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ABSTRACT

Data Assimilation is a technique for a synthesis of infor-
mation from a dynamic (numerical) model and observation
data. It is an emerging area in earth sciences, particularly
oceanography, stimulated by recent improvements in com-
putational and modeling capabilities and the increase in the
amount of available observations. Past studies for data as-
similation employed a linear Gaussian state space model
and applied Kalman filter. The Kalman filter based meth-
ods, however, do not allow for the strong nonlinear and/or
non-Gaussian disturbance behaviors. We develop a new
time dependent inversion method, which we call Monte Carlo
mixture Kalman filter (MCMKF). A basic idea of MCMKF
is as follows: (1) we prepare a finite number of competing
state space models, each of which follows a different state
space model, (2) we introduce a switching structure among
these competing models. We address a capability of apply-
ing MCMKF to several topics in space physics.

1. DATA ASSIMILATION

Obtaining an accurate prediction of the upper ocean thermal
structure is one of the important issue in modeling studies of
the ocean circulation (and Earth’s environment). A numer-
ical ocean model-based experiment, i.e., simulation study
has been conducted for this purpose. Dependent variables
of the numerical ocean model can be considered as stochas-
tic variables due to the uncertainty in the initial and bound-
ary conditions and the imperfection of the numerical model.
A natural idea to compensate for such insufficient informa-
tion only via simulations is to combine observations with
numerical models. Hence, a reasonable way of blending a
numerical (physical) model and observation is now becom-
ing a central issue in the earth science community.

Data Assimilation is a technique for a synthesis of infor-
mation from a dynamic (numerical) model and observation
data [1]. In statistical sense, data assimilation supposes two
models: system model and observation model. The sys-
tem and observation model correspond to large-scale nu-
merical model-based simulations and large-scale satellite-
and/or ground-based measurement systems, respectively. The
data assimilation can be therefore formulated in the state

space model (SSM) [2, 3] as follows:

System model

xn = Fnxn−1 + vn, vn ∼ N(0, Q) (1)

Observation model

yn = Hnxn + wn, wn ∼ N(0, R), (2)

whereN(0, Q) andN(0, R) denote a normal distribution
with a mean0 and variance-covariance matrix ofQ andR,
respectively. The state of the ocean at timen is represented
by a state vectorxn of which dimension isnx. yn is an
observation (measurement) vector at timen. Its dimension
is denoted byny. In data assimilation,nx is huge such as
nx ≈ 105 ∼ 106. In contrast,ny is much smaller than
nx (nx À ny), and then to get an optimal solution ofxn

becomes a time-dependent inversion problem. It should be
noticed thatny is extreamely larger than those in the con-
ventional state space models. For example,ny exceeds a
few thousands.
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Fig. 1. Schematic Representation

Figure 1 shows a schematic representation of the data
assimilation concept with a case ofnx = ny = 1. At each
time the state vector is updated according to this scheme
(called the filtering step in the Kalman filter).xn|n−1 is a



state estimation at timen only via simulations.en|n−1 is
a prediction error between an actual observation and pre-
dictive value of the observation based on the result of sim-
ulations. Kn is a trade off parameter to control how the
simulation model accommodates an actual observation.Kn

is called the Kalman gain. WhenKn = 0, an actual ob-
servation has no effect on a simulation process. In this case
we totally rely on the simulation result. On the other hand,
whenKn = 1, any discrepancy between the predictive and
real values of observations is perfectly adjusted. In this case,
it is difficult to identify a dynamics inherent to a simulation
model from an estimation of the state vector, because a state
vector is highly sensitive to the observation errors.

The SSM has given a platform in nonstationary time
series and control studies for three decades after Kalman
[3]. The Network Inversion Filter (NIF) [4] which is now
recognized as one of the standard techniques in the time-
dependent inversion to reveal the whole time history of fault
slips event with an analysis of GPS network data, is also
defined by the SSM. In the meanwhile, many phenomena
in earth sciences have a nonlinearity and come along with
non-Gaussian fluctuations. In particular, most of problems
arising in space physics have to be discussed in this context,
because a media in space, namely, plasma produces a wide
variety of nonlinear and non-Gaussian phenomena. Prior
to a realization of a space weather forecasting, the nonlin-
ear non-Gaussian data assimilation method is required to
evaluate how much the numerical model-based approach
can describe the real world phenomena. The motivation
of this work is to develop a new technique for non-linear
non-Gaussian data assimilation method. Evensen [5] pro-
posed the assimilation method for strongly nonlinear prob-
lem, which is usually called the ensemble Kalman filter (EnKF).
The Monte Carlo method is used to estimate the variance of
the prior probability distribution function (PDF). However,
the EnKF also assumes that all the required PDFs are Gaus-
sian. It should be noticed that the EnKF is different from
the extended Kalman filter (EKF) which has been applied
to weakly nonlinear problems [2].

2. MODEL AND BASIC IDEA

2.1. Conditional dynamic linear model (CDLM)

One of the generalization to develop the non-Gaussian non-
linear data assimlation is to introduce the conditional dy-
namic linear model (CDLM) [6]. The CDLM can be defined
as:

xn = Fn(In)xn−1 + vn, (3)

yn = Hn(In)xn + wn (4)

wherevn ∼ N(0, Qn(In)) andwn ∼ N(0, Rn(In)). The
indicator vectorIn is a discrete latent variable which takes

an integer value between1 ∼ M . Usually a number of
models treated in the Mixture Kalman filter is about2 ∼ 3,
but we consider a problem of dealing with a large number
of models,M ' 100. GivenIn, Fn, Hn, Qn, andRn are
known matrices of appropriate dimension. The CDLM is
a direct generalization of the dynamic linear model (DLM)
and retain a capability of dealing with outliers, sudden jumps,
clutters, and other nonlinear features. The CDLM includes
other types of generalization of DLM, e.g., Partial non-Gaussian
state space model [7], Markov switching state space model,
[8] and Dynamic liner models with switching.

2.2. Monte Carlo Mixture Kalman Filter (MCMKF)

We introduce a new filtering scheme and call it as Monte
Carlo mixture Kalman filter (MCMKF) that allows us to
choose the optimal model from many candidates or to av-
erage over many models [9].

The MCMKF algorithm requires a stochastic model which
describes a time-dependent structure forIn. In this study,In

is assumed to follow a stationary Markov process, i.e.,

p(In|I1:n−1) = p(In|In−1) (5)

whereIi:j = (Ii, Ii+1, · · · , Ij) andp() denotes probability
density function. An evolution ofIn is realized by Markov
switching model with transition probability given by

πij = Pr(In = j|In−1 = i) (6)

wherePr denotes realization probability. In the following,
we present an algorithm that determines time evolution of
In.

The MCMKF algorithm consists of two steps. First,
temporal variation of the probability distribution of indica-
tor variableIn is determined. Second, temporal variation
of the probability distribution of the state vectorxn is esti-
mated following the history ofIn.

Let yi:j andIi:j be a set of data vectors and indicator
variable from timeti to time tj , respectively, i.e.,yi:j =
(yi, yi+1, · · · ,yj) andIi:j = (Ii, Ii+1, · · · , Ij). In MCMKF,
two conditional joint distributions ofI1:n: (i) predictive dis-
tributionp(I1:n|y1:n−1) and (ii) filter distributionp(I1:n|y1:n),
are approximated by many “particles” that can be consid-
ered as independent realizations from each distribution. Let
I

(j)
1:i|k = (I(j)

1|k, I
(j)
2|k, · · · I(j)

i|k ) be thejth realization of the
conditional distributionp(I1:i|y1:k). Each distribution is
approximated byNp (Np À 1) realizations as follows:

{
I

(m)
1:n|n−1

}Np

m=1
∼ p(I1:n|y1:n−1) (7)

{
I

(m)
1:n|n

}Np

m=1
∼ p(I1:n|y1:n) (8)



where

Pr
(
I1:n = I

(j)
1:n|n−1|y1:n−1

)
=

1
Np

, (9)

Pr
(
I1:n = I

(j)
1:n|n|y1:n

)
=

1
Np

. (10)

In this study, we refer to{I(m)
1:n|n−1}

Np

m=1 and{I(m)
1:n|n}

Np

m=1

as “approximated predictive distribution” and “approximated
filter distribution”, respectively.

3. RECURSIVE CALCULATION

3.1. Indicator variable estimation

In this subsection, we show that an approximated predictive
distribution at timen is obtained from an approximated fil-
ter distribution at timen−1. We assume that{I(m)

1:n−1|n−1}
Np

m=1

andy1:n−1 are given. Then the probabilityPr(I1:n = I
(j)
1:n|n−1|

y1:n−1) is given as

Pr(I1:n = I
(j)
1:n|n−1|y1:n−1)

= Pr(In = I
(j)
n|n−1|In−1 = I

(j)
n−1|n−1)

1
Np

. (11)

(11) indicates that{I(m)
1:n|n−1}

Np

m=1 is obtained by sampling

a realizationI
(j)
n|n−1 with probability or weightPr(In =

I
(j)
n|n−1|In−1 = I

(j)
n−1|n−1), and settingI(j)

1:n|n−1 = (I(j)
1:n−1|n−1,

I
(j)
n|n−1). Note thatPr(In = I

(j)
n|n−1|In−1 = I

(j)
n−1|n−1) is

given by the Markovian transition probability defined by
(6).

Next we show that an approximated filter distribution at
time n is obtained from an approximated predictive distri-
bution at timen Given the observationyn, the probability
Pr(I1:n = I

(j)
1:n|n−1| y1:n−1) is updated as follows:

Pr(I1:n = I
(j)
1:n|n−1|y1:n) =

w
(j)
n∑Np

j=1 w
(j)
n

(12)

where

w(j)
n = p(yn|I1:n = I

(j)
1:n|n−1, y1:n−1). (13)

Equation (12) means that the filter distributionp(I1:n| y1:n)
is approximated by giving weight proportional tow(j)

n to
thejth particle of approximated predictive distribution. For
the next prediction step, it is necessary to represent the ap-
proximated filter distribution with equally weighted parti-
cles{I(m)

1:n|n}
Np

m=1. This is achieved by generatingNp parti-

cles{I(m)
1:n|n}

Np

m=1 by resampling{I(m)
1:n|n−1}

Np

m=1 with prob-

ability proportional to{w(m)
n }Np

m=1.

3.2. Kalman filter

SinceI
(j)
1:n−1|n−1 is assumed to be given, the CDLM (3)

and (4) reduces to a linear Gaussian state space model and
thusx

(j)
n−1|n−1 andV

(j)
n−1|n−1 are calculated by Kalman fil-

ter. x(j)
n|n−1 andV

(j)
n|n−1 are also calculated by Kalman filter

usingx
(j)
n−1|n−1, V

(j)
n−1|n−1 andI

(j)
n|n−1. Then we have

p(xn−1|I1:n−1 = I
(j)
1:n−1|n−1,y1:n−1)

∼ N(x(j)
n−1|n−1, V

(j)
n−1|n−1) (14)

p(xn|I1:n = I
(j)
1:n|n−1, y1:n−1)

∼ N(x(j)
n|n−1, V

(j)
n|n−1). (15)

Similarly the predictive distribution of data also becomes
a Gaussian:

p(yn|I1:n = I
(j)
1:n|n−1,y1:n−1)

∼ N(y(j)
n|n−1,W

(j)
n|n−1) (16)

where

y
(j)
n|n−1 = Hn(I(j)

n|n−1)x
(j)
n|n−1 (17)

W
(j)
n|n−1 = Hn(I(j)

n|n−1)V
(j)
n|n−1H

T
n (I(j)

n|n−1)

+ Rn(I(j)
n|n−1). (18)

The left hand side of (16) is the weightw(j)
n defined in

(13). Thusw(j)
n follows the Gaussian distribution with mean

y
(j)
n|n−1 and covariance matrixW (j)

n|n−1.

3.3. Fixed lag smoother

By using the prediction and the filtering algorithm recur-
sively, we finally obtainNp particles{I(m)

1:Ne|Ne
}Np

m=1 that
approximatep(I1:Ne |y1:Ne), the posterior distribution ofI1:Ne

conditioned on all of available data. Here,Ne is the number
of observations.p(I1:Ne |y1:Ne) is called smoother distri-
bution of I1:Ne . A sequence of each particle,I

(j)
1:Ne|Ne

=

[I(j)
1|Ne

, I
(j)
2|Ne

, · · · I(j)
Ne|Ne

], is called the trajectory.
In the particle filter, the repetition of resampling grad-

ually decreases the number of different realizations as time
passes. Therefore the shape of the distribution of the sate
deteriorates as a time passes. Kitagawa [10] showed that
this difficulty can be eliminated by employing fixed L-lag
smoother rather than fixed interval smoother. Bergmanet
al. [7] presented the other way to avoid this difficulty.

Thus following Kitagawa (1996), we modify the MCMKF
filtering algorithm as follows. For fixedL, generateNp par-

ticles{I(m)
n−L:n|n}

Np

m=1 by the resampling of{I(m)
n−L:n|n−1}

Np

m=1

with probability proportional to{w(m)
n }Np

m=1 defined in (13).



It is recommended to takeL not so large (say, 10 or 20 at the
largest 50) [10, 11]. We adoptL = 20 in our application.
This filtering algorithm is conceptually similar to the storing
state vector algorithm in the Monte Carlo filter proposed by
Kitagawa [10]. He applied the Monte Carlo approximation
directly to the distribution of the state, whereas we apply the
approximation to the distribution of the indicator variable.

3.4. State Vector Estimation

We present here an algorithm to estimate the state using all
theNp trajectories{I(m)

1:Ne|Ne
}Np

m=1. In this case,Fn(I(j)
n ),

Qn(I(j)
n ), Hn(I(j)

n ) andRn(I(j)
n ) (j = 1, · · · , Np) in (3)

and (4) reduce to sets of known matrices which have differ-
ent time evolutions corresponding to trajectories. Thus the
CDLM defined by (3) and (4) reduces to the conventional
linear Gaussian state space model to which Kalman filter
is applicable for state estimation.{x(j)

n+1|n, V
(j)
n+1|n}

Np

j=1,

{x(j)
n|n, V

(j)
n|n}

Np

j=1 and{x(j)
n|Ne

, V
(j)
n|Ne

}Np

j=1 are recursively ob-

tained by Kalman filter. Given{x(j)
n|Ne

, V
(j)
n|Ne

}Np

j=1, distribu-
tion of the final estimate forxn, p(xn|y1:Ne), is written as

p(xn|y1:Ne) =
1

Np

Np∑

j=1

N(x(j)
n|Ne

, V
(j)
n|Ne

). (19)

4. MCMKF IN SPACE PHYSICS

Many phenomena in space physics tend to be discussed in
terms of a complex system in which a nonlinear non-Gaussian
fluctuations (disturbances) play an important role. The non-
linear non-Gaussian data assimilation method needs to be
developed in an attempt to realize a quantitative prediction
of the space environment, i.e., space weather forecasting. In
order to cope with this request, we propose the CDLM and
apply the MCMKF for its state estimation. Here we give a
brief summary of how the MCMKF is applied to problems
in space physics.

We prepare several simulation models (simulation schemes)
for understanding the specific scientific problem. Each sim-
ulation model at timen is specified by an indicator variable
In. Q(In) can be possibly obtained by EnKF. Then we can
formulate a system model for each simulation model. The
observation model is naturally introduced when the state
and observation vectors,xn andyn, are defined. The prob-
lem left to us is to giveQ(In). One of the easiest way to de-
fine Q(In) is that we utilize information on statistical fluc-
tuations in each component of the observation vector. We
denote each component ofyn by yn(j) (j = 1, . . . , ny).
To obtainR begins with applying a lowpass filter to each
observed time seriesyn(j). The smoothed time series is
specified bỹyn(j). Then a residual series for each compo-
nent is determined byen(j) = yn(j)− ỹn(j). ThenQ(In)

is defined by a sample variance-covariance matrix ofen(j):
Qjj′(In) =< en(j) · en(j′) >, whereQjj′ denotes thejj′

element ofQ.
In conclusion, we address that the MCMKF is designed

to deal with the CDLM and then can be applicable to a wide
variety of the nonlinear non-Gaussian state space models.
The MCMKF allows us to integrate various type of time
series models and to generate a flexible time series model
automatically.
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