V(njn—1), and V(n|n) at each n, if only 2(0|0) and V' (0]|0) are given. These
recursive formula have been schematically shown in KITAGAWA (1989b). Several ideas
for giving 2(0|0) and V'(0|0) can be referred to KiTaAGAwA (1981) and KITAGAWA and
GERSCH (1984). In our case, we set simply

z@m)=(g) (3.14)
e vww)=<g 2), (3.15)

where 3 is a constant defined by an average of y(n)/f(n) with a phase of —80° <
6(n) < 80° and c is a large value (for example, ¢ = 10%). The value of 8 approximately
represents mean value of I(n), because y(n) within this phase range of —80° < 8(n) <
80° seems to be attributed mainly to the background noise and thereby y(n)/f(n) gives
us a rough estimate of I(n) through (3.1). Taking a large value for ¢ is equivalent to
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setting a small value for a in (3.6). In short, a special treatment in the constrained
least squares approach corresponds to setting 2(0]0) and V'(0]0) in a framework of the
recursive Kalman filtering approach. This can be also easily interpreted in terms of
the boundary condition in the 1 dimension space. In the time series analysis, an effect
from the initial data decays rapidly and this problem is not so significant. Thus far, a
choice of values of 3 and c slightly affects an estimation of 7(n) and t(n).

In the approach along AKAIKE's formula (1980), values I(n) and t(n) are defined
through the entire data set as the constrained least squares solution. However, z(n|n) is
based on the data Y, = [y(1),y(2),.-.,y(n)] (n £ N), and thus values of the estimated
parameters I(n) and t(n) should be defined by using all of the data. Namely we must
calculate z(n|N) for I(n) and t(n). Here it should be noticed that 1 < n < N. To obtain
z(n|N), we can also use a recursive formula for the following backward smoothing. For
smoothing,

A(n) = V(n|n)F*V(n+ 1|n)~},
2(nIN) = 2(nln) + A(n) (2(n + LIN) = 2(n + 1n)), (3.16)
V(n|N) = V(n|n) + A(n) (V(n +1N) - V(n+ lln))A‘(n),

where V(n 4 1|n)~! represents the inverse matrix of V(n + 1|n). z(n|n), z(n|n + 1),
V(n|n), and V(n|n + 1) have been already defined at each n by (3.11) and (3.13). We
can therefore estimate 2(n|N) and V(n|N) at each n when we start the above backward
recursive calculation at n = N — 1.

3.1.6. Minimum ABIC procedure

We use maximum likelihood estimation for choosing the unknown values of o% and
A. The likelihood p(Yx|02, A) can be rewritten as follows.

p(Ywnlo2, A) = p(y(N), y(N = 1),...,4(2),y(1)|o? A)
= p(y(NV), y(N = 1),...,y(2)ly(1), 0%, A) - p(y(1)|o?, A)
= p(y(N),y(N = 1),...,y(3)y(2),y(1), 0%, A) - p(y(2)ly(1), 0%, A)
-p(y(1)|o?, A)

= p(y(D)lo*, A) [ p(y(n)[Yaz1, 02, A). (3.17)

n=2

p(y(n)|Y._1,0%, A) is, of course, the conditional distribution of y(n), given data ¥,,_; =
[¥(2),%(2),-..,y(n — 1)], 0%, and A. Along the aforementioned Kalman filtering pro-
cedure, an efficient algorithm for calculating the likelihood of a time series is available
(KITAGAWA, 1981, 1983), because p(y(n)|Y.-1,02, A) is approximately given by

p(y(n)[Yaor, 0% A) = / p(y(n)|2(n), 02)p(2(n) [Ya_r, 0%, A)dz(n)
1 e2(n)

- V2ra2d(n) exp(~ 20%d(n) )

(3.18)
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where e(n) =y(n) — H(n)z(n}n — 1) and d(n) = [H(n)V (nin - 1)H*(n) + 1], and they
have been already appeared in filtering procedure, as seen in (3.13). The likelihood
p(Yn|o?, A) is obviously equivalent to the integrated likelihood (marginal likelihood)
which are defined by

p(YN‘a27 A) = /p(YN|a2N3 02)p(a2N|021 A)daQNa (319)

where asy has been already defined in (3.6) (AKAIKE, 1980; KITAGAWA and GERSCH,
1985b; HIGUCHI et al., 1988; GERSCH and KITAGAWA, 1988). The minus two times of
the logarithm of this likelihood is called ABIC in the constrained least squares approach
along AKAIKE'’s formula (1980). This integration is of computational complexity O(N3)
(ISHIGURO, 1984; KITAGAWA and GERSCH, 1985a). In contrast, a computational com-
plexity of O(N) can be achieved along the algorithm of (3.17) and (3.18). We therefore
adopt the state space modeling approach instead of the constrained least squares ap-
proach. Here we would like to comment on calculation of the marginal log-likelihood.
When the system and observation noises are no longer Gaussian and/or the estimated
parameters such as I(n) and t(n) are nonlinearly related, it is necessary to numerically
realize an integration of the right hand side of (3.19). We usually treat the Bayesian
model which contains many unknown parameters and requires a high dimensional in-
tegral accordingly. In fact, it is impossible to directly integrate the right hand side of
(3.19). However the approach based on (3.17) enables us to avoid and to mitigate this
problem (KITAGAWA, 1987, 1988, 1989a; GERSCH and KITAGAWA, 1988).

As previously mentioned, an effect from the initial data decays rapidly in the time
series analysis. However we take account of this effect on the likelihood and adopt the
following likelihood

p(Ynlo?, A) = T] p(y(n)|Yac1,0%, A), (3.17)

n=N,

instead of (3.17), where ‘N, is an integer of 1 < N, << N (for example, N, = 2° for
N = 29). Since the likelihood function takes a form of (3.17’) and (3.18), the best
estimate of o2 is obviously given by differentiating log p(Yx|o?, A) with respect to o
and thereby defined by
=2 _ 1 > e%(n)
N' & 4 d(n)

(3.20)

where N’ = N — N, + 1. This means that the estimate of unknown variance o2

automatically results from the Kalman filtering algorithm (KiTAGAWA, 1981) and that
there is no necessity for giving it. The log-likelihood can be obtained from (3.17'),
(3.18), and (3.20) as a function of A as follows.

N’ N1 &
logp(Yn|A) = ——- log 2752 ~ — — 3 Z log d(n). (3.21)

n=N,
The best model is determined so as to minimize the ABIC which is in our study defined

by
ABIC = —2logp(Yn|A) (3.22)
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with respect to A. Obviously the likelihood in the state space model corresponds to the
marginal likelihood in the constrained least squares approach, so that the minimum
ABIC procedure here is equivalent to the Type II maximum likelihood method (Goob,
1965) and ABIC in (3.22) is essentially the same as ABIC defined by AKAIKE (1980).

3.2 Estimation of time varying variance

The best model can be obtained by minimizing ABIC with respect to A, but
in general, it is very difficult to select the optimal hyperparameters because ABIC
is nonlinear function with many hyperparameters (the number of hyperparameters is
N +3, where N is of course the number of time series data) Computational difficulties
arise from 72(n) which is a function of time. Hence we adopt the following procedure
feasible for optimizing ABIC.

In the first procedure, we roughly estimate the variance of u;(n), 73(n)o?, by
assuming that it appears to be modulated by a relatively slowly changing envelope
function. This assumption has been justified through good results of its applications
to actual data, in particular to seismic measurements during an earthquake (KITAGAWA
and GERSCH, 1985a; KITAGAWA and TAKANAMI, 1985; GERSCH and KITAGAWA, 1988).

As seen in Fig. 2, the observation y(n) for a phase within the limited range of
—0:, < 0(n) < B, around # = 0° seems to be attributed mainly to the background
noise component, where 8, is a parameter which can range between 0° and 90°. Of
course, - although we can optimize ABIC with respect to 8,,, we here set 6,, = 80°
simply. Accordingly, we assume that y(n) is approximately given by f(n)I(n) within
—80° < @(n) < 80°. Based on this assumption, (3.4) yields a rough estimate of u;(n)

N y(n) yln-1)
Ur(n) = VI( )= ORNICEDE (3.23)
The next step is to estimate the time varying variance of u;(n). For this, we adopt
a procedure to estimate a smoothed value of the instantaneous variance (KITAGAWA
and GERSCH, 1985a; KITAGAWA and TAKANAMI, 1985), along the lines suggested
by WAHBA (1980). This procedure is summarized as follows. First we assume that
2(2m) = 72(2m - 1) (m = 1,..., N/2) and calculate

s(m) = %(1'212(2m) +%,2(2m — 1)). (3.24)

If 4;(n) is a realization of white noise from N(0,72(n)o?), then the logarithm of s(m)
follows the almost normal distribution with the mean of log(7?(2m)o?) —+ and variance
of 72/6, where v is the Euler constant (WAHBA, 1980; KITAGAWA and GERSCH, 1985a).
Secondly, based on an assumption that the variance of u;(n) changes slowly, we smooth
v(m) which is defined by

v(m) = log s(m) + ~. (3.25)

This transformation favors a estimation of 7;(2m), because a least squares approach
to smooth v(m) can be justified from v(m) ~ N(log(7?(2m)c?), 2 /6).

To obtain the smoothed v(m), r(m), we also apply the state space model approach
of the linear model with Gaussian system and observation noises. In this case, we take
the simple form for a system model

r(m) =r(m - 1)+ w,(m), w,(m)~ N(0,7272), (3.26)
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and for an observation model
v(m) = r(m) + w,(m), w.(m)~ N(O,To2 . (3.27)

The value of a hyperparameter 72 is determined by the aforementioned minimum ABIC
procedure. When we interpret these models in terms of the constrained least squares

approach, the optimization problem for 72 is reduced to estimate the smoothing pa-

rameter, 1/72, in an evaluation function of

L]

N/2 ) | M2 )
Z (v(m) - r(m)) + (ar(1))® + = Z (r(m) —r(m - 1)) . (3.28)
m=1 2 m=2

Since this function takes a quadratic form with respect to the parameter r(m), we
can define the value of the hyperparameter 72, as previously mentioned in the section
of (3.1), by introducing a Bayesian interpretation of this evaluation function (3.28).
Namely the best value for 72 can be uniquely determined so as to minimize a Bayesian
information criterion ABIC. We remind the reader that it is unnecessary for giving
a value of 72. For a fixed 72, 72 is naturally defined by the variance of the residual
sequence w,(m) = v(m) — r(m), which are derived from the estimated r(m). In a case
such smoothing, the hyperparameter 72 is closely related to the halfband width and its
relationship has been shown (HIGUCHI, 1991). In short, a choice of the hyperparameter
is completely equivalent to setting a halfband width when we use a digital lowpass filter
for smoothing data. Hence, ABIC gives us an opportunity to objectively define the
halfband width of the lowpass filter.

In searching the optimal 72, we use a coarse grid search method in the discrete
point of 72. We feel that this simple approach can give a good estimate of 7(m), and
this view is shared by many authors (AKAIKE, 1980; KITAGAWA and GERSCH, 1934,
1985a; TANABE, 1985; HIGUCHI et al., 1988). However, we furthermore apply the
Newton method to obtain the best 72 with the minimum ABIC, specified hereafter
by 727, around 72 which approximately minimizes ABIC in a coarse grid search. The
obtained 72" generates r7(m), and accordingly the unknown time varying variance can
be determined by

72(2m)o? = e"(m), (3.29)

For the subsequent notation, we normalize 72(2m)o? by its maximum value;

72(2m)o? _ 72(2m)

maz(T?(2m)o?)  maz(7T?(2m))’ (3.30)

72(2m) =

We denote this maximum value by 72.

For the given data y(n) and hyperparameters of T,,, and 6y, we fix this scaled
72(2m) and take 72 as an unknown hyperparameter. Namely, instead of regarding 7;(n)
as hyperparameters, we hereafter consider only 72 as a hyperparameter. This means
that a form of an envelope function of u;(n) holds in the successive procedure to search
the best hyperparameters with the minimum ABIC in (3.22). By this simplification,
the magnitude of the time varying variance of u;(n) depends only on the value of 77
at each n.
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3.8 Choice of hyperparameters with the minimum ABIC

By the procedure presented in Subsection 3.2, we restrict the hyperparameter
set from A = [12,72(1),...,T2(N), Tops, 00] to A = [72, 77, Toss, 86]. ABIC should be
therefore expressed as a function of A and defined by

ABIC = —2log p(Yn|A). (3.31)

We can numerically search the best hyperparameter set A with the minimum ABIC of
(3.31). Of course, to obtain the best hyperparameter set can be achieved by a coarse
grid search over the ) space, but this approach is very redundant due to the relatively
high dimension hypercube of hyperparameters and then requires lots of computing
time. Thus far, in our case, we adopt a quasi-Newton method which is commonly
used to minimize the nonlinear function with respect to parameters (NISHIKAWA et al.,
1982; PRESS et al., 1988). To use the quasi-Newton method can definitely reduce the
times of calculating the value of ABIC in (3.31) for the given hyperparameter set of A.
compared with that by the grid search.

4. Example

In this section, we demonstrate the procedure explained in the above section by
using the data y(n) shown in Fig. 2.

4.1 Estimation of 72(n)

As mentioned in Subsection 3.2, we first estimate the time varying variance of u;(n)
to decompose the data y(n) into the multi-components expressed in (3.1). To do this.
we calculate %;(n) according to (3.23). It should be again noticed that §(n) is defined
for the given (T,u,,60) and then %;(n) also corresponds uniquely to the parameter set
(T.bs.80) through f(n). The obtained %;(n), based on #(n) shown in Fig. 2(b), is
indicated by a solid line in Fig. 3(a). It is clearly seen in Fig. 3(a) that the relatively
fast wiggles of 4;(n) is modulated by a relatively slowly changing envelope function.
Namely, the variance of %i;(n), T?(n)o?, appears to change slowly and thus this behavior
justifies the assumption that the variance of u;(n) depends on time. Obviously, as seen
in Fig. 3(a), there is no estimate of u;(n) for a phase within |8(n)| > 80°.

We calculate v(m) defined in (3.25) and show its curve in Fig. 3(b). The smoothed
v(m), r(m), at 72° = 3.753 x 1073 is in this figure denoted by a continuous solid curve.
We emphasize the fact that the smoothing with the state space modeling automatically
interpolates 7(m). The estimated r(m) yields 72(2m)o? through (3.29). We superpose
a curve of 7;(n)o on Fig. 2(a). It seems in Fig. 2(a) that the envelope of #,(n) can be
satisfactorily represented by the estimated 7;(n)o curve.

4.2 Extraction of the background noise

To eliminate the background noise component from the observation data, we
search the hyperparameter set A with the minimum ABIC of (3.31). The estimated
background noise component, f(n)I(n), with the minimum ABIC is demonstrated in
Fig. 4(a). We show in Fig. 4(b) the estimated t(n) + e(n) which is free from the back-
ground noise component. At this estimation, the hyperparameter set, which has the
minimum ABIC, is 72 = 0.1149, 77 = 48.47, T,;, = —220.4[sec.], and 6y = 87.43[deg.].
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LEP-S2, CH-5, Energy Step Number=0, Ilon April 14, 1989
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Fig. 3. (a) ur(n), based on 8(n) shown in Fig. 2(b). The estimated 71(n)o is superposed on it. (b)
v(m) defined in (3.27). The smoothed v(m), r(m), is indicated by a solid curve.

We also exhibit the original data y(n) in Fig. 4(c) in order to facilitate its comparison
with Fig. 2(a). It is seen that the background noise which significantly contaminates
the data can be satisfactorily subtracted from y(n).

5. Some Comments on Actual Procedure

As demonstrated in Sections 3 and 4, we cqnsidered the time series for the fixed
channeltron, energy step numbers, and species, yi(’l')k , and removed the background noise
component from it. In a case of energy scanning pattern shown in Fig. 1, the number

of y'.("l';‘ is 1240, and so that we apply the aforementioned procedure for removing to

each time series yi(jz')k . Namely we repeat, for 1240 times over, an optimization to
search values of hyperparameters A for each yi&';’ . We obtain 1240 sets of optimal
hyperparameters accordingly. However, the optimization like this is highly redundant
and unsuited for an actual procedure. Several reasonable improvements are -possibly
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(3)  LEP-S2, GH~S5, Energy Step Number=0, Ilon April 14, 1989
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Fig. 4. (a) The estimated background noise compornent, f(n)I(n). (b) The component free from the
background noise, t(n) 4+ e(n). (c¢) The row data, y(n), which is identical to Fig. 2(a).

considered to reduce a computing time required for filtering the backgroﬁnd noise
component out. )

Here the reader should be reminded of that all channeltron is installed in a same
plane which includes the spin axis (see Fig. 2 in MUKAI et al. (1990)). It is easily
suggested from the configuration of the channeltorons that, for a time series yi{,’;‘ (n)
with the same energy step number i(l), the phase with the channeltron number j of
1 ~ 5, ie., 6,7 (n) with 1 < j < 5, should be identical each other." Similarly, 6% (n) is
common to the channeltron with its number j of 6 ~ 10 and exactly anti-phase with
that with j =1~ 5. ‘ ' '

The other redundancy in optimization is that the value of Ti(";')'fobs should be essen-
tially common to all yig,‘;“ . Even if we search the best hyperparameters for each y,.(";)", a
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resulting T/ i [) b, approximately gives the same value. There is little, if any, discrepancy
of T‘(’l) s, from its mean. Consequently, once we estimate the value of Y:(Jl")}fobs’ we need
not optimize ABIC with respect to T(’l)k »s fOT each v (z)

In addition, a simple relationship between 6.7 (1) *(0) even for different energy step

number is naturally suggested from a energy scanning pattern (see Fig. 1). From the
obtained To%t, and 6,"*(0), 6,7, ¥(0) can be given by

6,50 ):Mod{aoj'k(0)+2n( () + :,1: 2+2f>(j((;)2)_2)) 211'} (5.1)

where g(j) and f(i(l)) are defined by
s {3 12675, (52)

and )
e {3, 123, (53)

respectively. This relationship does not hold in a strict sense, because no effect of the
change in a position of satellite relative to the noise source during the one spin period
is taken into account In addition, since the resulting f(n)I(n) drastlcally changes
according to 8. s *(0), thereby we had better deﬁmtely search a better 6./ {0 ¥(0) with the

minimum ABIC around the roughly estimated 6.7 {0 ¥(0) by (5.1). Namely, f(n)I(n) is

sensitive 8, ")" (0) but insensitive to other hyperparameters.

Finally, we would like to comment on a limitation of our model expressed by
(3.1). Since we consider the LEP data highly contaminated with the background noise,
our model is unsuitable for the data which slightly contains the component probably
attributed to the background noise. For example, we can see little effect from the
background noise in the LEP data for the channeltorons of which the view direction is
anti-solar (the spin axis is controlled to be directed toward the sun). Even if our model
is applied to the LEP data like this, the nonlinear optimization does not converge
during the finite computing time. Then, we should not apply our approach to such
data (obviously, we need not use our procedure; because there is little background noise
component in the raw data). In such a case, the Bayesian approach for removing the
periodic noise (HIGUCHI et al., 1988) can be sufficiently applied. By using it, we can
reduce the computing time drastically.
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