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SUMMARY A hierarchical structure of the statistical mod-
els involving the parametric, state space, generalized state space,
and self-organizing state space models is explained. It is shown
that by considering higher level modeling, it is possible to devel-
op models quite freely and then to extract essential information
from data which has been difficult to obtain due to the use of
restricted models. It is also shown that by rising the level of
the model, the model selection procedure which has been real-
ized with human expertise can be performed automatically and
thus the automatic processing of huge time series data becomes
realistic. In other words, the hierarchical statistical modeling fa-
cilitates both automatic processing of massive time series data
and a new method for knowledge discovery.
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1. Knowledge Discovery and Statistical Mod-
eling

1.1 Role of Statistical Model in Knowledge Discovery

The scientific theories developed so far by human being
should be considered as reasonable approximations to
the phenomena in the realm of the human recognition,
rather than exact description of the truth. Therefore,
there is a possibility of obtaining scientific discovery
from the process of comparing existing theory with ac-
tual data [2]. Actually, the main objective of statistics
before 20th century was the discovery of low based on
massive observations. On the other hand, the modern
statistics aimed at possibility of precise inference by s-
mall sample based on rigorously designed experiment or
sample survey. However, the recent progress of informa-
tion technologies required anew to establish a method
for automatic processing of massive observations and a
method of knowledge discovery based on it.

Data always contain some errors and thus only by
proper processing of the errors, it becomes possible to
separate the essential or universal part from the errors
that occurred only for that data. The treatment of
observation errors in scientific research has been exten-
sively analyzed from the previous century. However,
in the analysis of complex, massive and/or multivari-
ate phenomena with nonstationarity or nonlinearity, it
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1s almost impossible to express it from simple scientific
theory and consider the difference from the actual data
as observation noises. In such a case, by reasonably de-
composing the data into a part that can be explained
from the existing knowledge and other, the possibility
of new scientific discovery emerges.

In the frontiers of sciences, unexpected phenome-
na appear at the very limit of the errors. Therefore, by
simply considering the unknown part as the observation
errors, it is almost impossible to find out the clue to the
discovery. For the discovery in the frontiers of sciences,
it is crucially important to express our expectation on
the unknown part as a form of model, and perform the
extraction of the information very actively.

Needless to say, in such a statistical modeling, use
of “appropriate” model is crucially important. If the
data did not contain any errors, or the objective of our
analysis was just to describe the phenomena precisely,
it is sufficient to use the model with highest ability of
“description”. However, in the actual analysis our ob-
jective is often to extract or discover a more “universal”
knowledge. In the statistical science, this essential part
is considered from the predictive point of view.

To obtain good models, it 1s necessary to develop
appropriate model class and model evaluation criteri-
on. Further, to make the modeling practical, it is also
necessary to develop efficient computational method.

1.2 Computer Intensive Computational Methods

In general, flexible models with high ability of descrip-
tion inevitably contain increasingly many unknown pa-
rameters and require huge amount of computations for
the estimation of them. In this article, we will consid-
er the modeling of the time series which is the most
important in the statistical analysis of massive data.
For flexible modeling of time series, it is necessary to
use a model with the number of parameters propor-
tional to the data length N. For such models, the ordi-
nary computational methods requires the computation
with order O(N?), and are obviously unrealistic to ap-
ply. Without skillful computational methods which are
based on the essential mathematical structure of the
model, it 1s sometimes impossible to obtain reasonable
estimates of the unknowns. Further, to treat massive
data based on sophisticated models, 1t is essential to
develop a computationally efficient method.



In the case of time series model, due to a mathe-
matical structure, i.e., Markov property, a large class
of models can be expressed by the generalized state
space model [13],[19],[20]. The discrete valued pro-
cess such as the {A T ,G,C} in DNA sequence can also
be expressed with this model as well [7]. The discrete
version of the generalized state space model 1s some-
times called hidden Markov model and is used for
the analysis of DNA sequence and voice recognition as
the model with high ability of description [4],[18].

This generalized state space model has another sig-
nificant merit that it automatically realizes the estima-
tion of its unknowns with O(N) computations by the
recursive filter and smoothing algorithms. Therefore,
the generalized state space model is a useful platform
for flexible modeling and at the same time is a base for
generating efficient computation.

In this article, it will be shown that by considering
higher level modeling, it is possible to develop models
quite freely. By a numerical example, it will be shown
that, as a result, 1t becomes possible to extract essential
information from data which has been difficult due to
the use of restricted models. It was also shown that by
rising the level of the model, the model selection pro-
cedure which has been realized with human expertise
can be performed automatically and thus the automat-
ic processing of huge time series data becomes realistic.
In other words, the high level statistical modeling facili-
tates both “automatic processing of massive time series
data” and “a new method for knowledge discovery.”

2. Hierarchical Statistical Models

2.1 Hierarchical Structure of Statistical Models

Figure 1 shows the hierarchical structure of time series
modeling. On the top there is a self-organizing state
space model [22] which is the main subject of this ar-
ticle. In the middle level there exists the generalized
state space model [19],[24]. This generalized state
space model contains the famous state space model
[3] as a special case. Finally, in the lower level there are
parametric models. Actually, this hierarchical struc-
ture of statistical models have not been well recognized
so far. Rather, by mitigating the difficulties arisen in
actual modeling process, this was gradually established
by the “generalization of the models”.

In this article, by using a simple example, we will
exemplify how the possibility of knowledge discovery is
achieved by the adoption of higher level models. Con-
sider the estimation of the mean structure, namely the
mean value function t,, of the time series shown in
Fig. 2(a). y, is generated by the following model:
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Fig. 1  Hierarchical structure of statistical models
08 + v, (n=1,...,50)
_ -1 + v, (n=51,...,100)
V=3 1 4+ v, (n=101,...,150) (I
1 + v, (n=151,...,200)

where v;, and vy, follow vi, ~ N(0,0.01) and
N(0,1), respectively. Here N(0,0?) denotes the Gaus-
sian distribution with mean 0 and the variance ¢?. In
this example, the mean value function ¢, has jumps at
n =51 and n = 151. Jump sizes are designed to be two
times of o, namely 2.

2.2  Parametric Models

In general, the observed data are inevitably subject
to the observation noise. Unfortunately, the relation-
ship between the observation noise and the mean value
structure is unknown for us. To explore the mean value
structure, we therefore give a mathematical function-
al form of this relationship as the observation model.
For the case shown in Fig. 2(a), we assume that the
observation noise w,, is added to t,, namely

Yp =ty +wy,, w, ~ N(O,o-z). (2)

It should be reminded that while the variance of the
observation noise for actual data increases by one hun-
dred times at n = 101, the variance for the observation
model, a2, is assumed to be constant over time.

We fit a parametric model to y, on a basis of the
observation model (2), where the parametric model is
defined such that ¢, 1s described as an analytical func-
tion of n with a small number of parameters such as
a polynomial function and combination of the Fourier
series. A visual inspection on Fig. 2(a) gives us a con-
jecture that there exists a jump around n = 150. It
motivated us to choose a sigmoid function given by

4!
t, = + 74, 3
I+ exp(—y2(n—9s) ®)

which is frequently used as a nonlinear function for the
artificial neural network. The parameter vector of this
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statistical model, composed of (2) and (3), is specified
by 8 = [y1,72,73,74,0°]'. In Fig. 2(b), thick curve
shows the result obtained by applying the least squares
fit of the sigmoid function.

Under the assumption of (2), the least squares fit-
ting is equivalent to the maximum likelihood estima-
tion of 8. In this case, an apparent dependency of the
variance of the observation noise on time suggests that
the simple least squares fit, i.e., observation model (2)
is inappropriate. A more sophisticated analysis with a
parametric model is to estimate a time-varying variance
of the observation noise, &2, by a practical method [24]
and then perform a weighted least squares fit based on
the estimated 2. This approach would extract much
information than a simple least squares fit, but this
kind of transaction composed of several steps in data
analysis is likely to lose an opportunity to find small
signals. The estimation on both ¢, and ¢, should be
made simultaneously to avoid such unsatisfactory infor-
mation processing. This attempt can be realized with
the self-organizing state space model explained in 2.5.

In a framework of estimating the mean value struc-
ture with a parametric model, it is important to choose
an appropriate model based on the well-known theories
behind the observations. This process cannot be auto-
mated and thus requires the interventions of researchers
expertized with an analysis of the data. When there is
no natural reason to choose any particular parametric
model, a model selection with AIC [1],[28] should be
performed for choosing the best parametric model a-
mong the competing models.

2.3 State Space Models

2.3.1 Linear Gaussian Trend Model

Consider a statistical model based on the first order
stochastic difference equation

t, =th_1+v,, Uy~ N(O,Tz). (4)

This type of models are frequently used in time series
analysis for the estimation of trend and are called the
trend models or random walk models [23],[24].

2.3.2 State Space Model

Using the state vector @, = [t,], the models (2) and (4)
can be represented by a state space model [3]

2, = Fa,_1 4+ Gv,

Yo = He, +w,
where v, ~ N(0,Q) and w, ~ N(0,R) are Gaussian
white noises and are called the system noise and the
observation noise, respectively. F', G and H are matri-
ces with appropriate dimensions.

For the above simple example, F = G = H = 1
and @ = 77 and R = ¢?. Most of the models used in

(system model) (5)

(observation model) (6)

time series analysis can be uniformly expressed in and
treated by the state space model [12],[13],[23],[24].

2.3.3 Kalman Filter and Smoothing Algorithms

Once a time series model is expressed in state space
model form, the estimate of &,, tAn, is obtained as a
component of the estimate of the state vector &,. Giv-
en o2 and 72, the estimate of the state is obtained by
the Kalman filter and the smoothing algorithms (KFS
for short, [3]). For small 72 (precisely, for small 72/0?),
t,, becomes very close to a constant. On the other hand,
for large 72, t,, resembles to the data.

In this trend model, ¢? and 72 are usually called
the parameters of the model. However, emphasizing the
hierarchical structure of the model, in Bayesian model-
ing framework, we will call the hyper-parameter [26].
Note that in this modeling, the hyper-parameter is as-
sumed to be a constant. Estimation of ¢? and 77 is
performed by the maximum likelihood method [23] and
cach estimate is denoted by ¢ and 72, respectively.

In Fig. 2(c), the estimate t, by the trend mod-
el (72 = 0.021) is shown by thick curve. In contrast to
the sigmoid function, the trend model can freely express
various shape. Therefore, by using the trend model, it
is possible to discover gradually changing mean struc-
ture from data. However, even this trend model has a
limitation in extracting the characteristics of the data.
Actually in the current example, the location and the
shape of the jump is not so clearly identified. Further,
in responding to the presence of jumps, a large value of
72 is selected and as a result, the estimate of the trend
becomes inappropriately very wiggly.

2.4 Generalized State Space Models
2.4.1 Linear Non-Gaussian Trend Model

As an extension of the linear-Gaussian trend model, we
consider the case when the noise v, in (4) is distributed
as a heavy-tailed non-Gaussian distribution, such as the
Cauchy distribution. The v,, distributed as the Cauchy
distribution is concentrated around 0. However, it may
also take a very large value, such as the 5o values of
the Gaussian distribution, with a relatively high prob-
ability. With this noise distribution, the realization of
the trend, ¢,, generally becomes very close to a con-
stant. However, at the same time, it may occasionally
have very large jumps. This model 1s geared to auto-
matically detect the jumps in the mean value structure.

On the other hand, by using a non-Gaussian distri-
bution for observation noise, automatic detection of the
outliers becomes possible [2],[25]. As a non-Gaussian
observation noise distribution, symmetric heavy-tailed
distribution, such as the type VII Pearson family of
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Fig. 2 Estimation of the mean structure. (a) test data, (b) estimated sigmoid func-
tion, (c) linear Gaussian trend model, (d) linear non-Gaussian (Cauchy) trend Model, (e)
estimate by the self-organizing state space model, (f) estimate log;o o2 .
distributions that the hyper-parameters, A = [¢%,b,7%]" in the cur-

[(b)r2-1 1
1/2)T(b—1/2) (v2 + 72)b’

p(v;0,7%,b) = T (7)
can be used. Here, b i1s called the shape parameter
(b > 1/2). Forb = 400 and 1, this distribution becomes
the Gaussian and the Cauchy distributions, respective-
ly. 72 is called the dispersion parameter and charac-
terizes the spread of the distribution. Although this
family of distribution has one more parameters than
the Gaussian model; the complexity of the model is not
significantly increased in the sense that they can be esti-
mated by the maximum likelihood method. Compared
with the Gaussian model, this family of distributions
has a flexibility in the shape of the noise distribution
which enables automatic detection of the location of
the jumps in the mean value structure. On the other
hand, these models share the common characteristics

rent case, does not depend on time n. This point is the
main difference from the one in the self-organizing
state space model introduced in the next section.

2.4.2 Generalized State Space Model

The above trend model can be generally expressed in
nonlinear non-Gaussian state space model form [11],

[19],[20],[31]

Ty = f(mn—lavn) (8)
Yn = h(mmwn)v (9)

where the system noise v,, and the observation noise w,
follow the density functions g(v) and r(w), respective-
ly. The initial state @g is distributed according to the
density po().
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Although in the above example, f(@p_1,v,) =
Zn_1 + vp,h(2n, w, 0= @, + w, are linear, in general,
f(z,v) and h(z,w) are nonlinear functions. ¢(v) and
r(w) are, in general, non-Gaussian densities specified
by hyper-parameters. As in 2.4.1, the vector consisting
of these unknown hyper-parameters is denoted by A.

(8) and (9) can be considered as a special case of
the following generalized state space model:

Yo ~ R( - |2n). (11)

Here, @ and R are the conditional distributions given
the states #,_1 and @,, respectively. As an example,
Dynamic Generalized Linear Model (DGLM) [32],[33]
is frequently used for the analysis of discrete valued

time series [16],[19],[20],[24],[32],[33]:

z, = Fa,_1 4+ Gv,, v, NN(OaQ) (12)
a, = Hez,
Yo ~ exp(an,yn — blan) + c(yn))- (13)

where F,G, and H are properly defined matrices, @ is
the variance covariance matrix, and b(-) and ¢(-) are
properly defined functions. This type of distribution-
s, called exponential family of distributions, can cover
broad class of distributions frequently used in statisti-
cal analysis, such as the Poisson distribution and the
binomial distribution.

2.4.3 Automatic Detection of Jump Points

With a non-Gaussian observation noise distribution
or system noise distribution, the KFS cannot yield
good estimate of ¢,, and for an efficient estimation of
t,, it is necessary to use the non-Gaussian filter [19].
For simplicity, we here assume that & = 1, namely,
that the noise distribution is Cauchy. Thick curve in
Fig. 2(d) shows the result of the non-Gaussian filter
for tAn with the maximum likelihood estimate of the
hyper-parameter 72 = 1.6 x 107°. Compared with the
Gaussian case, the jump of the trend is clearly detect-
ed. It should be emphasized here again that the loca-
tion of the jump is not pre-specified and the jump was
automatically identified by “the maximum likelihood
method and the non-Gaussian filter”.

So far we have shown that the non-Gaussian model
can automatically detect the jump at n = 151. How-
ever, unfortunately, 1t failed to detect small jump at
n = b1. This 1s due to the assumption that the vari-
ance of the observation noise ¢ is a constant over time,
because the maximum likelihood estimates of ¢ and 72
yield the large confidence interval of p(¢,|Yn) between
n =1~ 100 compared with the size of the small jump.
This example clearly shows that the identification of the
mean value structure may be deteriorated by restricting
the flexibility of the model, namely by assuming that
the hyper-parameter o2 is constant over time.

2.5 Self-Organizing State Space Models
2.5.1 Time-Changes of Hyper-Parameters

To mitigate the problem discussed in 2.4.3, we consider
a model whose hyper-parameter of the noise distribu-
tion in the observation model (2) changes with time:

Yn = tn + Wy, wy NN(an-rzl) (14)
logo-rzl = logai_l +Eny, En~ C(Ovdz)v (15)

where C(0,d?) is the Cauchy distribution with the cen-
ter at 0. With this extension, it i1s expected that the
observation noise with suddenly changing variance can
properly modeled. Here the logarithm of &2 is modeled
to assure the positivity of a?. Of course, we can use
the Pearson family of distributions for e,. As the sys-
tem model for ¢,, we assume the linear non-Gaussian
(Cauchy distribution C(0,7?)) model as 2.4.1.

These models can be expressed in state space mod-
el form:

tn tn—l Un
loggor | = | loggon_y |+ | &n |, (16)
log,, 72 log,, 72 0
ty
Yn :[17070] logloo-rzz +wn7 Wn NN(Ovo-rzz)(17)
log,, 72

It should be noted that in the hyper-parameter vector
A, = [log,,02,log,, 7*], only log,, 02 depends on time
n. For the initial state zo = [to,log, 0o,log;o 77, it
is assumed, for example, that tqg ~ N(0,4), log,, 02 ~
U([—4,4]),1log,, 7% ~ U([—4,2]), where U([, ]) denotes
the uniform distribution. The “parameter” of this mod-
el is the variance (or dispersion) of the ¢, £ = [d?]. In
this article, we call £ the hyper-hyper-parameter.

2.5.2  Self-Organizing State Space Models

The general form of the self-organizing state space mod-
el [22] is obtained by augmenting the state vector @,
with the hyper-parameter vector A as z, = [z],N].
The state space model for this augmented state vector
Zn 18 given by

Zn :F(zn—lavn)v Yn :H(znawn)v (18)

where

F(z,0) = [ flz) ] H(z,w) = h(z,w). (19)

For the model with time-varying hyper-parameter,
A = X,, a model for time-changes of the hyper-
parameter A, is necessary. For example, we may use
the random walk model A,, = A,,_1 + ¢,,. For the esti-
mation of the time-varying hyper-parameter, we define
the augmented state vector z, by z, = [2],,X]’, where
gn is a white noise with density function ¢(e|€). The
nonlinear function F' is defined by



F(zn—laun) = [f/(mn—lavn)a(An—l+5n)/]/7 (20)

where the system noise is defined by u, = [v], €]’
Therefore, there is no formal difference between the
generalized state space model and the self-organizing
state space model. The essential difference is that the
self-organizing state space model contains the hyper-
parameter in the state vector.

Fig. 2(e) and (f) show the estimates ¢, and log, , 2
obtained by the self-organizing state space model, re-
spectively. Increase of the variance of the observation
noise by about 100 times (2 in log-scale) at n = 101
1s detected automatically. Due to this self-adjustment,
not only the junp at n = 101, but also the small one at
n = 51 was clearly detected.

3. Recursive Techniques for State Estimation
3.1 Conventional Methods

Self-organizing state space is formally a special case of
the generalized state space model, it suffices to develop
practical recursive methods for filtering and smooth-
ing for the generalized state space model. In engineer-
ing, the extended Kalman filter has been used for si-
multaneous estimation of the state and the parameters
[3],[27],[30]. However, the extended Kalman filter es-
sentially approximates a non-Gaussian distribution by
one Gaussian distribution, it has been considered that
it did not work well in practice [3],[20]. In this arti-
cle, we will show two numerical methods for recursive
estimation that can yield more precise state estimate
than the extended Kalman filter. Since they can yield
precise conditional state distributions, it can be applied
to self-organizing state space models.

3.2 Conditional State Distributions

The generalized state space model specifies the fol-
lowing two conditional distributions: Q(zy|®n—1,A),
the distribution of @, given the previous state #,_1,
and R(yn|@n, A), the distribution of y, given the state
#,. For the self-organizing state space model, they
correspond to @Q(zn|zn-1,€) and R(yn|zn,€). The set
of the observations up to time point j is denoted by
Y; ={y1,--,y;}. Then p(#,|Y,_1, ) defines the one-
step-ahead predictive density. For the recursive estima-
tion of the state vector, we consider the following three
conditional distributions:

p(®n|Yn_1) predictive density
p(2n|Yn) filter density
p(n|YN) smoother density.

Given the time series Yy = {y1,...,yn }, the like-
lihood of the model specified by the hyper-parameter A
can be decomposed as
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N
L) =y, uvld) = [ pwalYao1, ¥, (21)
n=1
where p(yn|Yn—1,A) is obtained by

p(yn|Yn—1a)‘) = /P(yn|ﬂin,)\)P(i'3n|Yn—1,)\) de,. (22)

Therefore, the maximum likelihood estimate of the pa-
rameter A is obtained by maximizing the log-likelihood.

3.3 Numerical Methods

In the following subsections, we shall show two methods
of computing conditional distributions.

3.3.1 Implementation by Non-Gaussian Smoothing
A non-Gaussian filter for the nonlinear and non-
Gaussian state space model (10) and (11) is shown in
[19], [20]:

p(mn|Yn—1) == /P(mn|ﬂ3n—1)P(ﬂ3n—1|Yn—1) dmn—l (23)

P(yn |i'3n)P(i'3n |Yn—1)
p(yn |Yn—1)

P(@n|Yy) = ; (24)
where p(y,|Yn_1) appears in (22). Note that, for sim-
plicity, the appearance of the parameter A is suppressed.

The final estimate of the state @, 1s obtained by
the smoothing algorithm [19],[20]

P(@n|YN) = p(zn|Yn)
« /P($n+1|ﬂ3n)P(ﬂ3n+1|YN)
p(mn+1|Yn)

d:l?n+1. (25)

Since this non-Gaussian filter and smoother are realized
by computationally intensive numerical integration, it
can be applied to only low order state models.

3.3.2 Implementation by Monte Carlo Smoothing

Kitagawa [21] developed a Monte Carlo filter and s-
moother. The “bootstrap filter” [5],[11] is a similar
algorithm. In this method, each density function is ap-
proximated by many (say m = 10* ~ 10°) particles,
that can be considered as independent realizations from
that distribution. It can be shown that these particles
can be generated recursively by the following algorithm:

1. For j = 1,...,m, generate k-dimensional random

number fé]) ~ po().

2. Repeat the following steps for n = 1,...,N. For
(a), (b) and (c), repeat m times independently for
j=1,...,m.

a. Generate f-dimensional random number
vﬁlj) ~ q(v) for system noise.
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b. Compute pﬁlj) = F(f,(l];l,vnj))~

c. Compute agj) = p(Yn|en = pgj)).

d. Obtain fr(Ll), ceey fT(Lm) by the sampling with re-
(1) (m)

placement from p,’,---,pn ~ with sampling

probabilities proportional to aﬁf), N aﬁ{”).

A significant merit of this Monte Carlo filter is that
it can be applied to almost any type of high dimensional
nonlinear and non-Gaussian state space models. This
filtering algorithm can be extended to the smoothing
by storing the past particles and resample the vector
of particles (pﬁf),pﬁf_)l, e ng_)z) rather than the single
particle pgj).

Incidentally, in this Monte Carlo filter the likeli-
hood is computed by

1 ——
Pyn|Yoo1) = —> all). (26)

Therefore in the estimation of the parameter of the
model, it 1s difficult to obtain arbitrarily close approxi-
mations to the maximum likelihood estimator unless a
very large number of particles are used or an average
of the approximated log-likelihoods is computed by the
parallel use of many Monte Carlo filters. On the oth-
er hand, in the self-organizing state space models, the
number of hyper-hyper-parameters which need to be es-
timated by the maximum likelihood methods 1s usually
one or two, and the hyper-parameters are automatically
determined as the estimate of the state vector. The dif-
ficulty in the generalized state space modeling was thus
solved by the use of high level modeling and intensive
use of computers.

3.3.3 Other Methods

The usefulness of the numerical methods for general-
1zed sate space model presented above is confirmed by
the applications to various actual modeling. Howev-
er, for some special class of models, several computa-
tionally efficient and precise methods for state estima-
tion were proposed. Typical examples of such a class
is the DGLM explained in subsection 2.4.2. This type
of models has a favorable property that the filter dis-
tribution is unimodal and close to symmetric and by
utilizing these properties and by properly treating the
difference from the normal distribution, computation-
ally efficient and precise estimators have been proposed

(6], [8],[9], [29], [33].
3.4 Genetic Algorithm Filter
Before closing this section, we would like to introduce

a model which allows the hyper-parameter to be time-
dependent like the self-organizing state space model. A

similar structure to the algorithm of the Monte Car-
lo filter (MCTF) appears in the Genetic algorithm (GA)
that is a population-based search procedure developed
in analogy to genetic laws and natural selection [17].
In general GA is characterized by keeping the m candi-
dates for optimal solution at each iteration composed of
three steps: crossover, mutation, and reproduction (or
selection) [10]. Tt has been pointed out that the filtering
procedure composed of (¢) and (d) is identical to the re-

production procedure by regarding p(y, |p£i7))/m as the
evaluation function in GA and that the prediction plays
a similar role to mutation and crossover operators in
giving wide variety among population [14],[15]. Using
an analogy between MCF and GA, an interpretation
of MCF from the viewpoint of GA has been presented
and several practical issues concerning its implementa-
tion has been investigated [15].

This strong parallelism leads a new procedure,
called the GA filter, which is based on the replacement
of (8) by the genetic operator such as the crossover and
mutation. The distribution function of stochastic fluc-
tuations given to the population in the system model
(8) is independent of time because of the fixed values of
the hyper-parameter vector. Meanwhile, the statistical
characteristics of fluctuations produced by the crossover
can evolves on time, because the crossover is an inter-
action between each particle at each time, resulting in
the fact that the stochastic fluctuations among particles
are determined by population itself at each time.

4. Conclusion

In this article, it was shown that by considering a hier-
archical structure of the statistical models, very flexible
modeling becomes possible; resulting in the develop-
ment of innovative information extraction procedure.
It was also shown that by rising the level of the mod-
el, the model selection procedure which has been re-
alized with human expertise can be performed auto-
matically and thus the automatic processing of huge
time series data becomes realistic. In other words, the
higher-order statistical modeling facilitates both “au-
tomatic processing of massive time series data” and “a
new method for knowledge discovery”. In this respect,
the self-organizing state space model is a promising tool
for data mining. Obviously, by the higher order model-
ing, the required amount of computation increases con-
siderably. However, by considering the rapid progress
of the computing ability and the laborious human in-
tervention becoming unnecessary by the development
of automatic procedure, it clearly reveals the direction
of the future development of time series modeling.
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