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SUMMARY A hierarchical structure of the statistical mod�
els involving the parametric� state space� generalized state space�
and self�organizing state space models is explained� It is shown
that by considering higher level modeling� it is possible to devel�
op models quite freely and then to extract essential information
from data which has been di�cult to obtain due to the use of
restricted models� It is also shown that by rising the level of
the model� the model selection procedure which has been real�
ized with human expertise can be performed automatically and
thus the automatic processing of huge time series data becomes
realistic� In other words� the hierarchical statistical modeling fa�
cilitates both automatic processing of massive time series data
and a new method for knowledge discovery�
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��� Role of Statistical Model in Knowledge Discovery

The scienti�c theories developed so far by human being
should be considered as reasonable approximations to
the phenomena in the realm of the human recognition�
rather than exact description of the truth� Therefore�
there is a possibility of obtaining scienti�c discovery
from the process of comparing existing theory with ac�
tual data ���� Actually� the main objective of statistics
before �	th century was the discovery of low based on
massive observations� On the other hand� the modern
statistics aimed at possibility of precise inference by s�
mall sample based on rigorously designed experiment or
sample survey� However� the recent progress of informa�
tion technologies required anew to establish a method
for automatic processing of massive observations and a
method of knowledge discovery based on it�

Data always contain some errors and thus only by
proper processing of the errors� it becomes possible to
separate the essential or universal part from the errors
that occurred only for that data� The treatment of
observation errors in scienti�c research has been exten�
sively analyzed from the previous century� However�
in the analysis of complex� massive and
or multivari�
ate phenomena with nonstationarity or nonlinearity� it
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is almost impossible to express it from simple scienti�c
theory and consider the di�erence from the actual data
as observation noises� In such a case� by reasonably de�
composing the data into a part that can be explained
from the existing knowledge and other� the possibility
of new scienti�c discovery emerges�

In the frontiers of sciences� unexpected phenome�
na appear at the very limit of the errors� Therefore� by
simply considering the unknown part as the observation
errors� it is almost impossible to �nd out the clue to the
discovery� For the discovery in the frontiers of sciences�
it is crucially important to express our expectation on
the unknown part as a form of model� and perform the
extraction of the information very actively�

Needless to say� in such a statistical modeling� use
of �appropriate
 model is crucially important� If the
data did not contain any errors� or the objective of our
analysis was just to describe the phenomena precisely�
it is su�cient to use the model with highest ability of
�description
� However� in the actual analysis our ob�
jective is often to extract or discover a more �universal

knowledge� In the statistical science� this essential part
is considered from the predictive point of view�

To obtain good models� it is necessary to develop
appropriate model class and model evaluation criteri�
on� Further� to make the modeling practical� it is also
necessary to develop e�cient computational method�

��� Computer Intensive Computational Methods

In general� �exible models with high ability of descrip�
tion inevitably contain increasingly many unknown pa�
rameters and require huge amount of computations for
the estimation of them� In this article� we will consid�
er the modeling of the time series which is the most
important in the statistical analysis of massive data�
For �exible modeling of time series� it is necessary to
use a model with the number of parameters propor�
tional to the data length N � For such models� the ordi�
nary computational methods requires the computation
with order O�N��� and are obviously unrealistic to ap�
ply� Without skillful computational methods which are
based on the essential mathematical structure of the
model� it is sometimes impossible to obtain reasonable
estimates of the unknowns� Further� to treat massive
data based on sophisticated models� it is essential to
develop a computationally e�cient method�
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In the case of time series model� due to a mathe�
matical structure� i�e�� Markov property� a large class
of models can be expressed by the generalized state
space model ����� ����� ��	�� The discrete valued pro�
cess such as the fA�T�G�Cg in DNA sequence can also
be expressed with this model as well ���� The discrete
version of the generalized state space model is some�
times called hidden Markov model and is used for
the analysis of DNA sequence and voice recognition as
the model with high ability of description ���� �����

This generalized state space model has another sig�
ni�cant merit that it automatically realizes the estima�
tion of its unknowns with O�N � computations by the
recursive �lter and smoothing algorithms� Therefore�
the generalized state space model is a useful platform
for �exible modeling and at the same time is a base for
generating e�cient computation�

In this article� it will be shown that by considering
higher level modeling� it is possible to develop models
quite freely� By a numerical example� it will be shown
that� as a result� it becomes possible to extract essential
information from data which has been di�cult due to
the use of restricted models� It was also shown that by
rising the level of the model� the model selection pro�
cedure which has been realized with human expertise
can be performed automatically and thus the automat�
ic processing of huge time series data becomes realistic�
In other words� the high level statistical modeling facili�
tates both �automatic processing of massive time series
data
 and �a new method for knowledge discovery�


�� Hierarchical Statistical Models

��� Hierarchical Structure of Statistical Models

Figure � shows the hierarchical structure of time series
modeling� On the top there is a self�organizing state
space model ���� which is the main subject of this ar�
ticle� In the middle level there exists the generalized
state space model ����� ����� This generalized state
space model contains the famous state space model
��� as a special case� Finally� in the lower level there are
parametric models� Actually� this hierarchical struc�
ture of statistical models have not been well recognized
so far� Rather� by mitigating the di�culties arisen in
actual modeling process� this was gradually established
by the �generalization of the models
�

In this article� by using a simple example� we will
exemplify how the possibility of knowledge discovery is
achieved by the adoption of higher level models� Con�
sider the estimation of the mean structure� namely the
mean value function tn� of the time series shown in
Fig� ��a�� yn is generated by the following model�
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Fig� � Hierarchical structure of statistical models
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�� � v��n �n � ��� � � � � �		�
�� � v	�n �n � �	�� � � � � ��	�
� � v	�n �n � ���� � � � � �		�

���

where v��n and v	�n follow v��n � N �	� 	�	�� and
N �	� ��� respectively� Here N �	� �	� denotes the Gaus�
sian distribution with mean 	 and the variance �	� In
this example� the mean value function tn has jumps at
n � �� and n � ���� Jump sizes are designed to be two
times of �� namely ���

��� Parametric Models

In general� the observed data are inevitably subject
to the observation noise� Unfortunately� the relation�
ship between the observation noise and the mean value
structure is unknown for us� To explore the mean value
structure� we therefore give a mathematical function�
al form of this relationship as the observation model�
For the case shown in Fig� ��a�� we assume that the
observation noise wn is added to tn� namely

yn � tn � wn� wn � N �	� �	�� ���

It should be reminded that while the variance of the
observation noise for actual data increases by one hun�
dred times at n � �	�� the variance for the observation
model� �	� is assumed to be constant over time�

We �t a parametric model to yn on a basis of the
observation model ���� where the parametric model is
de�ned such that tn is described as an analytical func�
tion of n with a small number of parameters such as
a polynomial function and combination of the Fourier
series� A visual inspection on Fig� ��a� gives us a con�
jecture that there exists a jump around n � ��	� It
motivated us to choose a sigmoid function given by

tn �
��

� � exp ���	�n � ����
� �
� ���

which is frequently used as a nonlinear function for the
arti�cial neural network� The parameter vector of this
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statistical model� composed of ��� and ���� is speci�ed
by � � ���� �	� ��� �
� �

	��� In Fig� ��b�� thick curve
shows the result obtained by applying the least squares
�t of the sigmoid function�

Under the assumption of ���� the least squares �t�
ting is equivalent to the maximum likelihood estima�
tion of �� In this case� an apparent dependency of the
variance of the observation noise on time suggests that
the simple least squares �t� i�e�� observation model ���
is inappropriate� A more sophisticated analysis with a
parametric model is to estimate a time�varying variance
of the observation noise� b�	n� by a practical method ����
and then perform a weighted least squares �t based on
the estimated b�	n� This approach would extract much
information than a simple least squares �t� but this
kind of transaction composed of several steps in data
analysis is likely to lose an opportunity to �nd small
signals� The estimation on both �n and tn should be
made simultaneously to avoid such unsatisfactory infor�
mation processing� This attempt can be realized with
the self�organizing state space model explained in ����

In a framework of estimating the mean value struc�
ture with a parametric model� it is important to choose
an appropriate model based on the well�known theories
behind the observations� This process cannot be auto�
mated and thus requires the interventions of researchers
expertized with an analysis of the data� When there is
no natural reason to choose any particular parametric
model� a model selection with AIC ���� ���� should be
performed for choosing the best parametric model a�
mong the competing models�

��� State Space Models

����� Linear Gaussian Trend Model

Consider a statistical model based on the �rst order
stochastic di�erence equation

tn � tn�� � vn� vn � N �	� �	�� ���

This type of models are frequently used in time series
analysis for the estimation of trend and are called the
trend models or random walk models ����� �����

����� State Space Model

Using the state vector xn � �tn�� the models ��� and ���
can be represented by a state space model ���

xn � Fxn�� �Gvn �system model� ���

yn � Hxn � wn �observation model� ���

where vn � N �	� Q� and wn � N �	� R� are Gaussian
white noises and are called the system noise and the
observation noise� respectively� F � G and H are matri�
ces with appropriate dimensions�

For the above simple example� F � G � H � �
and Q � �	 and R � �	� Most of the models used in

time series analysis can be uniformly expressed in and
treated by the state space model ����� ����� ����� �����

����� Kalman Filter and Smoothing Algorithms

Once a time series model is expressed in state space
model form� the estimate of tn� btn� is obtained as a
component of the estimate of the state vector xn� Giv�
en �	 and �	� the estimate of the state is obtained by
the Kalman �lter and the smoothing algorithms �KFS
for short� ����� For small �	 �precisely� for small �	��	��btn becomes very close to a constant� On the other hand�
for large �	� tn resembles to the data�

In this trend model� �	 and �	 are usually called
the parameters of the model� However� emphasizing the
hierarchical structure of the model� in Bayesian model�
ing framework� we will call the hyper�parameter �����
Note that in this modeling� the hyper�parameter is as�
sumed to be a constant� Estimation of �	 and �	 is
performed by the maximum likelihood method ���� and
each estimate is denoted by b�	 and b�	� respectively�

In Fig� ��c�� the estimate btn by the trend mod�
el �b�	 � 	�	��� is shown by thick curve� In contrast to
the sigmoid function� the trend model can freely express
various shape� Therefore� by using the trend model� it
is possible to discover gradually changing mean struc�
ture from data� However� even this trend model has a
limitation in extracting the characteristics of the data�
Actually in the current example� the location and the
shape of the jump is not so clearly identi�ed� Further�
in responding to the presence of jumps� a large value ofb�	 is selected and as a result� the estimate of the trend
becomes inappropriately very wiggly�

��� Generalized State Space Models

����� Linear Non�Gaussian Trend Model

As an extension of the linear�Gaussian trend model� we
consider the case when the noise vn in ��� is distributed
as a heavy�tailed non�Gaussian distribution� such as the
Cauchy distribution� The vn distributed as the Cauchy
distribution is concentrated around 	� However� it may
also take a very large value� such as the ��� values of
the Gaussian distribution� with a relatively high prob�
ability� With this noise distribution� the realization of
the trend� tn� generally becomes very close to a con�
stant� However� at the same time� it may occasionally
have very large jumps� This model is geared to auto�
matically detect the jumps in the mean value structure�

On the other hand� by using a non�Gaussian distri�
bution for observation noise� automatic detection of the
outliers becomes possible ���� ����� As a non�Gaussian
observation noise distribution� symmetric heavy�tailed
distribution� such as the type VII Pearson family of
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Fig� � Estimation of the mean structure� 
a� test data� 
b� estimated sigmoid func�
tion� 
c� linear Gaussian trend model� 
d� linear non�Gaussian 
Cauchy� trend Model� 
e�
estimate by the self�organizing state space model� 
f� estimate log�� �

�
n�

distributions

p�v� 	� �	� b� �
��b��	b��

��������b� ����

�

�v	 � �	�b
� ���

can be used� Here� b is called the shape parameter
�b � ����� For b � �� and �� this distribution becomes
the Gaussian and the Cauchy distributions� respective�
ly� �	 is called the dispersion parameter and charac�
terizes the spread of the distribution� Although this
family of distribution has one more parameters than
the Gaussian model� the complexity of the model is not
signi�cantly increased in the sense that they can be esti�
mated by the maximum likelihood method� Compared
with the Gaussian model� this family of distributions
has a �exibility in the shape of the noise distribution
which enables automatic detection of the location of
the jumps in the mean value structure� On the other
hand� these models share the common characteristics

that the hyper�parameters� 	 � ��	� b� �	�� in the cur�
rent case� does not depend on time n� This point is the
main di�erence from the one in the self�organizing
state space model introduced in the next section�

����� Generalized State Space Model

The above trend model can be generally expressed in
nonlinear non�Gaussian state space model form �����
����� ��	�� ����

xn � f�xn��� vn� ���

yn � h�xn� wn�� ���

where the system noise vn and the observation noise wn

follow the density functions q�v� and r�w�� respective�
ly� The initial state x� is distributed according to the
density p��x��
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Although in the above example� f�xn��� vn� �
xn�� � vn�h�xn� wn）� xn � wn are linear� in general�
f�x� v� and h�x�w� are nonlinear functions� q�v� and
r�w� are� in general� non�Gaussian densities speci�ed
by hyper�parameters� As in ������ the vector consisting
of these unknown hyper�parameters is denoted by 	�

��� and ��� can be considered as a special case of
the following generalized state space model�

xn � Q� � jxn��� ��	�

yn � R� � jxn�� ����

Here� Q and R are the conditional distributions given
the states xn�� and xn� respectively� As an example�
Dynamic Generalized Linear Model �DGLM� ����� ����
is frequently used for the analysis of discrete valued
time series ����� ����� ��	�� ����� ����� �����

xn � Fxn�� �Gvn� vn � N �	� Q� ����


n � Hxn

yn � exp�
�nyn � b�
n� � c�yn��� ����

where F�G� and H are properly de�ned matrices� Q is
the variance covariance matrix� and b��� and c��� are
properly de�ned functions� This type of distribution�
s� called exponential family of distributions� can cover
broad class of distributions frequently used in statisti�
cal analysis� such as the Poisson distribution and the
binomial distribution�

����� Automatic Detection of Jump Points

With a non�Gaussian observation noise distribution
or system noise distribution� the KFS cannot yield
good estimate of btn� and for an e�cient estimation ofbtn� it is necessary to use the non�Gaussian �lter �����
For simplicity� we here assume that b � �� namely�
that the noise distribution is Cauchy� Thick curve in
Fig� ��d� shows the result of the non�Gaussian �lter
for btn with the maximum likelihood estimate of the
hyper�parameter �	 � ��� � �	�
� Compared with the
Gaussian case� the jump of the trend is clearly detect�
ed� It should be emphasized here again that the loca�
tion of the jump is not pre�speci�ed and the jump was
automatically identi�ed by �the maximum likelihood
method and the non�Gaussian �lter
�

So far we have shown that the non�Gaussian model
can automatically detect the jump at n � ���� How�
ever� unfortunately� it failed to detect small jump at
n � ��� This is due to the assumption that the vari�
ance of the observation noise �	 is a constant over time�
because the maximumlikelihood estimates of �	 and �	

yield the large con�dence interval of p�tnjYN � between
n � � � �		 compared with the size of the small jump�
This example clearly shows that the identi�cation of the
mean value structure may be deteriorated by restricting
the �exibility of the model� namely by assuming that
the hyper�parameter �	 is constant over time�

��� Self�Organizing State Space Models

����� Time�Changes of Hyper�Parameters

To mitigate the problem discussed in ������ we consider
a model whose hyper�parameter of the noise distribu�
tion in the observation model ��� changes with time�

yn � tn � wn� wn � N �	� �	n� ����

log�	n � log�	n�� � �n� �n � C�	� d	�� ����

where C�	� d	� is the Cauchy distribution with the cen�
ter at 	� With this extension� it is expected that the
observation noise with suddenly changing variance can
properly modeled� Here the logarithm of �	n is modeled
to assure the positivity of �	� Of course� we can use
the Pearson family of distributions for �n� As the sys�
tem model for tn� we assume the linear non�Gaussian
�Cauchy distribution C�	� �	�� model as ������

These models can be expressed in state space mod�
el form��

� tn
log�� �

	
n

log�� �
	

�
� �

�
� tn��

log�� �
	
n��

log�� �
	

�
��

�
� vn

�n
	

�
� � ����

yn � � �� 	� 	 �

�
� tn

log�� �
	
n

log�� �
	

�
��wn� wn � N �	� �	n�� ����

It should be noted that in the hyper�parameter vector
	n � �log�� �

	
n� log�� �

	��� only log�� �
	
n depends on time

n� For the initial state z� � �t�� log�� ��� log�� �
	��� it

is assumed� for example� that t� � N �	� ��� log�� �
	
� �

U ����� ���� log�� �
	 � U ����� ���� where U �� � �� denotes

the uniform distribution� The �parameter
 of this mod�
el is the variance �or dispersion� of the �n� � � �d	�� In
this article� we call � the hyper�hyper�parameter�

����� Self�Organizing State Space Models

The general form of the self�organizing state space mod�
el ���� is obtained by augmenting the state vector xn
with the hyper�parameter vector 	 as zn � �x�n� 	

����
The state space model for this augmented state vector
zn is given by

zn � F �zn��� vn�� yn � H�zn� wn�� ����

where

F �z� v� �

	
f�x� v�

	



� H�z� w� � h�x�w�� ����

For the model with time�varying hyper�parameter�
	 � 	n� a model for time�changes of the hyper�
parameter 	n is necessary� For example� we may use
the random walk model 	n � 	n�� � �n� For the esti�
mation of the time�varying hyper�parameter� we de�ne
the augmented state vector zn by zn � �x�n� 	

�
n�

�� where
�n is a white noise with density function 
��j��� The
nonlinear function F is de�ned by
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F �zn��� un� � �f ��xn��� vn�� �	n�� � �n�
��
�
� ��	�

where the system noise is de�ned by un � �v�n� �
�
n�

��
Therefore� there is no formal di�erence between the
generalized state space model and the self�organizing
state space model� The essential di�erence is that the
self�organizing state space model contains the hyper�
parameter in the state vector�

Fig� ��e� and �f� show the estimates btn and log�� b�	n
obtained by the self�organizing state space model� re�
spectively� Increase of the variance of the observation
noise by about �		 times �� in log�scale� at n � �	�
is detected automatically� Due to this self�adjustment�
not only the junp at n � �	�� but also the small one at
n � �� was clearly detected�

�� Recursive Techniques for State Estimation

��� Conventional Methods

Self�organizing state space is formally a special case of
the generalized state space model� it su�ces to develop
practical recursive methods for �ltering and smooth�
ing for the generalized state space model� In engineer�
ing� the extended Kalman �lter has been used for si�
multaneous estimation of the state and the parameters
���� ����� ��	�� However� the extended Kalman �lter es�
sentially approximates a non�Gaussian distribution by
one Gaussian distribution� it has been considered that
it did not work well in practice ���� ��	�� In this arti�
cle� we will show two numerical methods for recursive
estimation that can yield more precise state estimate
than the extended Kalman �lter� Since they can yield
precise conditional state distributions� it can be applied
to self�organizing state space models�

��� Conditional State Distributions

The generalized state space model speci�es the fol�
lowing two conditional distributions� Q�xnjxn��� 	��
the distribution of xn given the previous state xn���
and R�ynjxn� 	�� the distribution of yn given the state
xn� For the self�organizing state space model� they
correspond to Q�znjzn��� �� and R�ynjzn� ��� The set
of the observations up to time point j is denoted by
Yj � fy�� � � � � yjg� Then p�xnjYn��� 	� de�nes the one�
step�ahead predictive density� For the recursive estima�
tion of the state vector� we consider the following three
conditional distributions�

p�xnjYn��� predictive density

p�xnjYn� �lter density

p�xnjYN � smoother density�

Given the time series YN � fy�� � � � � yNg� the like�
lihood of the model speci�ed by the hyper�parameter 	
can be decomposed as

L�	� � p�y�� � � � � yN j	� �
NY
n��

p�ynjYn��� 	�� ����

where p�ynjYn��� 	� is obtained by

p�ynjYn��� 	� �

Z
p�ynjxn� 	�p�xnjYn��� 	� dxn� ����

Therefore� the maximum likelihood estimate of the pa�
rameter 	 is obtained by maximizing the log�likelihood�

��� Numerical Methods

In the following subsections� we shall show two methods
of computing conditional distributions�

����� Implementation by Non�Gaussian Smoothing

A non�Gaussian �lter for the nonlinear and non�
Gaussian state space model ��	� and ���� is shown in
����� ��	��

p�xnjYn��� �

Z
p�xnjxn���p�xn��jYn��� dxn�� ����

p�xnjYn� �
p�ynjxn�p�xnjYn���

p�ynjYn���
� ����

where p�ynjYn��� appears in ����� Note that� for sim�
plicity� the appearance of the parameter 	 is suppressed�

The �nal estimate of the state xn is obtained by
the smoothing algorithm ����� ��	�

p�xnjYN � � p�xnjYn�

�

Z
p�xn��jxn�p�xn��jYN �

p�xn��jYn�
dxn��� ����

Since this non�Gaussian �lter and smoother are realized
by computationally intensive numerical integration� it
can be applied to only low order state models�

����� Implementation by Monte Carlo Smoothing

Kitagawa ���� developed a Monte Carlo �lter and s�
moother� The �bootstrap �lter
 ���� ���� is a similar
algorithm� In this method� each density function is ap�
proximated by many �say m � �	
 � �	
� particles�
that can be considered as independent realizations from
that distribution� It can be shown that these particles
can be generated recursively by the following algorithm�

�� For j � �� � � � �m� generate k�dimensional random

number f �j�� � p��x��

�� Repeat the following steps for n � �� � � � � N � For
�a�� �b� and �c�� repeat m times independently for
j � �� � � � �m�

a� Generate ��dimensional random number
v
�j�
n � q�v� for system noise�



HIGUCHI and KITAGAWA� KNOWLEDGE DISCOVERY AND SELF�ORGANIZING STATE SPACE MODEL
�

b� Compute p
�j�
n � F �f

�j�
n��� v

�j�
n ��

c� Compute 

�j�
n � p�ynjxn � p

�j�
n ��

d� Obtain f
���
n � � � � � f

�m�
n by the sampling with re�

placement from p
���
n � � � � � p

�m�
n with sampling

probabilities proportional to 

���
n � � � � � 


�m�
n �

A signi�cant merit of this Monte Carlo �lter is that
it can be applied to almost any type of high dimensional
nonlinear and non�Gaussian state space models� This
�ltering algorithm can be extended to the smoothing
by storing the past particles and resample the vector

of particles �p
�j�
n � p

�j�
n��� � � �� p

�j�
n��� rather than the single

particle p
�j�
n �

Incidentally� in this Monte Carlo �lter the likeli�
hood is computed by

p�ynjYn��� ��
�

m

mX
j��


�j�n � ����

Therefore in the estimation of the parameter of the
model� it is di�cult to obtain arbitrarily close approxi�
mations to the maximum likelihood estimator unless a
very large number of particles are used or an average
of the approximated log�likelihoods is computed by the
parallel use of many Monte Carlo �lters� On the oth�
er hand� in the self�organizing state space models� the
number of hyper�hyper�parameters which need to be es�
timated by the maximum likelihood methods is usually
one or two� and the hyper�parameters are automatically
determined as the estimate of the state vector� The dif�
�culty in the generalized state space modeling was thus
solved by the use of high level modeling and intensive
use of computers�

����� Other Methods

The usefulness of the numerical methods for general�
ized sate space model presented above is con�rmed by
the applications to various actual modeling� Howev�
er� for some special class of models� several computa�
tionally e�cient and precise methods for state estima�
tion were proposed� Typical examples of such a class
is the DGLM explained in subsection ������ This type
of models has a favorable property that the �lter dis�
tribution is unimodal and close to symmetric and by
utilizing these properties and by properly treating the
di�erence from the normal distribution� computation�
ally e�cient and precise estimators have been proposed
���� ���� ���� ����� �����

��� Genetic Algorithm Filter

Before closing this section� we would like to introduce
a model which allows the hyper�parameter to be time�
dependent like the self�organizing state space model� A

similar structure to the algorithm of the Monte Car�
lo �lter �MCF� appears in the Genetic algorithm �GA�
that is a population�based search procedure developed
in analogy to genetic laws and natural selection �����
In general GA is characterized by keeping the m candi�
dates for optimal solution at each iteration composed of
three steps� crossover� mutation� and reproduction �or
selection� ��	�� It has been pointed out that the �ltering
procedure composed of �c� and �d� is identical to the re�

production procedure by regarding p�ynjp
�j�
n ��m as the

evaluation function in GA and that the prediction plays
a similar role to mutation and crossover operators in
giving wide variety among population ����� ����� Using
an analogy between MCF and GA� an interpretation
of MCF from the viewpoint of GA has been presented
and several practical issues concerning its implementa�
tion has been investigated �����

This strong parallelism leads a new procedure�
called the GA �lter� which is based on the replacement
of ��� by the genetic operator such as the crossover and
mutation� The distribution function of stochastic �uc�
tuations given to the population in the system model
��� is independent of time because of the �xed values of
the hyper�parameter vector� Meanwhile� the statistical
characteristics of �uctuations produced by the crossover
can evolves on time� because the crossover is an inter�
action between each particle at each time� resulting in
the fact that the stochastic �uctuations among particles
are determined by population itself at each time�

�� Conclusion

In this article� it was shown that by considering a hier�
archical structure of the statistical models� very �exible
modeling becomes possible� resulting in the develop�
ment of innovative information extraction procedure�
It was also shown that by rising the level of the mod�
el� the model selection procedure which has been re�
alized with human expertise can be performed auto�
matically and thus the automatic processing of huge
time series data becomes realistic� In other words� the
higher�order statistical modeling facilitates both �au�
tomatic processing of massive time series data
 and �a
new method for knowledge discovery
� In this respect�
the self�organizing state space model is a promising tool
for data mining� Obviously� by the higher order model�
ing� the required amount of computation increases con�
siderably� However� by considering the rapid progress
of the computing ability and the laborious human in�
tervention becoming unnecessary by the development
of automatic procedure� it clearly reveals the direction
of the future development of time series modeling�
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