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The bootstrap method in space physics: Error estimation for the
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Abstract. The minimum variance analysis technique introduced
by Sonnerup and Cahill (1967) is a useful tool in space physics.
However the statistical errors appearing in this method are diffi-
cult to estimate accurately because of the complicated form of the
eigenvalue decomposition. To deal with this problem, this paper
introduces the bootstrap method (Efron, 1979) which replaces an-
alytical solutions with repeated simple calculations. We apply this
method to the estimation of the statistical errors in the minimum
variance direction and the average component in the minimum vari-
ance direction, and show that this method accurately estimates the
errors.

Introduction

The technique referred to as the minimum variance analysis
(MVA) or as the principal axis analysis (PAA) has been widely
used to determine the normal directions of discontinuities in space
[e.g., Sonnerup and Cahill, 1967; Aubry et al., 1971; Neugebauer
et al., 1984], to determine wave normal directions [e.g., Thorne
et al., 1973; Smith and Tsurutani, 1976}, and to examine the topol-
ogy of plasmoids [e.g., Slavin et al., 1993; Moldwin and Hughes,
1994). The statistical errors (i.e., the accuracy) of the direction ob-
tained and that of the magnetic field normal component have been
estimated by Sonnerup [1971]. Hoppe et al. [1981] also presented
a qualitative discussion of the statistical errors. The equations by
Sonnerup [1971] give upper bounds for the errors as a result of the
assumption that all terms contributing to the errors are independent.
A brief introduction to MVA is shown in the Appendix with a minor
modification to Sonnerup’s formulas, One of the purposes of this
paper is to provide a method for a more accurate estimation of the
errors.

The mathematical procedures involved in MVA are identical to
those in a principal component analysis (PCA) which is an old but
useful method in multivariate analysis [Hotelling, 1933; Anderson,
1958). Most of theoretical analysis in PCA are obtained by assum-
ing that the data set are observations from a multivariate Gaussian
distribution [Beran and Srivastava, 1985]. This special assumption
is required mainly for mathematical tractability (in other words, for
convenience). The problems in the application of PCA to actual
data sets are as follows:
¢ Unless the actual data can be satisfactorily approximated to fol-
low the multivariate Gaussian distribution, the method brings about
serious biases.
¢ Even with the assumption of Gaussian distribution, it is quite
difficult to get analytic equations for this relatively complicated sta-
tistical system.
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In fact many kinds of data in space physics show non-Gaussian dis-
tributions [e.g., Tsurwani et al., 1990). In order to overcome these
problems, a new statistical method, called the Bootstrap method,
has been proposed [Efron, 1979]. The bootstrap method is a gen-
eral methodology for non-parametrically estimating the statistical -
errors, such as the bias and standard error. This method requires
much fewer distribution assumptions than predecessors, but de-
mands high computing power for its realization. Wide-ranging
introductions to the bootstrap method with its applications to var-
ious statistical problems are provided by Efron [1982], Efron and
Tibshirani [1986, 1993], and Kubokawa er al. [1993]). Related
ideas and improvements of the bootstrap method for efficient cal-
culation are also found in these references. The papers by Diaconis
and Efron [1983] and Efron and Tibshirani [1991] are appropriate
for the statistical practitioner. Descriptions related to PCA in the
bootstrap method, namely, a discussion of a covariance matrix and
its interesting functions can be found in Diaconis and Efron [1983],
Efron and Tibshirani [1993), and particularly, in Beran and Srivas-
rava [1985]. Specific applications along this line to paleomagnetic
analyses are given by, e.g., Tawve et al. [1991].

The major abject of this paper is to introduce the bootstrap method
which provides more information about the statistical error of the
estimated parameters in MVA, with fewer assumptions concerning
the underlying distribution functions of the data. We apply this
method to estimate the statistical errors of the minimum variance
direction and the magnetic field normal component with the objec-
tive of demonstrating both its usefulness and its wide applicability
to data analysis in the geophysical field.

Methodology

We begin with a description of the basic algorithm of the
bootstrap method in terms of MVA. The multivariate data ex-
amined by means of MVA is usually a three-dimensional vec-
tor time series, B(k) (k = 1....,RK’), where B(k) =
[Bx(k), By(k). Bz(k))T and T denotes the transposition op-
eration. It is convenient to express the observed data by an 3 x L’

data marrix, X'O, the k-th column of X'© being B(k):
X© =[B(1). B(2),.... B(K)). (1)

The superscript O is used to explicitly indicate that XO is the
original (observed) data set.

The bootstrap algorithm begins by generating a simulated data
matrix, called the bootstrap sample, based on the simple assumption
that each data has equal probability 1/K". The procedure for its
implementation on the computer is as follows; a random number
device selects integers ji.J2...., ], each of which equals any
value between 1 and A" with probability 1/ A", Then, we get the

bootstrap sample X~ (i =1.....N)as

X [B(j1). B(j2),- .- B(in)] )
[B*i(1). B"'(g),..., B {(LK)).
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The star notation indicates that .\""‘ is not the actual data matrix
X©, butarandomized version of X©. IV is the number of trials, an
ad—hoc parameter for an actual application of the bootstrap method,
as discussed later. Note that any chosen B(k) may appear in .X =i
zero times, once, twice, etc..

The next step in the bootstrap method is to estimate a parameter

of interest, ©, from X%, © usually indicates the estimate for
© in the statistical literature. Then, the estimate for © on the
basis of the bootstrap sample X ', called the bootsu ap replication,

is henceforth denoted as ©*/. An example of ©! is the mean

vector, given by i’ = f—l B i(k)/ K. Another example is

eigenvectors calculated by MVA , denoted by €;' (j = 1.2.3).
The eigenvector correspondmg, to the smallest eigenvalue, or the

minimum variance, e3 , plays an important role in MVA, and is
written below as 7™ = [Azf, A" 7:']T. Also important is the
mean vector component along the minimum variance eigenvector,

~ni

it is written below as B,,‘ =pn
A B".

The final step in the bootstrap method is to give a measure of
statistical accuracy for the above quantities. In this study we use
the standard error, and introduce two ways to calculate it. There
is another, fundamentally more ambitious measure of statistical
accuracy than standard errors, namely confidence intervals. Much
interest is attached to bootstrap confidence intervals [Efron and
Tibshirani, 1986; 1993; Hall, 1992 Konishi, 1990], but we omit
this subject here.

A direct way for estimation of the standard error is given by the
sample standard deviation of the )\ replications

- 7", In this paper we focus on

i (é'i - é')2
N -1

where ©” Z‘\L ©!/IN. Note that the notation & v is usually
replaced by sex in the statistical literature. Another way to obtain
the bootstrap standard error is based on the 0.1587 and/or 0.8413
quantiles which correspond to —1 and 1 sigma points of normal
density, respectively. It is obvious that 0.5000 quantile is the
median. The latter way is useful for non-Gaussian distributions,

but in this study we adopt SN. We also note that, in an actual
data analysis, we should not rely entirely on a single statistic like

.:\:,\v, but should show boorsirap replications graphically [Efron
and Tibshirani, 1993). we always prefer to display a histogram of

a bootstrap replication ©™*

There only remains one ad-/oc parameter for an actual applica-
tion of the bootstrap method, namely the number of the boatstrap
samples N . 1t is obvious that any bootstrap estimation can be
improved as ¥ — 0. Consequently, a bootstrap with a large
number .V is desired, but it requires a large computational effort.
We therefore need a criterion which tells us a rough minimum
number necessary for satisfactory results. Several rules gathered
from many experiences with various situations are available [Efron,
1987; Efron and Tibshirani, 1993; Kubokawa et al., 1993); usually
the necessary IV does not exceed 2000, in particular for an esti-

mation of A_,\ However in this study we set i\’ = 10°, which
is larger than values suggested by Efrou and Tibslnram [1993], in
order to get very rehable results and in order to show the distri-
butional shape of 7" and B" clearly. Even with this enormous

number, the total calculation time does not exceed 10 min for the
MVA applications shown below, thanks to current computer speed.

AN(O) = (3)

Simulation Settings

Here we simulate an observed magneticfield data set of a
rotational-discontinuity crossing, .\ ©, as follows:
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Bux(k) = 30 sin(0) + c3n-2
By(k) = 50cos(0r)+ €31
B:(k) = 24 =3 [nT] @
¢ = -60+ Il_Ol(k — 1) [degree]
k= 1.2,.... L
whereg; (j =1.2..... 3 K') are the independent and identically

distributed (i.i.d.) Gaussian white noise sequences having a mean
of 0 and a standard deviation of 2, thus the noise vectors € (k) =

[:(3k — 2).=(3k - 1).:‘(3];)]7‘ (k = 1,....R) follow an

i.i.d. isotropic three-dimensional Gaussian distribution. The z, ¥,
and = axes correspond to the maximum, intermediate, and minimum
variance directions without noise. That is, the “true” value of the
minimum variance unit vector, 7, is 1 = [0, 0. 1)7, and the “true”
value of the mean magnetic field component along the direction of
n, B,,is 2. Here K is set to 30.
From this X© we generate N bootstrap samples _\ -1,

_\"2 co X N with Eq. (2). As mentioned above, we use

= 10 in this study. By applying MVA to these bootsirap

samples we obtain 10° values of A"' and B i On the basis
of these replications, we can calculate the standard errors in them
Qx(A") and Ix(B;).

As a comparison, we need to know the “true” distribution func-
tions for n and B,. Because this is a simulation study, we can
find them by repeatedly creating datasets according to Eq. (4) but
with different independent sets of noise. That is, we generate Af
datasets X1, X2, . ] "5-M  each of which is obtained by
Eq. (4). The superscnpt sis used (o indicate that the dataset X &
is neither the original dataset .\’ O nor the boorstrap sample X Hi
Thez; (j =1..... 3 x K" x M) values needed for this proce-
dure are the i.i.d. Gaussian white noise sequences. We calculate
7™ and BS™ from X*™, and thus get A{ values of them and
draw histograms. In order to conveniently compare these “true”

histograms with the histograms of bootstrap replications 7"
Bl weset M = N.

' and

n:*

Results and Discussion

Figures 1 2, and 3 compare the histograms of the bootstrap repli-

cations n, SN - !, and B =1 (solid lines) with the “true” distributions
(dashed lines). The vemcal axis shows the number of cases for each
bin out of a total of 10% (= M = V) cases. The figures show that
the bootstrap distribution approximates the true distribution very
well, even though the bootstrap distribution is produced by using
only A" (=30) data vectors. The small bias seen in this figure comes
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Figure 1. Distributions of bootstrap replications 7' (solid lines)
and “true” n, (dashed lines).
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Figure 2, Distributions of bootstrap replications ﬁ;i (solid lines)

and “true” n, (dashed lines).
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from the fact that, for this X ©, the average of 30 £ (k)'s is close to
but not exactly equal to a null vector.

Table 1 shows that standard deviations of the bootstrap distri-
bution and the “true” distribution are very close, as a natural con-
sequence of these distributions being aimost the same, as showa
in the figures. We have confirmed this good agreement for other
X ©s with different parameters, such as different rotation angle in
2 y plane and different noise amplitude (not shown), in Eq. (4). We
conclude that the bootstrap method provides a reasonable estimation
of the statistical errors in 1 and B,,.

The table also lists error estimates obtained from the equations
of Sonnerup [1971] for the original dataset X'O: the next to last
column comes from his original equation, and the right-most col-
umn comes from equations with a small modification, as discussed
in the Appendix. The table shows that usage of the original or the
modified equations does not much affect the estimation (in the limit
L' — oo they agree), but the modified equations are based on a
more strict formulation and are simpler.

The table also shows that error estimates in the right-most two
columns of the table are 2-3 times larger than the “true” values
(this ratio seems to be common to other .X'C’s with different pa-
rameters in Eq. (4), but note that Eq. (4) represents the case of
a planar magnetopause case only). In relation to this we remark
that Lepping and Behannon [1980] stated that Sonnerup’s formula
underestimates the error, but we also note that, while Lepping and
Behannon's numerical experiments appear valid, their formula does
not include a dependency on the number of observed data (" in
our notation), which is strange for a statistical error formula.

In this paper we have used the planar magnetopause model
(Eq. 4). Because MVA implicitly assumes planarity, other kinds
of “error” appear when one applies it to the case where the mag-
netopause is not planar and/or when temporal effects are present.
The bootstrap method stated above will sense these error as well,
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Figure 3. Distributions of bootstrap replications §;‘ (solid lines)
and “true™ B,, (dashed lines).
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Table 1. Error estimates

“true” errors  bootstrap  Sonnerup’s [1971]  estimates
error estimates erTor estimates in Appendix
Ny 0.013 0.014 0.030 0.035
n 0.047 0.047 0.101 0.119
Bi, 1.9 20 4.1 438

because it treats any deviations from planarity in the same manner.
This is currently being tested by using different models.

Finally, we comment on the other eigenvectors, that is, the max-
imum and intermediate variance directions. The statistical errors
of these vectors can also be estimated by the bootstrap method:
this should be important because the maximum variance direction
for the convection electric field, —v x B, is now being used as
an estimate for the magnetopause normal direction Sonnerup et al.
[1987] but no formulas have been given in the literature to estimate
these errors. However care must be taken because the maximum
and intermediate variance components of the field usually include
an apparent trend. In this case, we need a modification of how
to generate the bootstrap sample X °'. This subject is beyond our
major purpose here; it is open to future rescarch (see however Leger
et al. [1992]).

In summary, the bootstrap method is useful in estimating statis-
tical errors in the minimum variance direction and in the average
minimum variance component. Moreover, as stated in the intro-
duction, this method is useful in a broad area of error estimations; it
depends mainly on the computer speed, and needs few assumptions;
in particular, it is applicable even if the population distribution is
non-Gaussian.

Appendix: Modification of minimum variance
error estimates by Sonnerup [1971]

Here the maximum, intermediate, and minimum variance axes
are expressed by subscripts 1, 2, and 3, thus @ = e3 and B, =
B3 = B- e3, where e; denotes the unit vector. The variances Aj,
Ay, and Ag are calculated as eigenvalues of a sample covariance
matrix whose (7. j) element (in any coordinates) is expressed as

K
> (Bi(k) - Bi)(Bj(k) - B;) (A1)

k=1

1
Gii = —
Y K-1
where A is the number of data points, and the overhead bar denotes
an average. Note the denominator is not A but (" — 1), in an
attempt to get an unbiased variance.
The equations for the random error estimates are given as

/ Al / A
‘ = —— =t ey —— A2
Aey +te; M e, %= s (A2a)
_ A3 5 2 AA _ A
= = B»?
AB;3 i\/lf-i-Bl AI—A3+ 2 % = A

(A2b)

where the subscript denote minimum variance coordinates and
(AX)? is the variance of A3. For a derivation of these equations,
refer to the appendix of Somnerup [1971].
When B3 (k) (in the minimum variance coordinates) follows a
Gaussian distribution with a population variance of 17, 2 variable
{,‘=1 (B3 (k) — B3)? has the \ -square distribution with (A — 1)
degrees of freedom. Then, the value A3, corresponding to the
sample variance of B3(k), can be estimated to have an average of
V" and variance of 2172 /(" — 1). By substituting A3 for V', we
get
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2
A/\=A3 If_-—]__.

‘This expression for A A is the major modification we propose of the
calculation by Sonnerup (1971]. A minor modification is that the
denominator of the first term of (A2b) is not (i — 1) but AA”: the
first term denotes the variance of By, which is identical to 1/ K" if
B3 (k) follows & Gaussian distribution.

(A3)
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