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1 Introduction

The identi�cation of the start (onset) time of the quasi-periodic oscillation

(QPO), which is called the Pi 2 pulsations in a magnetospheric physics, from the

ground magnetic �eld observation is usually carried out by focusing on a wave-

like component obtained by applying a linear band-pass �lter [5, 6]. When the

background magnetic �eld (i.e. time-dependent mean value structure) and/or the

amplitude of high-frequency components (i.e., time-dependent variance struc-

ture) change rapidly around the initial period of Pi 2 pulsations, any linear

band-pass �lter, which also includes the procedure based on a simple modi�-

cation of the wavelet analysis, always generates a pseudo precursor prior to a

true onset time. In such a case, an accurate determination of onset time requires

a nonlinear �lter which enables us to separate only the wavy-like component

associated with Pi 2 pulsations from the time-varying mean and/or variance

structures with various discontinuities. In this study we introduce a locally �xed

time series model which partitions the time series into three segments and to

model each segment as the linear combination of several possible components.

An optimal partition obtained by the minimumAIC procedure allows us to de-

termine an onset time precisely even for the above-mentioned case. We illustrate

this procedure by showing an application to actual data sets.

2 Treatment of Rapid Decrease in Trend

The time series Y1:N = [y1; : : : ; yN ] is a scaler observation which is the H com-

ponent recorded by a magnetometer at the ground station [8]. We sometimes

observe an extremely rapid decrease in the background magnetic �eld measured

at the high latitude stations. A preparatory removement of such rapid change in

the trend from the original observations enhances e�ciency and accuracy in an

estimation of parameters involved in describing a time series model, because an

onset time determination in our approach is based on a representation of the time

series by a 
exible model with many unknown parameters. Prior to an analysis

of an onset determination we therefore apply a detrending procedure which �ts

a parametrically described function �n(�) to yn, where � is a parameter vector

for representing �n that is a function of n.
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The detrending procedure begins by examining a sequence of the �rst dif-

ference of original time series and identifying intervals each of which is de�ned

by consecutive data points with the �rst di�erence value smaller than a certain

threshold, 
th. We denote the jth interval by Dj = [ij;A; ij;B ] (j = 1; : : : ; J),

where J is the number of intervals with a rapid decrease. A detailed examination

of yn for n 2 Dj founds that a rapid decrease can be approximated by the �rst

quarter of the cycle of a cosine function. Speci�cally a function form for the jth

rapid decrease, fjn, is given by

fjn = (gj;A � gj;B) cos

�
2�(n� ij;A)

4(ij;B � ij;A)

�
+ gj;B for n 2 Dj: (1)

�n for an interval between Dj and Dj+1, speci�ed by hjn, is simply given by a

linear function:

hjn =

�
gj+1;A � gj;B

ij+1;A � ij;B

�
(n� ij;B) + gj;B for n 2 Cj; (2)

where Cj = (ij;B ; ij+1;A). �n for an interval before D1 is given by a constant:

h0n = g1;A. Similarly, for an interval after DJ , i.e., CJ = (iJ;B ; N ], �n is given by

hJn = gJ;B .

For given set of D1; : : : ; DJ , an optimal set of (gj;A; gj;B) (j = 1; : : : ; J) is

easily obtained by applying the least squares �t. Actually a minor adjustment

of a location of Dj itself is carried out by minimizing the squared residuals.

Eventually �n is represented with a parameter vector � which consists of 4J

variables:

� =
h
(i1;A; g1;A); (i1;B; g1;B); � � � � � � ; (iJ;A; gJ;A); (iJ;B ; gJ;B)

i
0

: (3)

As a result, a procedure for obtaining an optimal �, ��, turns out to become non-

linear. The detrended signal, en, is de�ned by en = yn � �n(�
�) (n = 1; : : : ; N ).

3 Data Partition

Suppose that a wave train of the Pi 2 pulsation is observed inE1:N = [e1; : : : ; eN ],

and denote its starting and ending points by k1+1 and k2, respectively. Accord-

ingly, a total interval is divided into three sub-intervals:

E1:N = [

I(1)z }| {
e1; : : : ; ek1 j

I(2)z }| {
ek1+1; : : : ; ek2 j

I(3)z }| {
ek2+1; : : : ; eN ]: (4)

A presence of the Pi 2 pulsations is assumed only for an interval I(2). The Akaike

Information Criterion (AIC) [1] for E1:N , AICN , is given by

AIC(k1; k2) = AICN = AIC(1) + AIC(2) +AIC(3); (5)

that is a function of k1 and k2, where AIC(m) is the AIC for the mth interval

[7]. The onset and o�set time of the Pi 2 pulsations are given by the optimal

dividing points, k�1 and k�2, respectively, which are determined by minimizing the

AICN .
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4 Time Series Model for Each Segment

Suppose that the time series en for the m-th interval is given by the following

observation model

en = t(m)
n + s(m)

n + w(m)
n ; w(m)

n � N (0; �2;(m)) (m = 1; 2; and 3); (6)

where t
(m)
n is a stochastic trend component and is assumed to follow a system

model [4]

t(m)
n = 2t

(m)
n�1 � t

(m)
n�2 + vt;(m)

n ; vt;(m)
n � N (0; �

2;(m)
t ): (7)

w
(m)
n is the observation noise. s

(2)
n corresponds to the signal associated with the

Pi 2 pulsations which is assumed to be a stochastic process with colored power

spectrum. Obviously, s
(1)
n = s

(3)
n � 0.

In this study s
(2)
n is furthermore decomposed into the quasi-periodic oscilla-

tion (QPO) component qn and autoregressive (AR) component rn: s
(2)
n = qn+rn.

qn and rn are are modeled by

qn = 2 cos (2�fc) qn�1 � qn�2 + vqn; vqn � N (0; �2q ); (8)

and

rn =

JARX
j=1

ajrn�j + vrn; vrn � N (0; �2r ); (9)

respectively. fc corresponds to a reciprocal of a period of the Pi 2 pulsations

in unit of data points. In this study it is treated as unknown parameter and

need not be given beforehand. The presence of system noise in (8) makes the

cycle stochastic rather than deterministic, and thus the QPO model allows us

to represent a periodic component of distinct frequency fc with stochastically

time-varying amplitude and phase [3].

The AR component is introduced to represent the locally stationary com-

ponent in sn. Namely, whereas qn describes a signal with an eminent peak in

power spectrum (i.e., line spectrum), rn accounts for a signal having a contin-

uous spectrum. Several trials with changing JAR in applications founds that a

simple treatment of �xing JAR = 4 is su�cient in our study.

5 Parameter Estimation Procedure

The time series model presented in previous section can be formulated by a state

space model (SSM) [2] as follows:

x
(m)
n = F (m)

x
(m)
n�1 + G(m)

v
(m)
n ; (10)

en = D(m)
x
(m)
n +w(m)

n : (11)
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For example, the time series model for I(2) can be represented by the SSM in

which the corresponding vectors and matrices are

x
(2)
n = [t(2)n ; t

(2)
n�1; qn; qn�1; rn; rn�1; rn�2; rn�3]

0

D(2) =
�
1; 0; 1; 0; 1; 0; 0; 0

�
;

F (2) =

0
BBBBBBBBBB@

2 �1

1

C �1

1

a1 a2 a3 a4
1

1

1

1
CCCCCCCCCCA
; G(2) =

0
BBBBBBBBBB@

1

0

1

0

1

0

0

0

1
CCCCCCCCCCA
; v

(2)
n =

2
4v

t;(2)
n

vqn
vrn

3
5

where C = 2 cos (2�fc). Here the empty entries of F (2) and G(2) are all zero and

v
(2)
n � N (0; R(2)) with a diagonal variance matrix of R(2) = diag(�

2;(2)
t ; �2p ; �

2
r ).

An optimal estimation for t
(2)
n , qn, and rn is given by the estimated x

(2)
n that is

obtained by the Kalman �lter and smoother [2]. Here �
2;(2)
t , �2p , and �2r are un-

known parameters to be optimized. Then the time series model for I(2) involves

nine unknown parameters:

�(2) =
�
�2;(2); �

2;(2)
t ; fc; �

2
p ; �

2
q ; a1; a2; a3; a4

�0
: (12)

The optimal �(2), �(2)�, can be determined by minimizing the log-likelihood,

`(�(2)) = log p(Ek1+1:k2 j�
(2)), where Ek1+1:k2 = [ek1+1; : : : ; ek2 ] [4]. The AIC

value for I(2), AIC(2), is also de�ned by

AIC(2) = �2`(�(2)�) + 2dim (�(2)): (13)

Similarly, AIC(1) and AIC(3) in (5) are also de�ned.

6 Result and Summary

Fig. 1 shows one of results of the decomposition obtained by applying our pro-

cedure to data sets in each of which a typical Pi2 pulsation is observed. The

data set that we examined is the H component measured at Kotel'ney (Russia)

from 1996/May/26 16:10.00{17:10.00. The sampling time is a second, and thus

N = 3; 600. The two vertical lines indicate the estimated k�1 and k�2, respectively.

The three lines are the estimated rn, qn, and original observation yn, from the

above, respectively. The horizontal arrow illustrates that the minimum AICN

procedure �nds an optimal k1. The thick line is the estimated trend component:

�n + t
(m)
n . For this case, three rapid decrease are identi�ed; namely, J = 3.
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Fig. 1. Decomvolution of the magnetic �eld data.

The advantages of applying our procedure are summarized as follows. First,

our model for decomposition is robust to a rapid change in trend, and then it

gives us a good separation of the Pi2 wave component. Second, the onset time

can be objectively determined by minimizing an information criterion, AICN . It

turns out that our method is free from the ambiguityof onset time determination.

Finally, our procedure is fully automatic.
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