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ABSTRACT

A procedure is described for adjusting sampling locations
in one spatially discretized dataset to those in another when
the value differences between these sets are mainly caused
by the sampling intervals that locally lengthen and shorten.
This adjustment is formulated into an optimization form that
can be solved by dynamic programming. Unknown param-
eters involved in the form can be identified using the maxi-
mum likelihood procedure that employs non-linear filtering
for a generalized state-space model. This procedure is based
on the fact that the optimal solution in dynamic program-
ming is equivalent to the “Maximum A Posteriori (MAP)
estimation” in a Bayesian framework.

1. INTRODUCTION

To manage the rail geometry of a railway track, a special
rolling stock called the “track inspection car” periodically
measures the rail geometry because the rail geometry varies
slightly under the load of passing trains. These geometry
variations must be managed to keep trains running safely.
While running on the rails, the track inspection car contin-
uously measures various aspects of rail geometry. These
geometry measurements are simultaneously discretized at
fixed spatial intervals, and are recorded in digital datasets.

Although it is desirable that these locations be fixed in
order to observe variations in the rail geometry, the set of
the discretized locations on the rail changes slightly with
each measurement, as illustrated in Fig. 1. These changes
caused by the pulse used for selecting the sampling loca-
tions (called a “wheel-rotation pulse”) being linked to the
rotation of the car wheel as illustrated in Fig. 2. Thus, iden-
tical spatial discretization cannot be reproduced. Moreover,
it is difficult to adjust these location gaps after the discretiza-
tion, since some sampling intervals shorten or lengthen lo-
cally due to slipping or sliding of the car wheel (illustrated
in Fig. 3). Unfortunately, the length and location of these
locally irregular intervals cannot be detected.

An example of these irregular sampling-intervals is shown
in Fig. 4. The upper two curves show the values of the track
gauges measured in the same railway section and demon-
strate similar behavior since track gauge does not usually
vary under the load of passing trains. The difference se-
quences between them are also shown below. Note that a
difference operation is performed on the different intervals
of (A). The amplitude of both difference-sets changes ab-
normally in the second half although the two gauge wave-
forms appear similar. Hence, the wheel appears to slip or
slide during one or the other of the measuring runs.

Thus, we have developed a procedure for adjusting the
difference between sampling locations in two datasets. Fig-
ure 4 shows an example of adjustment of the locations with
our proposed procedure. The abnormal amplitude, which
is seen in the difference datasets mentioned above, is sup-
pressed. Our procedure reveals that the wheel slid about 1
meter when the training dataset was measured.

Our procedure is based on the fact that the optimal solu-
tion of dynamic programming is equivalent to a Maximum
A Posteriori(MAP) estimation in a Bayesian framework [1].

The procedure is outlined as follows:

1. Select a supervised dataset and a training dataset that
satisfy the several criteria for adjustment purposes.

2. Model a mechanism to yield the non-uniform sam-
pling, i.e., the wheel rotation including slip and slide.

3. Formulate this model in an optimization problem that
can be solved by dynamic programming, which is a
general method for solving non-linear discrete opti-
mization problems. However, this form contains un-
known parameters.

4. Represent this non-linear optimization problem with
a generalized state-space representation and identify
the unknown parameters (called hyperparameters in a
Bayesian framework) using a non-linear filtering al-
gorithm based on the maximum likelihood method.
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Fig. 1. Scheme for discretized-location gaps in a railway
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Fig. 2. Scheme for spatially discretized geometry of a rail-
way track with wheel-rotation pluses

5. Adjust the sampling location differences by dynamic
programming with the identified parameters.

2. FORMULATING ADJUSTMENT INTO AN
OPTIMIZATION PROBLEM AND ITS

INTERPRETATION

2.1. Transformation of an adjustment problem

We adjust the non-uniform sampling locations according to
the following procedure:

1. Divide the original sampling interval of the training
set by positive integerα, and approximate the values
for the newly interpolated data (interpolation).

2. Select data points corresponding to each supervised
data from the interpolated training set.

These steps are illustrated in Fig. 5.
In this procedure, the adjustment is transformed into the

selection of data points from the interpolated dataset. Letnt

be the data point index of the training set, and select it corre-
sponding to thet-th supervised data. This paper expresses
{n1, n2, · · · , nT−1, nT } asn1:T . The other variables are
similarly expressed. Thus, the adjustment is transformed
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Fig. 3. Scheme for variations in spatial-sampling intervals
with wheel-rotation states

into construction of optimal sequencen1:T , whereT is the
number of the supervised data.

The interpolated training dataset is called the “training
dataset” in the rest of this paper.

2.2. Formulation into an optimization problem

Sequencen1:T is the optimal solution that minimizes the
following constrained non-linear target function:

n1:T = arg min
T∑

t=1

F (n′t)

= arg min
n′t

[
T∑

t=1

(yt − zn′t)
2

+ µ1

T∑
t=2

ξ(∆n′t − α, α− 1)

+ µ2

T∑
t=3

ξ(∆2n′t, 2α− 2)

]
, (1)

subject to1≤n′1≤2α−1, andN−(2α−1)+ 1≤n′T ≤T ,
where
· yt is the value of thet-th supervised dataset.
· T is the number of the supervised data.
· N ≈ αT is the number of the training data.
· zn′t is the value of then′t-th training data.

· µ1 ≥ 0 is the penalty for∆nt
def= nt − nt−1 6= α.

· µ2 ≥ 0 is the penalty for∆2nt
def= nt− 2nt−1 +nt−2 6= 0.

· ξ is the function defined by

ξ(n, γ) =





0, n = 0,
1, 0 < |n| ≤ γ,
∞, γ < |n|,

.

To simplify this notation, we replacen′t andn′t−1 with

vector x′t
def= [n′t n′t−1]

T (where a “T ” represents trans-

pose) withx′t ∈ St
def= {[n′t n′t−1]

T |n′t ∈ St, n
′
t−1 ∈



St−1}, whereSt is the search area given forn′t. By sub-

stituting these equations forF (n′t), the value ofg(x′t)
def=

min
∑t

j=1 F (n′j) depends ong(x′t−1), x
′
t, andx′t−1 alone,

if the values ofµ1, µ2, andα are all given. Therefore, this
problem observes the principle of optimality, which under-
lies the “dynamic programming” technique. This techinique
is effective for optimizing this type of problem.

However, the obtained solution depends on the value of
weighting coefficientsµ1 andµ2. We should carefully se-
lect these parameters. For this selection, consider an inter-
pretation of solutionsn1:T and parameters in Section 2.3.

2.3. Dynamic programming and MAP estimation

Assume that(yt − znt
) is a normal random variable with a

zero mean and varianceσ2. By multiplying
∑

F (n′t) in (1)
by−1/(2σ2) and exponentiating it, we obtain

n1:T = arg max
n′t

{ T∏
t=1

exp
[
− 1

2σ2
(yt − zn′t)

2

]}

exp
{
− 1

2σ2

[
µ1

T∑
t=2

ξ(∆n′t − α, α− 1)

+µ2

T∑
t=3

ξ(∆n′t, 2α− 2)
]}

. (2)

Next, by normalizing the first term on the right side of
(2), we find the function that can be interpreted as the condi-
tional densityp(y1:T |n1:T ) assuming normality. Similarly,
by using normalization factor, the second term of (2) can be
interpreted as probability distributionp(n1:T ). In this way,
(2) yields the following interpretation within a Bayesian
framework: p(n1:T |y1:T ) ∝ p(y1:T |n1:T )p(n1:T ), where
p(n1:T |y1:T ) is the posterior distribution ofn1:T , p(y1:T |n1:T )
is the data distribution conditional onn1:T , andp(n1:T ) is
the prior distribution.

Hence, minimizing
∑

F (n′t) by dynamic programming
is equivalent to constructing a sequence that maximizes the
posterior distribution ofn1:T with a giveny1:T ; n1:T is then
called the MAP estimate.

3. IDENTIFYING THE HYPERPARAMETERS
INCLUDED IN AN OPTIMIZATION FORM

3.1. Method of computing log-likelihood

According to the above interpretation, the log-likelihood of
a model specified byµ1, µ2, andσ is obtained by

LL(µ1, µ2, σ) def= log p(y1:T |µ1, µ2, σ)

=
T∑

t=1

log p(yt|y1:t−1, µ1, µ2, σ). (3)

Hence, the values of the hyperparameters(µ1, µ2, σ) can
be evaluated using the value ofLL [2]. Note that the con-
cept of “hyperparameter” in a Bayesian framework is the
same as that of “parameter” in a state-space model [3]. The
most suitable hyperparameters(µ̃1, µ̃2, σ̃) are identified by
maximizingLL, which is obtained as the by-product of the
computation forp(n1:T |y1:T ).

3.2. Transformation into a generalized state-space rep-
resentation

The aforementioned Bayesian interpretations can be trans-
formed into the following generalized state-space represen-
tation:

(System model)

xt = f(xt−1) =
[
nt−1 + α + vt(nt−1, nt−2)

nt−1

]
,

(Observation model)

yt = h(xt) + wt = znt + wt,

wherext
def= [nt nt−1]T , vt ∼ q(·|xt−1, µ1, µ2, σ), h(xt)

def=
znt , andwt ∼ N(0, σ2). Distributionq(·) is defined as fol-
lows:
· If nt−1 − nt−2 = α , then

q(vt|xt−1, µ1, µ2, σ) def=





1/β1,
vt = 0,

exp
(− µ1+µ2

2σ2

)
/β1,

1 ≤ |vt| ≤ α− 1,

whereβ1 = 1 + 2(α− 1) exp
(− µ1+µ2

2σ2

)
for

∑
q(·) = 1.

· If nt−1 − nt−2 6= α, then

q(vt|xt−1, µ1, µ2, σ) def=





exp
(− µ2

2σ2

)
/β2,

vt = 0,
exp

(− µ1
2σ2

)
/β2,

vt = nt−1 − nt−2 − α,
exp

(− µ1+µ2
2σ2

)
/β2,

other than the abovevt,
and1 ≤ |vt|≤α− 1,

whereβ2 = exp
( − µ1

2σ2

)
+ exp

( − µ2
2σ2

)
+ [2(α − 1) −

1] exp
(− µ1+µ2

2σ2

)
for

∑
q(·) = 1.

3.3. Identification of hyperparameters with a maximum
likelihood function

The generalized state-space representation has the advan-
tage of computation of aforementioned likelihoodp(y1:T|µ1,µ2,σ)
since the following recursive relations between state distri-
butions are available [3].
(Prediction)

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (4)
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Fig. 4. Example of measured datasets from two measurements in the
same railway section, their differences, and residuals after location ad-
justment
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Fig. 5. Scheme for the basic idea for ad-
justing the discretized-location gaps

(Filtering)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

=
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
. (5)

Note thatp(yt|y1:t−1) appears as the denominator in (5).
Thus, log-likelihoodLL in (3) is obtained after these recur-
sive computations. In addition,p(xt|y1:t−1) andp(xt|y1:t)
can be computed arithmetically without complicated numer-
ical integration such as [3]. This is because the values ofxt

are discrete. We maximizeLL using a grid search over a
hyperparameter space.

4. APPLICATION

We adjusted the sampling locations of (B) to those of (A)
in Fig. 4 whereα = 5. Datasets (A) and (B) are actually
measured by a track inspection car in the same railway sec-
tion. Table 1 is a summary of the estimation results (LLmax

in Table 1 means the maximumLL(µ1, µ2, σ)). The most
likely adjustment is shown in Fig. 4. In addition, these
results also predict that the wheel has slid over a distance
equivalent to 4 sampling intervals on measuring run (B).

In addition, Fig. 4 also displays the train speed obtained
with (B); this speed data usually cannot be referred to. The

fact that the speed decreased with no other apparent reason
to aroundt = 1900 indicates that the wheel probably slid.

Table 1. Most likely estimated parameters with (A) and (B)
in Fig. 4

LLmax µ̃1 µ̃2 σ̃
608 0.42 0.43 0.176
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