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Abstract

When we cluster tissue samples on the basis of genes,
the number of observations to be grouped is much smaller
than the dimension of feature vector. In such a case, the
applicability of conventional model-based clustering is lim-
ited since the high dimensionality of feature vector leads to
overfitting during the density estimation process. To over-
come such difficulty, we attempt a methodological extension
of the factor analysis. Our approach enables us not only to
prevent from the occurrence of overfitting, but also to han-
dle the issues of clustering, data compression and extracting
a set of genes to be relevant to explain the group structure.
The potential usefulness are demonstrated with the applica-
tion to the leukemia dataset.

1. Introduction

Cluster analysis of microarray gene expression data
plays an important role in the automated search and the
validation for the various classes in either tissue samples
[2, 5, 7] and genes [4, 19]. A distinction of microarray
dataset is that the number of tissue samples is much smaller
than the number of genes. Our work in this study focuses
on clustering of tissue samples.

For this purpose, one of the widely used techniques has
been hierarchical clustering. Although the method has con-

tributed to find distinct subtypes of disease [2, 5], there is
weakness as to systematic guidance for solving practical
questions, e.g. what genes are relevant to explain the group
structure and, how many clusters there are. Furthermore, it
is not evident for this approach to classify a set of future
samples since the decision boundary is not explicit.

The model-based clustering using the finite mixture
model is a well-established technique for finding groups in
multivariate dataset [10, 11, 17]. Most commonly, the at-
tention has focused on the use of Gaussian mixture because
of the computational convenience. However, in some mi-
croarray experiments, the applicability of this approach is
limited. That is, when we wish to cluster tissue samples on
the basis of genes, then the sample size is much smaller than
the dimension of feature vector. In such a case, the finite
mixture models often lead to overfitting during the density
estimation process. Therefore, we need to reduce the di-
mensionality of data before proceeding to cluster analysis.

The principal component analysis (PCA, [3]) is a com-
monly used method for reducing the dimensionality of mi-
croarrays [11, 12]. In spite of its usefulness, PCA is not
justified in clustering context since the projections of data
corresponding to the dominant eigenvalues do not neces-
sary reflect the presence of groups in dataset. Most such
limitations are related to the fact that PCA only takes into
consideration the second-order characteristic of data. Some
authors gave the illustrations that PCA fails to reveal under-
lying groups [6, 17].
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This article attempts a methodological extension of the
factor analysis. In our model, so referred to as the mixed
factors model, the factor variable plays a role to give a par-
simonious description of clusters in the feature space. The
model presents a parsimonious parameterization of Gaus-
sian mixture. Consequently, our approach enables us to
prevent from the occurrence of overfitting in the density
estimation even when the dimension of data is about sev-
eral thousand. The application of the mixed factors analy-
sis covers the issues of clustering and dimension reduction.
The reduced-dimensionality representation of original data
is constructed as to be plausible estimate of signal reveal-
ing the existence of group structure. The proposed method
also can extract genes to be relevant to explain the group
structure. In this process, sets of genes that are functionally
co-worked are automatically detected.

The mixture of factor analyzers (MFA, [16, 17]), which
is an extension of the mixture of probabilistic principal
components analysis (MPPCA, [21]), is closely related to
our model. Our mixed factors model is distinguished from
MFA and MPPCA in terms of the parameterization of Gaus-
sian mixture. While the number of free parameters of MFA
and MPPCA grows quickly as the number of clusters tend-
ing to large, our approach can mitigate such difficulty. Some
researchers might be motivated by grouping the tissue sam-
ples into the large number of clusters across several thou-
sand genes. In such situations the superiority of our method
will be apparent.

The rest of this article is organized as follows. In Section
2, we will present the mixed factors model and outline some
materials used in the following sections. Our model will be
also discussed in relation to MFA and MPPCA. Section 3
covers the EM algorithm for the maximum likelihood esti-
mation of our model. Section 4 will express the procedures
of clustering, data compression, visualization and selection
of genes to be relevant to explain the presence of groups. In
Section 5, the potential usefulness of our approach will be
demonstrated with the application to a well-known dataset,
the leukemia data [12]. Finally, the concluding remarks are
given in Section 6.

2. Mixed Factors Model

2.1. Probability Model

Let� be an observed variable distributed over��. When
we cluster the tissue samples across the genes, the dimen-
sional of feature vector, �, corresponds to the number of
genes which is typically ranging from ��� to ���. The basic
idea underlying factor analysis [3] is to relate � to the factor
variable � � �� ;

� � �� � �� (1)

Here � � �, and the � is an observational noise to be Gaus-
sian, � � ������, with� � ��	
���� � � � � ���. The matrix
of order ���,�, contains the factor loadings and is referred
to the factor loading matrix. The factor variable and the
observational noise are conventionally assumed to be mutu-
ally independent random variables. In the following discus-
sions, we assume that the noise covariance is to be isotropic,
i.e. � � ���, where �� denotes �-dimensional identity
matrix. Note that, for a given factor variable, the observed
variable is distributed according to ��� � ���� � ����.
A key motivation of usual factor analysis is that due to
the diagonality of noise covariance matrix, all variables in
� � ���� � � � � ��� are conditionally independent for a given
factor variable. Therefore, it can be considered as that the
factor variable plays a role to give a parsimonious explana-
tion for the dependencies in �.

A key idea of the proposed method is to describe clusters
on �� by using the factor variable. Suppose that the total
population of � consists of � subpopulations, ��� � � � ���.
Here we let �� � �	�� � � � � 	�� be a vector of unknown class
labels to indicate the subpopulations by

	� �
� � � � ��
� � 
� ���

Consider that the � follows from multinomial distribution,
� � ����� with probabilities �� � ���� � � � � ���, and
that given 	� � �, the factor variable is distributed to be
Gaussian, � �	� � � � ��������. Then the unconditional
distribution of � is given by the �-components Gaussian
mixture with density

��� �
��
���

����� ��� ����� (2)

Here the ��� ��� ���� denotes the normal density with
mean �� and covariance matrix �� . We refer to the ob-
served system, composed of (1) and (2), the mixed factors
model.

For this model, the complete data is taken to be �� �
��� ��� � �� �, where the missing variables correspond to �
and �. The model of the complete data � is factorized as

��� � �� ���������� �� (3)

where

���� � � ������ � �����

�� ��� �

��
���

��� �������
�� �

��� �

��
���

���� �
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Notice that ���� � �� � ����� holds in the mixed factors
model. This implies that given a factor variable, the class
label has no effect to the conditional distribution of �. The
presence of clusters on �� is completely explained by the
factor variable.

Under this generative model, the observed variable is un-
conditionally distributed to be the �-components Gaussian
mixture,

��� �

��
���

��������������
� � ����� (4)

Thus, the feature variable is characterized by clusters cen-
tered at mean ��� in which each group size is defined by
the mixing proportion ��, � � �� � � � � ��. The covariance
matrix formed in � ���

� � ��� imposes a geometric fea-
ture on the �th cluster. For the Gaussian mixture with unre-
stricted covariance, there are ������
� distinct parameters
in each component covariance matrix. In cluster analysis of
microarray data, the unrestricted covariance leads to over-
fitting in the density estimation process since the number of
free parameters grows quickly as� tends to large. When we
are in such situations, the mixed factors model gives a natu-
ral approach to the parsimonious parameterization for Gaus-
sian mixture. The occurrence of overfitting can be avoided
by choosing � as to be appropriate for a given dimensional-
ity of data and the specified number of components.

2.2. Rotational Ambiguity and Parameter Restric-
tion

The parameter vector � in the mixed factors model con-
sists of all elements in �, � and the component parameters
��, ��, �� for � � ��� � � � � ��. While our approach pro-
vides a parsimonious parameterization for Gaussian mix-
ture, such modeling leads to the lack of identifiability of the
parameter space.

Let 	 be any nonsingular matrix of order �. Note that
each component mean and covariance in (4) are invariant
under the manipulation by 	 as

�		���� � �		��
��	

��	�
�
� � �� �

This will occur when we apply a nonsingular linear trans-
formation so that � � �	, � � 	��� . Therefore, there
is an infinity of choices for ��, �� and �

To avoid the nonidentifiability, we need to reduce the
degree of freedom for the parameters by imposing �� con-
straints which corresponds to the order of 	. In this paper,
we consider a natural approach as follows;

(a) �� � ��	
���� � � �����, � � ��� � � � � ��,

(b) �
�
� � �� .

The conditions (a) and (b) impose ���	��
� and ������
�

restrictions on the number of free parameters, respectively.
Then, the total size of restrictions results in �� to be im-
posed. The condition (b) offers the orthonormality of �
columns in the factor loading matrix, � � �
� � � � 
��, i.e.

��
��� � �, � � ��� � � � � ��, 
�� 
� � � for all � 
� �.
Consequently, the mixed factors model has unknown pa-

rameters with the degree of freedom,

������� � ��	 �� � �� � � � ��� 	
��� � �

�

�
� (5)

Note that ������� grows with only proportional to � as
� tends to large, and also that it grows with only propor-
tional to �� � � as � tends to large. As will be remarked
in next discussion, this property will be desirable in situa-
tions where researchers are motivated by grouping the tissue
samples into the large number of clusters across genes.

2.3. Related Models

The mixture of factor analyzers (MFA, [16, 17]) presents
the �-components Gaussian mixture as follows;

��� �

��
���

�������� �� ��
�
� ����� (6)

Here the� � is ��� matrix and�� � ��	
����� � � � � ����.
This is a generalization of the mixture of probabilistic PCA
(MPPCA, [21]) which takes�� to be isotropic,�� � ����.
It was shown by [17, 21] that there implicitly exists a gener-
ative model behind this form of Gaussian mixture. Suppose
that we have� submodels in which each �th model is given
by

� ��� �� �� �� �

for � � ��� � � � � ��. Here the �-dimensional latent variable
 is defined to be Gaussian ���� ���, and the noise model
is �� � �������. Mixing these submodels with probabil-
ity �� � � ��� � � � � ��, then one can obtain the Gaussian
mixture in the form of (6).

As well as our approach, MFA also presents a parsimo-
nious parameterization of Gaussian mixture model. This
model characterizes more flexible geometric feature of clus-
ters than that of the mixed factors model. However, in clus-
ter analysis to be faced in microarray studies, it may still
suffer from the problem of overfitting. It follows from [17]
that the number of free parameters of MPPCA is given by

������� � ��	 � ���� ���	�
��� 	 �

�

�
�

Table � shows a comparison for the number of free param-
eters between the mixed factors model and MPPCA for
varying � and �. For instance, consider that we have a

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004) 
0-7695-2194-0/04 $20.00 © 2004 IEEE 



Mixed factors model (� � �)

� � � � � � � � � � � �
� � �� ��� ��� ��� ���
� � ��� ��� ��� ��� ���
� � ���� ���� ���� ���� ����
� � ���� ����� ����� ����� �����
� � ����� ����� ����� ����� �����

MPPCA (� � �)

� � � � � � � � � � � �
� � �� ��� ��� ��� ���
� � ��� ���� ���� ���� ����
� � ���� ���� ���� ����� �����
� � ���� ����� ����� ����� �����
� � ����� ������ ������ ������ ������

Table 1. Comparison for the number of free
parameters (� � �) between the mixed fac-
tors model (top) and the mixture of principal
component analyzers (bottom), against some
specified values of the number of groups �
and the dimension of feature vector �

.

set of ����-dimensional observations, and are motivated by
grouping them into two clusters using �-dimenional latent
variable (� � ����, � � �, � � �). This situation is con-
sidered to be typical in microarray studies. Then, the num-
ber of free parameters of MPPCA is ������� � ����,
while our model gives ������� � ����. Further, if
� � ����, � � �, � � �, then, ������� � ���� and
������� � ����. While ������� becomes large quickly
as� tends to large, our approach enables the increase in the
number of parameters to be saved. In essence, the challenge
faced by the biological scientists is to use the large-scaled
dataset whereas the several organisms are composed of the
large number of genes, e.g. the genome of Saccharomyces
cerevisiae contains more than ���� genes. In such situa-
tions, we can not expect some estimates obtained from MFA
and MPPCA approaches to be reliable, and so the scope of
their application is limited.

2.4. Posterior Distributions

An objective of the mixed factors analysis is to find the
plausible values of � and � based on an observation �. It is
achieved by the suitable estimators to be close to the esti-
mands on the average. Our analysis aims to reduce the di-
mensionality of data by estimating the factor variable and to
divide the feature space, ��, by attributing the labels � for

all � � ��, simultaneously. Most common approach for
estimating the latent random variables is based on Bayes’
rule. We will revisit to these issues in the later sections. In
this context, the posterior distributions of � and � play a key
role in constructing the Bayes estimators. Hence, in sequel
we will investigate the functional form of them.

Let ���� � ��� and � � �� �, that is, the orthogonal
transformations of � and � onto ��. Then, the generative
model (1) can be replaced by

���� � � � �� (7)

where � � ���� ����. Given this formulation, the �-
dimensional variable ���� is distributed according to the
�-component Gaussian mixture as

������ �

��
���

����������� ��� � ����� (8)

Here the �th component model is defined by�����	� � � �
������������. Notice that the density of observed vari-
able can be rewritten as

����������������� ���
�
	
�

��
������� 	 ����������

�
�������� (9)

if the parameters satisfy the restrictions (a) and (b).
Using Bayes theorem, the posterior probability of 	� � �

can be assessed by

�� �� � ��� �
����������� ��� � ����

������
� (10)

for � � ��� � � � � ��. Each value assigns the membership
probability that an observation � belongs to the �th sub-
population ��. Therefore, the posterior probability of �
is given by multinomial distribution having the probabil-
ity mass function � ����� �

��
��� ���� � ���

�� . Note that
the probability of belonging is defined on the �-dimensional
variable ����, and so we can write �� �� � ��� �
�� ����� � ��� without loss of generality.

Next let us consider the posterior distribution of the fac-
tor variable. Given 	� � �, the ���� and the � are uncon-
ditionally distributed to be ��-dimensional Gaussian with
mean ���� ��

�
� �

� and covariance matrix

�
�� � ��� ��

�� ��

	
�

Then, it follows from standard property of the multivariate
normal distribution that

�� ��� 	� � �� � ��� �����������

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004) 
0-7695-2194-0/04 $20.00 © 2004 IEEE 



where the posterior mean and covariance are given by

����� � �� ������ � ����
�������	 ���

� �� ��������	 ����

and

�� � �� 	����� � ����
��
��

� ��� � (11)

Here the � � � matrix �� is diagonal so that each diagonal
element consists of the signal to noise ratio ���
���� � ��,
� � ��� � � � � �� corresponding to the generative model (7) in
which ��� denotes the �th diagonal element of ��. Hence,
this gives the posterior distribution of � in the form of the
Gaussian mixture;

�� ��� �
��
���

���� � ������ ����������� (12)

The mixing proportions correspond to the posterior proba-
bilities of belonging. These posterior distributions are used
to estimate � (Section 3) and to construct Bayes estimators
for the latent variables, e.g. the posterior expectation, the
maximum a posteriori (MAP) estimator.

Finally, note that we have no need to calculate �-
dimensional density for assessing either (10) and (9). In
microarray studies where the dimension of feature vector
is ranging from ��� to ���, the direct calculation based on
the form of �� �� � ��� � ��������� �����

� � ����
and (4) might fail since the high dimensional densities take
extremely small values, and also are computationally very
demanding. In contrast to such intractability, our approach
of the parameter restriction provides a way of saving the
computational resources and avoiding the overflow.

3. Model Estimation

3.1. EM algorithm

Suppose that we have a sample of size � , � �
��� � � ��� � where� denotes a data matrix of order ��� .
Given data, the mixed factors model can be fitted under the
principle of the maximum likelihood although there exists
no closed-form solution for the estimator. The EM algo-
rithm is a general approach to maximum likelihood estima-
tion for the problem in which a probability model includes
one or more latent variables.

We let ��	 � ���	 � � � � � ��	� and ��	 � �	�	 � � � � � 	�	� be
the realizations of factor variable and class label vector cor-
responding to the �th observation �	 . The complete data
��	 � ��

�
	 ��

�
	 � ��

� � is assumed to be i.i.d. sample drawn

from (3). Suppose that we are now having an estimate �� at

the current step of the EM algorithm. The method alternates
between two steps, say E step and M step.

Firstly, consider to update the �th column of the factor
loading matrix, 
�, while all of parameters except to 
� are
fixed at the obtained values. The evaluation of 
� must take
account of the constraints that 
�� �
� � � for all � 
� �.
This can be achieved by the use of Lagrange multiplier ��
for � 
� �. Then, the complete data log-likelihood with the
Lagrange terms is given by

� �

��
	��

��
���	 � ��	
� �
�
� ���

��	�
��
�����

�
�
� ���

��

�
�
�
�� (13)

where �
� denotes the fixed values and we have omitted the
terms independent of 
�. Here, we have no concern to the
imposition on the norm of 
� since this can be scaled a pos-
teriori as will be seen in later. But it is assumed that all of
�
� for � 
� � have been normalized such that ���
��� � �.

By taking derivative of (13) with respect to 
� and mul-
tiplying it by some constants, one can obtain the gradient as
follow;

��
�� � 
�

�
	

���	 �
�
� ���

�
�
�
	

��	��	

	
�
	

�	��	 � �
�
� ���

���
��

Here the quantities �



	 ��	��	 � � � � �



	 ��	��	�
� and


	 �	��	 are summarized in the �th column of the ma-
trices of the sufficient statistics,

� 

 �
�
	

� 	�
�
	 � � �
 �

�
	

�	�
�
	 � (14)

In the E step, we replace �



	 ��	��	 � � � � �



	 ��	��	�
� and


	 �	��	 by the conditional expectations with respect to
��� ��� (12) where the posterior distribution ��� ��� is as-
sessed by the current values of parameters.

These are given by the �th column of

�� 

 ��
�
	

�
�

�����	 � ���
�
���� �����	�

�����	�
�
�
� (15)

�� �
 � �
�
	

�	
�
�

��� ��	 � ��� �����	�� (16)

where again, all posterior quantities are evaluated by the
current values of parameters. Then, these give the estimat-
ing equation for 
� as follow;


��
�
	

���	��
�
� ���

�
��
�
	

��	��	� 	 �
�
	

�	��	�

��
�
� ���

���
� � �� (17)
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To find a solution for ��, consider to multiply (17) by �

�

� .
Then, this leads to

��� �
�

�

�
�

�

� �
�
	

�	��	� 	 �
�
	

��	��	�

	
�

for all � 
� �. Further, substituting ��� to (17) give a solution
as

�
��
�

�



	 �
�
�	�

�
�
�
	

�	��	�	
�
� ���

�

�

� �
�
	

�	��	��
�

�
� (18)

Converting this new values to the old one yields ��.
Here, notice that since ���
��� 
� �, we need to normalize

it. Let �� be a diagonal matrix of order � such that the �th
diagonal element is ���
���

���, otherwise �. Since��
����

�
�

remains diagonal, the probabilistic nature of (1) are still pre-
served even if �� � �����

� and � � ��� . Thus, without
loss of generality, we can rescale the estimates of parame-
ters by

�����
� � ��� �� ��� � ��� � ��

����
�
� � ��� � (19)

Repeating these processes, (18) and (19), for � � �� � � � � �,
we would have an estimate of factor loading matrix.

Next, differentiating the complete data log-likelihood
with respect to the remaining parameters and setting all
derivatives to zero, one can obtain the following equations
after some manipulations,

��
�
���� 	 � �� 	 ��� 



��
�
� ��� �

�
 � � �

��
�
� ��

and for � � ��� � � � � ��,

� 
�� 	 ����� � ��

����� 	 � 

�� � ������
�
� � ��

�

��
��� � � � ��

Here, the sufficient statistics is comprised of (14) and

� �� �
�
	

�	�
�
	 � � 
�� �

�
	

	�	� 	 �

� 

�� �
�
	

	�	� 	�
�
	 � ��� �

�
	

	�	 �

The E step requires the expectation of sufficient statistics
conditional on � and the current values of parameters. It
follows from the results presented in Section 2 that

�� ��� �
�
	

�	�
�
	 �

�� 
�� � �
�
	

��� ��	 � ��� �����	��

�� 

�� � �
�
	

�����	 � ������� � �����	�
�����	�

� ��

���� � �
�
	

��� ��	 � ���� (20)

and (15), (16).
In the M step, all sufficient statistics are replaced by

these posterior quantities. Then the M step is given by

�� �
�

��
��
�
�� ���� ���� 

 ���

�
	 ��� �
 ���

�
� (21)

and for � � ��� � � � � ��

��� �
�

�
���� �� (22)

��� �
�

���� �
�� 
���� (23)

��� �
�

���� �
�� 

��� 	 ��� ��

�
� � (24)

Thus, the EM algorithm is summarized as follows:

1. Specify initial values of parameters, ��.

2. (Factor loadings) Repeat the following steps for � �
�� � � � � �.

(a) Evaluate the �th column of �� 

 � and �� �
 �

based on ��.

(b) Compute �
� by equation (18).

(c) Normalize �
� and rescale ��� , ��� , � �
��� � � � � ��.

(d) Set these parameters to ��.

3. (Remaining parameters)

(a) Evaluate �� ���, �� �
 �, �� 

 �, �� 
�� �, �� 

�� �,

����� based on ��.

(b) Update �, ��, �� , and�� by (21),(22),(23),(24).

(c) Set these parameters to ��.

4. If the sequence of parameters and log-likelihood is
judged to have converged, the iteration is stopped, oth-
erwise go to �.

The factor loading matrix are updated iteratively accord-
ing to (18) and the rescaling (19) in which one stage is com-
posed of � cycles. Then, the equations from (21) to (24) fol-
low. The EM algorithm alternates between these processes
until a sequence of the produced parameters and the values
of likelihood is judged to have converged. Under mild con-
ditions, the method is guaranteed to find a local maximum
of the log-likelihood.
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3.2. Implementations

As well as another mixture models, the likelihood equa-
tions of the mixed factor model have the multiple roots, and
so the EM algorithm should be started from a wide choice
of starting values to search for all local maxima. An obvious
choice for the roots is the one corresponding to the largest
of the local maxima. In below, we will describe an ad hoc
way of specifying initial parameters.

Firstly, consider to determine each element in the fac-
tor loading matrix, denoted by �����, � � ��� � � � � �� and
� � ��� � � � � �� and the noise variance �. The main dif-
ficulty is that the factor loadings must take account the
condition ��

� � �� . Let ��� � ��
��



	 ��	 and
�� � ��
��



	���	 	 ����

�, that is, sample mean and vari-
ance of �th variable in �. Then our approach to the initial-
ization of these parameters is summarized as follows:

1. Set � � ��
��

�

��� ��.

2. Generate the factor loadings by ����� � ���� ��, for
all �, �.

3. Implement the cholesky decomposition, ��
� �

��� where � is the lower triangle matrix of order
�, and recompute the factor loadings by

���� � ��

Subsequently, these parameters give a set of orthogo-
nal transformation of original data ���	� � �

��	 ,
� � ��� � � � � �� and also the mean and variance, �� �
��
��



	 ���	� and � � ��
����	




	����	� 	

�������	� 	 ���� which will be useful for specifying the
component parameters of �� �. An outright way is that
�� � �
�, �� � ������� and �� � �, � �
��� � � � � ��.

For some gene expression datasets, each array contains
some genes with fluorescence intensity measurements that
were flagged by the experimenter and recorded as missing
data points. For instance, [9] reported that the mean per-
centage of missing data points per array is ��� for the
lymphoma datasets [2] and ��� for the NCI 60 datasets
[19]. Our modeling offers a natural approach to the anal-
ysis in the cases where some values in ��	 � ���	 � � ���	�
exhibit one or more missing values. The presence of miss-
ing values requires a minor change in the EM algorithm in
which the missing values are considered as to be a set of la-
tent variables. However, we are omitted to discuss this issue
more deeply in this study.

4. Mixed Factors Analysis

Once the model has been fitted to a dataset, the mixed
factors analysis offers the applications to clustering, dimen-

sion reduction and data visualization. These can be ad-
dressed by finding the plausible values of latent variables
� 	 , �	 . The analysis also covers the method of extract-
ing sets of genes to be relevant to explain the presence of
groups. In this process, the sets of genes that are considered
to be functionally co-worked is automatically detected. In
sequel, we will discuss these methods.

4.1 Model Selection

The basic issues arising in the mixed factors analysis are
determination of the number of clusters and the dimension
of factor variable. In statistics, these issues can be con-
verted into the problem of model selection among all possi-
ble models being in consideration, ��, � � �� � � � ��.

A commonly used approach to this problem is based on
the Bayesian Information Criterion (BIC, [20]);

�� ��� � 	� �� � !� ��
�� (25)

Here the �� is a selected local maxima of log-likelihood of
��, and !� denotes the number of free parameter given by
(5). We should choose a model to be most likely in sense of
the minimum BIC. Unfortunately, finite mixture models do
not satisfy the regularity conditions that underlies the pub-
lished proofs of (25), but several results suggest its appro-
priateness and good performance in a range of applications
of model-based clustering [17].

There also exists another possible approaches to be ap-
plicable in this context, e.g. the classical hypothesis testing,
as the likelihood ratio test [15], Akaike Information Crite-
rion (AIC, [1]) and the �-fold cross validation ([1, 18]).
However, the validity of these methods also depends on the
same regularity conditions needed for the asymptotic ex-
pansions in the derivation of BIC. These conditions break
down due to the lack of identifiability in the mixture model.

4.2. Cluster Analysis

The goal of cluster analysis is to classify data �	 , � �
��� � � � � �� into nonoverlapping � groupings. In terms of
model-based clustering, it is converted into the problem to
infer the �	 on the basis of the feature data �	 or to divide the
feature space �� by attributing labels �� , � � ��� � � � � ��
for all � � ��. Our analysis facilitates the clustering based
on the estimated posterior probability that�	 belongs to�� ,
� � ��� � � � � ��. The most common classifier is to assign
�	 to a class with the highest posterior probability of be-
longing;

�	���	� �

�
� �! ��� ��	 � ��� � "	�

���

�����	 � ����

� ��#��$�%��

If the estimate ��� ��	 � ��� were true, this classification
rule would be the Bayes rule which minimizes the overall
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misclassification rate [18]. This clustering is made based
on ����	� and the estimated �-dimensional Gaussian mix-
ture ��������. If the specified dimension of ����	� is less or
equal to two, it is possible to visualize the decision bound-
ary.

4.3. Dimension Reduction

The mixed factors analysis gives a scope to transform the
data into some reduced-dimensionality representation. This
can be carried out by the posterior mean of factor variable,

����	� �

��
���

��� ��	 � ��� �����	��

under the Bayes rule [14]. An alternative way of construct-
ing a reduced-rank data may be the orthogonal mapping of
feature data onto�� ,

"�� � ���� � ����	��

although we have no clarity to do so. When the specified
dimension of factor is less or equal to three, the estimated
factor variables are useful for data visualization. Even when
� # �, the data visualization is possible by using some tech-
niques, e.g. the scatter plot.

Alternative method of data visualization is to select some
axes to be plotted among ��� � � � � �� such that set of the
mappings reveals the presence of group structure. Consider
now to select two axes. Let ������� � ��$����� �$������ .
We consider that the degree of separation given by the set,
������	�, � � ��� � � � � �� is measured by using the minus
entropy of the component memberships;

"�� �

��
	��

��
���

����������	� � ��� ��
 ��� �������	� � ����

where

��� �������	� � ��� � ����������	�� ��
��
� �
��
��

� � �����

The ����� consists of the �th and �th elements of ���, and

the ��
��

� is diagonal matrix such that the elements are

given by ��� . Here it is assumed that ��� �������	� �

��� ��
 ����������	� � ��� � � if ����������	� � ��� � �.
Note that the "�� is minimized if and only if

��� �������	� � ��� � �
� for all � � ��� � � � � �� and
� � ��� � � � � ��. This implies the poor separation of
������	�, � � ��� � � � � �� in sense of that all of ������	�
can not be assigned to a particular group. In contrast to this,
the"�� is maximized if and only if ����������	� � ��� � �
for certain � and ��%�������	� � ��� � � for & 
� �,
� � ��� � � � � ��. This means that each observation is

completely classified into a particular group with proba-
bility one. In this sense, the minus entropy of the com-
ponent memberships can be interpreted as a quantity for
measuring the degree of separation exhibited by ������	�,
�� � � ��� � � � � ��. Thus we select ���� and ���� to be visual-
ized such that ���� ��� � 	�
"	��������������"��.

The axes selection can also be achieved by using the an-
other possible quantities for measuring the degree of sepa-
ration, e.g. the between group variance under the estimated
class labels. However, we have no idea to select one among
possible approaches.

4.4 Interpretation of Mixed Factors

The researchers might often desire to obtain a biological
interpretation of the estimated mixed factors, and also to ex-
tract variables from �� � ���� � � � � ��� so as to contribute
the presence of groups on the feature space or to exclude
ones not to do so. In our context, this can be achieved by as-
sessing the dependency between ��� � � � � �� and ��� � � � � ��.
A natural measure to summarize the dependency in these
variables might be covariance

 '(����� � ��
� ��
���

��� ���

�
� (26)

It may be more convenient to use the correlation matrix
������which is of that each ��� ��th element of (26) are di-
vided by the square of ) *%���� �


�
��� ������� and the �th

diagonal element of ) *%��� � ���

�

��� ���
������

�
�����.

By investigating the values in ������ or Cov(�,� ), each of
�-coordinates can be understood. If the �th gene, that is,
��, is highly correlated with ��, then it is considered to be
relevant to explain the grouping shown in �th coordinate.

In practice, it will be helpful to list some genes to give
the highly positive correlation with �� at &�� and to give
the highly negative correlation with �� at &�� for � �
��� � � � � ��. As will be demonstrated in next section, in con-
text of gene expression analysis, these �� sets can be useful
to find the biologically meaningful groups of genes to be
functionally co-worked and also to explain the existence of
group structure.

5. Real Data Analysis

In this section we will give an illustration of the mixed
factors analysis with a well-known dataset, the leukemia
data of Goloub et al. [12]. This dataset is available at
http://www.broad.mit.edu/cancer/. Our ob-
jective is to cluster the leukemia tissues on the basis of
genes. Although the class labels have been available, we
applied the mixed factors analysis to the dataset without this
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Figure 1. Results of clustering. The order of tissues was rearranged so that the cases of AML are
labeled by �	 �� and the ALL are labeled by ��	 �� (B-cell ALL, ��	 �� and T-cell ALL, ��	 ��). For
clustering given by the model of � � � and � � �, the black and white sites correspond to the tissues
grouped into �� and ��, respectively. For clustering given by the model of � � � and � � �, the black,
white and gray sites indicate the tissues grouped into ��, �� and ��, respectively.
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Figure 2. Scatter plots of the first three of prin-
cipal components. The true groups are la-
beled by AML � �, B-cell ALL � � and T-cell
ALL � �.

knowledge in order to demonstrate its potential usefulness
as a method of unsupervised learning.

5.1. Leukemia Data and Preprocessing

The leukemia data were studied by Goloub et al. [12].
Originally it was reported that the leukemia data con-
tains two types of acute leukemias: acute lymphoblas-
tic leukemia (ALL) and acute myeloid leukemia (AML).
The ���� gene expression levels were measured using
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Figure 3. Plot of ������	�, ������	� given by the
mixed factors model with � � � and � � �.
The true groups are labeled by AML � �, B-
cell ALL � � and T-cell ALL � �.

Affymetrix high density oligonucleotide arrays on �� pa-
tients, consisting of �� cases of ALL and �� cases of AML
(�� B-cell ALL and � T-cell ALL). As shown in Figure 1,
the order of tissues was rearranged so that the cases of AML
are labeled by � 	 �� and the ALL are labeled by ��	 ��
(B-cell ALL, ��	 �� and T-cell ALL, ��	 ��). Following
[9, 12, 16], three preprocessing steps were applied to the
normalized matrix of intensity values available on the web-
site: (a) thresholding, floor of ��� and ceiling of ��� ���;
(b) filtering, exclusion of genes with "	� 
"�' � � or
�"	�	"�'� � ��� where "	� and "�' refer to the max-
imum and minimum intensities for a particular gene across
the �� samples; (c) the natural logarithm of the expression
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Figure 4. Heat map for the expression levels of genes judged to be relevant to the group structure.
These genes are selected by the mixed factors model with � � �, � � �. Each of � rows shows the
expression levels corresponding to �� genes in &�� (left) and &�� (right), for � � �� � � � � �. The �� genes
in &�� were selected such that these are top �� out of �� � � � � �� to give the highest positive correlation
with ��. The �� genes in &�� are top �� out of �� � � � � �� to give the highest negative correlation with ��.
The first �� samples refer to the AML cases, and the next �� samples, the ALL ��	 �� cases (B-cell
ALL, ��	 �� and T-cell ALL, ��	 ��). The name of gene follows from the gene accession number to
be available at the website.

levels was taken. After preprocessing, the 3571 genes re-
main and so produce the data matrix� � ���� � � � ����� of
order ����� ��.

The retained dataset was firstly standardized so that each
columns in the matrix of the logged microarray data have
mean � and variance �, and then we standardized the rows
of � to have mean zero and unit variance.

5.2. Clustering and Selecting Relevant Genes

We firstly applied PCA to this retained dataset based on
the correlation matrix. Figure 2 displays the first three of
principal components. These projections slightly revealed
clusters implying the existence of two classes, ALL and
AML. However these provided no evidence for the pres-
ence of subclasses, AML, B-cell ALL and T-cell ALL. If
proceeding to clustering of these projections using some
techniques, e.g. �-means, Gaussian mixture clustering, we
would obtain the large number of misallocations.

Next we considered clustering of the tissue samples on
the basis of the retained ���� genes using the mixed factors
model with � � �. After fitting the models ranging from
� � � to � � � with �� starting values of parameters, the

model of � � � was chosen to be best in the sense of the
minimum BIC. This gave the following groups;

�� � ��	 ��� ��� ��� ��� ��� ��� ����

�� � ���	 ��� ��	 ��� ��� ��� ��� ��	 ���

��	 ��� ��	 ���� (27)

This grouping is also summarized in Figeure 1. It can be
found from (27) and Figure 1 that the two clusters reflect
the partition corresponding to the ALL and AML leukemia,
and that most part of members in�� correspond to the AML
leukemia tissues. Particularly, the AML and T-cell ALL
were completely classified. The misallocations were equal
to ���� ��� ��� ��� ��� ���, and so, the error rate is about
� . All of misclassifications corresponds to B-cell ALL.
We confirmed that the mixed factors analysis could provide
a meaningful grouping despite of the high-dimensionality
of dataset.

Figure 3 displays ������	�, ������	�, � � ��� � � � � �� ob-
tained from the selected model, where the coordinates ��

and �� were chosen according to the minus entropy of the
component memberships. Each data points is labeled by
the true class. This plot is helpful to understand the group
structure, visually. These projections present the existence

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004) 
0-7695-2194-0/04 $20.00 © 2004 IEEE 



of two clusters. All of the � projections corresponding to
misallocations were located near the boundary.

The �� ALL tissues consists of � T-cell and �� B-cell
types. Given the existence of three subclasses, �� AML, ��
B-cell ALL and � T-cell ALL, Chow et al. [7] and McLach-
lan et al. [16] attributed these samples into three groups.
We also considered clustering this dataset into three groups
by using the mixed factors model of� � �. Given the mod-
els ranging from � � � to � � � with �� starting values, the
scores of BIC produced by each local maxima decided the
goodness of � � �. This gave the following clusters (see
also Figeure 1),

�� � ��	 ��� ��� ��	 ��� ��� ��� ��� ��� ��� ��� ��� ����

�� � ���� ��� ��	 ��� ��	 ��� ��	 ��� ��� ��	 ���

��	 ��� ����

�� � ���	 ��� ����

This split implies the weak association of three groups �� ,
� � �� �� �, with AML, B-cell ALL and T-cell ALL, respec-
tively. The first cluster �� consisted of �� AML, �� B-cell
ALL plus � T-cell ALL. The �� consisted of the remain-
ing B-cell cases. All of the members belonging to �� were
T-cell cases. All of AML cases were completely classified
as well as clustering by � � �. Most part of misallocations
correspond to B-cell ALL cases and were classified into ��.

Figure 4 displays the heat map of the expression levels
given by genes in &�� and &��, � � ��� � � � � ��. These ��
sets of �� genes showed the �� expression patterns. All
genes in a set exhibit the similar expression pattern. These
genes are considered to be functionally co-worked. In ad-
dition, notice that a pair of &�� and &�� shows the oppo-
site expression patterns. We can interpret that all genes in
&�� are expressed in combination with ones in &��. The
two sets are negatively correlated each other. Figure � dis-
plays ������	�, ������	�, � � ��� � � � � �� which were chosen
according to the minus entropy of the component member-
ships. The expression patterns given by the genes in&�� and
&��, � � ��� �� (top two of five sets in Figure 4) are com-
pressed into ������	�, ������	�, � � ��� � � � � ��. This plot
provides the evidence for the presence of three subclasses
in the leukemia tissues.

6. Concluding Remarks

When we cluster tissue samples on the basis of genes,
the number of observations to be grouped is typically much
smaller than the dimension of feature vector. In such a
case, the applicability of the conventional mixture model-
based approach is limited. In this paper, we have shown the
method of the mixed factors analysis. The mixed factors
model presents a parsimonious parameterization of Gaus-
sian mixture. Consequently, our approach enables us to
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Figure 5. Plot of ������	�, ������	� given by the
mixed factors model with � � � and � � �.
The true groups are labeled as AML � �, B-
cell ALL � � and T-cell ALL � �.

prevent from the occurrence of overfitting during the den-
sity estimation process. In the process of clustering, the
method automatically reduce the dimensionality of feature
data, to extract genes to be relevant to explain the presence
of groups and also to detect genes that are expressed in com-
bination. The mixed factors analysis was applied to a well-
known dataset, the leukemia data for highlighting its useful-
ness. The density estimation succeeded in spite of that we
used the ����-dimensional feature data and the clustering
produced the biologically meaningful groups of leukemia
tissues. The results showed the potential usefulness and the
role of our method in the application to microarray datasets.
We expect that the mixed factors analysis will contribute to
find molecular subtypes of disease.
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