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Abstract The statistical information processing can be characterized

by the likelihood function de�ned by giving an explicit form for an ap-

proximation to the true distribution. This mathematical representation,

which is usually called a model, is built based on not only the current data

but also prior knowledge on the object and the objective of the analysis.

Akaike2, 3) showed that the log-likelihood can be considered as an estimate

of the Kullback-Leibler (K-L) information which measures the similarity

between the predictive distribution of the model and the true distribution.

Akaike information criterion (AIC) is an estimate of the K-L information

and makes it possible to evaluate and compare the goodness of many

models objectively. In consequence, the minimum AIC procedure allows

us to develop automatic modeling and signal extraction procedures. In

this article, we give a simple explanation of statistical modeling based on

the AIC and demonstrate four examples of applying the minimum AIC

procedure to an automatic transaction of signals observed in the earth

sciences.

x1 Introduction: Statistical Modeling
In statistical information processing, a model is built based on not only

the current data but also prior knowledge on the object and the objective of

the analysis, whereas the conventional data analysis techniques rely on simple

manipulation of the current data. To use a proper model for describing the data
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makes it possible to combine various knowledge on the object or the information

from other data sets, and can enhance a scienti�c return from the given data

sets. Namely, necessary information is extracted based on the model. This is

the main feature of statistical information processing.

On the other hand, there is a danger of extracting biased result if an

analysis is made by using improper models. Therefore, in information process-

ing based on a model, use of proper model is crucial. Further for an automatic

statistical information processing procedures, the development of an automatic

statistical modeling procedure is necessary. Akaike information criterion AIC2)

is an objective criterion to evaluate the goodness of �t of statistical model and

facilitates the development of automatic statistical information processing pro-

cedures.

In this paper, we �rst brie
y review the statistical modeling procedure

based on information criterion. Then we shall show examples of developing

statistical information processing for knowledge discovery in various �elds of

earth science.

x2 Information Criterion and Automatic Selec-
tion of Models

The phenomena in real world are usually very complicated and infor-

mation obtained from the real world is in general incomplete and insu�cient.

The models which we obtained from and used for such incomplete information

is inevitably an approximation to the real world. In modeling, it is required to

describe the complex real world as precise as possible by simpler model. How-

ever, if the objective of the modeling is to obtain precise description of the data,

it is not obvious why the model should be simple. A clear answer to this basic

question was given by Akaike2) from a predictive point of view.

In prediction an inference is made on the future data based on the exist-

ing data. In statistical prediction, a model is used for prediction and it controls

the accuracy of the prediction. If, in the modeling, we adhere to mimic the

current data or the phenomenon, then the model will become increasingly more

complicated to reproduce the details of the current data. However, by aiming

at the improvement of predictive ability, it becomes possible to extract essential

information from or knowledge about the object, properly excluding random

e�ects.

Akaike2, 3) proposed to evaluate the goodness of statistical models by the
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goodness of the corresponding predictive distributions. Namely, he proposed to

evaluate the goodness of the statistical models by the similarity between the

predictive distribution of the model and the true distribution that generates the

data YN = [y1; : : : ; yN ], and to evaluate its similarity by the Kullback-Leibler

information quantity. Here N is the number of data. Under the situation that

the true distribution is unknown, it is not possible to compute the Kullback-

Leibler information. However, Akaike showed that the log-likelihood

`(�m) = log fm(YN j�m) (1)

=

NX
n=1

log fm(ynjYn�1; �m); (2)

that has been used for many years as general criterion for the estimation of

parametric models, can be considered as an estimate of the K-L information

(precisely, the expected log-likelihood). Here fm is one of a set of candidate

models for a probability density function of the observation, ffm;m = 1; : : : ;Mg,

which is an approximation to the true distribution, and �m is the parameter

vector of the density fm. In particular case where yn is independently and

identically distributed, (2) can be given as a very simple form

`(�m) =

NX
n=1

log fm(ynj�m): (3)

An optimal parameter estimate, b�m, is de�ned by maximizing the log-likelihood

function with respect to �m.

According to this idea, the maximum likelihood method can be inter-

preted as an estimation method that aims at minimizing the K-L information.

A di�culty arose in the development of automatic modeling procedures, where

the log-likelihoods of the models with parameters estimated from data have bi-

ases as estimators of the K-L information, and thus the goodness of the models

with estimated parameters cannot be compared with this criterion. This bias

occurred because the same data set was used twice for the estimation of param-

eters and for the estimation of the K-L information. Akaike evaluated the bias

of the log-likelihood, and de�ned the information criterion

AICm = �2(log likelihood) + 2(number of parameters)

= �2 log fm(YN jb�m) + 2 k�mk (4)
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by compensating this bias. Here k�mk denotes the dimension of the parameter

vector. By the use of this AIC, it becomes possible to evaluate and compare the

goodness of many models objectively and it enables us to select the best model

among many competing candidates fm(�j�m); m = 1; : : : ;M . As a result, the

minimum AIC procedure allows us to develop automatic modeling and signal

extraction procedures. This is a breakthrough in statistics and helped the change

of statistical paradigm from the estimation within the given stochastic structure

to modeling with unknown structure. Using AIC, various data structure search

procedures and data screening procedures were developed (see e.g., 1, 4, 13)).

As mentioned above, a statistical approach to automatic transaction of

data relies on using the minimum AIC procedure which is based on the max-

imum log-likelihood principle. Then the statistical information processing can

be characterized by using the likelihood function de�ned by giving an explicit

form for an approximation to the true distribution from which the data are gen-

erated. Although the direct application of the AIC is limited to the model with

parameter estimated by the maximum likelihood method, its idea can be applied

to much wider class of models and estimation procedures and various types of

information criteria are developed recently (e.g.,7, 11)).

x3 Least Squares Fit of Regression Models
One of the easiest way to represent random e�ects in the observation

yn is to adopt an observation model in which an observation error (noise) is

assumed to be added to a signal g(nj�)

yn = g(nj�) + "n; "n � N(0; �2); (5)

where "n is an independently and identically distributed (i.i.d.) Gaussian white

noise sequences with mean 0 and unknown variance �2. In this case, the log-

likelihood can be given by (3) and the maximum likelihood estimates is obtained

by minimizing

NX
i=1

[yn � g(nj�)]2. Within this framework, the major e�orts in

developing an automatic procedure are made on preparing a wide variety of

candidates for g(�j�). We shall show two examples. In each case the determina-

tion of the best g(�j�) through the AIC plays an important role in making the

procedure automatic and objective.
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Fig. 1 Magnetic �eld perturbation associated with the LSFAC and �tted polyline.

3.1 Automatic Identi�cation of Large-Scale Filed-Aligned

Current Structure

The plasma stream from the Sun, solar wind, interacts the Earth's mag-

netic �eld and generates three-dimensional current system above the ionosphere.

Because conductance along the magnetic �eld is much higher than that across

the magnetic �eld, the currents 
ow along magnetic �eld lines. Such current is

called the large-scale �eld-aligned currents (LSFAC). LSFACs are also related

to the dynamics of aurorae. Depending on the number of LSFAC sheets crossed

by a satellite and also on the intensity and 
ow direction (upward/downward)

of each LSFAC, a plot of the magnetic 
uctuations associated with the LSFAC

(as shown in Fig. 1), mainly in the east-west (E-W) magnetic component, can

have any shape, and we have been depending on visual examination to identify

LSFAC systems. We developed a procedure to automatically identify the spatial

structure of LSFAC from satellite magnetic �eld measurements.5)

The required task is to automatically �t the �rst-order B-spline func-

tion with variable node positions, which is sometimes called a polyline or linear

spline.8) Namely, we adopt a polyline as g(nj�) mentioned above. Although node

points are �xed in usual spline applications, the bene�t of the spline function can

be maximized when node points are allowed to move.6) We therefore treat a set

of node positions and node values as parameters to be estimated. In addition,

the number of node points, which determines the number of LSFAC sheets, is

one of the �tting parameters. For this modeling, the AIC with J node points is

de�ned by
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AICJ = N log b�2J + 2(2J + 1) + constant; (6)

where b�2
J
is the maximum likelihood estimates of the variance of the observation

error in (5).

We applied the developed procedure to the whole data set of magnetic

�eld measurements made by the Defense Meteorological Satellite Program{F7

(DMSP{F7) satellite during the entire interval of its mission from December

1983 to January 1988. DMSP is a Sun-synchronous satellite with a nearly circu-

lar polar orbit at about 835 km in altitude, and thus the orbital period is about

101 minutes. We divide a data �le of each polar pass into two parts, dayside

and nightside �les, by the data point of the highest-latitude satellite position.

We have a total of 71,594 data �les. Each data �le usually contains from 600 to

800 magnetic �eld vector measurements as well as various geographic and geo-

magnetic parameters necessary for describing a satellite position at observation

time. The sampling interval is 1 second.

The �rst subject made possible by the developed procedure is to �nd a

four-FAC-sheet structure along dayside passes. Ohtani et al. 12) reported only

four events observed by the DMSP{F7. This four-FAC-sheet structure was un-

expected phenomena from a viewpoint of the conventional interpretation of the

LSFAC, and happened to be discovered. The developed procedure found 517

northern and 436 southern passes along which the DMSP{F7 observed four LS-

FACs. This discovery allowed us for the �rst time ever to conduct a statistical

study on what solar wind conditions bring about this peculiar LSFAC. In ad-

dition, the developed automatic procedure to identify the structure of LSFAC

systems can be used to conduct space weather forecasting that is becoming an

important subject in space science, as space environment, because it is in
uential

to the operation of satellites, and more relevant to human activities.

3.2 Automatic Determination of Arrival Time of Seismic

Signal

When an earthquake occurs, its location is estimated from arrival times

of the seismic waves at several di�erent observatories. In Japan, it is neces-

sary to determine it very quickly to evaluate the possibility of causing Tsunami.

Therefore, the development of computationally e�cient on-line method for au-

tomatic estimation of the arrival time of the seismic wave is a very important

problem. At each observatory, three-component seismogram is observed at a

sampling interval of about 0.01 second.
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When seismic wave arrives, the characteristics of the record of seismo-

grams, such as the variances and the spectrum, change signi�cantly. For esti-

mation of the arrival time of the seismic signal, it is assumed that each of the

seismogram before and after the arrival of the seismic wave is stationary and

can be expressed by an autoregressive model as follows 14):

Background model: yn =

mX
i=1

aiyn�i + vn; vn � N(0; �2m)

Seismic signal model: yn =

`X
i=1

biyn�i +wn; wn � N(0; �2` ):

Although the likelihood function of yn for the AR modeling depends on

Yn�1, we can obtain its analytic form as a function of the AR coe�cients. Then,

given the observations, AIC of the locally stationary AR model is obtained by

AICk = k log b�2
m
+ (N � k) log b�2

`
+ 2(m+ `+ 2); (7)

where N and k are the number of data and the assumed arrival time point, and

b�2
m

and b�2
`
are the maximum likelihood estimates of the innovation variances of

the background noise model and the seismic signal model, respectively. In this

locally stationary AR modeling, the arrival time of the seismic wave corresponds

to the change point of the autoregressive model. The arrival time of the seismic

signal can be determined automatically by �nding the minimum of the AICk on

a speci�ed interval.

However, for automatic determination of the change point by the mini-

mum AIC procedure, we have to �t and compare K � (M + 1)2 models. Here

K is the number of possible change points and M is the possible maximum AR

order of background and signal models. The �tting and �nding the minimum

AIC model can be realized computationally e�ciently by using the least squares

method based on the Householder transformation. By this method, the neces-

sary amount of computation is only twice as much as that for the �tting of single

AR model with order M .

Fig. 2A shows a portion of a seismogram of a foreshock of Urakawa-

Oki Earthquake observed at Moyori, Hokkaido, Japan. Fig. 2B shows AICk for

k = 850; : : : ; 1150. From this �gure, it can be seen that the AIC becomes the

minimum at k = 1026. Using the estimated arrival times of seismic signal at

several observatories, it is possible to estimate the epicenter of the earthquake

automatically. Also, the AIC values shown in Fig. 2B can de�ne the likelihood

function for the arrival time. Based on that function, it is expected to be able



8 Genshiro KITAGAWA and Tomoyuki HIGUCHI

850 900 950 1000 1050 1100 1150

-40
-20

0
20

40

850 900 950 1000 1050 1100 1150

472
0

476
0

480
0

Fig. 2 A: Seismic signal. B: AIC value.

to develop a new maximum likelihood type estimator for the epicenter of the

earthquake.

x4 Generalized State Space Model
The two examples shown above are based on the relatively simpler mod-

els which can produce an analytic form of the AIC, because of the simple assump-

tions such that the observation error is an i.i.d. Gaussian white noise sequence

and the regression model is linear. Although the adopted models are suited to

each application, general framework for describing the models is available for

time series data. This framework is called the generalized state space model

which is a generalization of the state space model,9) and is de�ned by

xn � q( � jxn�1; �) [system model] (8)

yn � r( � jxn; �) [observation model] (9)

where xn is the state vector at time n. q and r are conditional distributions

of xn given xn�1 and of yn given xn, respectively. This generalized state space

model can treat the non-Gaussian and non-linear time series model, in contrast

to the ordinary state space model.

For state estimation in the generalized state space model, one step ahead

predictor and �lter can be obtained by the following recursive formulas called

the non-Gaussian �lter:
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[prediction]

p(xnjYn�1) =

Z
1

�1

p(xnjxn�1)p(xn�1jYn�1)dxn�1 (10)

[�ltering]

p(xnjYn) =
p(ynjxn)p(xnjYn�1)

p(ynjYn�1)
; (11)

where we omit a dependency on � for simple notation. p(ynjYn�1) in the �lter-

ing is obtained by

Z
p(ynjxn)p(xnjYn�1)dxn and then the log-likelihood in the

generalized state space model can be de�ned by (2).

4.1 Automatic Data Cleaning

In an attempt to predict big earthquake anticipated in Tokai area, Japan,

various types of measurement devices have been set since 1979. The underground

water level is observed in many observation wells at a sampling interval of 2

minutes for 20 years. However, the actual underground water level data contains

huge amount of (1 % to over 10 %, depending on the year) missing and outlying

observations. Therefore, without proper cleaning procedure, it is di�cult to fully

utilize the information contained in the huge amount of data. We interpolated

the missing observations and corrected the outliers by using a non-Gaussian

state space model:10)

tn = tn�1 +wn; yn = tn + "n; (12)

where wn � N(0; �2). For the observation noise "n, we considered Gaussian

mixture distribution

"n � (1� �)N(0; �2
0
) + �N(�; �2

1
); (13)

where � is the rate of contaminated observations, �2
0
the variance of ordinary

observations and � and �2
1
are the mean and variance of the outliers. Such a

density allows the occurrence of large deviations with a low probability. In this

model, a set of [�2; �; �2
0
; �; �2

1
] is the parameter vector � to be optimized. For

the �ltering and smoothing of the non-Gaussian state space model, we applied

the non-Gaussian �lter and smoother 9). By this Gaussian-mixture modeling of

the observation noise, the essential signal tn is extracted automatically taking

account of the e�ect of the outliers and �lling in the missing observations.
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4.2 Finding out the E�ect of Earthquake in Underground

Water Level Data

Even after �lling in the missing observations and correcting the out-

liers, the underground water level is very variable. Further, because the data

is a�ected by many other covariates such as barometric air pressure, earth tide

and precipitation, it is almost impossible to extract the e�ect of earthquake by

simple manipulation of the data. In an attempt to account for the e�ect of the

covariates on the underground water level, we considered the following model,

yn = tn + Pn + En +Rn + "n; (14)

where tn, Pn, En, Rn and "n are the trend, the barometric pressure e�ect,

the earth tide e�ect, the rainfall e�ect and the observation noise components,

respectively.10) We assumed that those components follow the models

rktn = wn; Pn =

mX
i=0

aipn�i; (15)

En =

`X
i=0

bietn�i; Rn =

kX
i=1

ciRn�i +

kX
i=1

dirn�i + vn:

Here pn, etn and rn are the observed barometric pressure, the earth tide and

the observed precipitation at time n, respectively. These components can be

estimated by the state space representation of (8) and (9) and by the use of

Kalman �lter and the �xed interval smoother.

Fig. 3B-E show the extracted coseismic e�ect, air pressure e�ect, earth

tide e�ect and precipitation e�ect obtained by the Kalman smoother. The annual

variation of the trend is only about 6cm and the e�ect of the earthquake with

magnitude M=4.8, at a distance D=42 km, is clearly detected. Most of the

range of about 45 cm trend variations in Fig. 3A can be considered as the e�ect

of barometric pressure, etc.

Fig. 4 shows the scatter plot of the earthquakes with log-distance as the

horizontal axis and the magnitude as the vertical axis. The earthquakes with


-label have detected coseismic e�ects over 8 cm. Whereas the box and4-labeled

events indicate the earthquakes with coseismic e�ects over 4 and 1 cm. The +

labeled events indicate earthquakes without coseismic e�ects over 1 cm. Two

lines in the �gure are de�ned by

�M =M � 2:62 log
10
D = C
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Fig. 3 A: A segment of the water level data. B: The extracted seismic e�ect.
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Fig. 4 Scatter plot of the earthquakes.10)

for C = 0 and 1.

From the analysis of over 10 years data, we obtained the following impor-

tant �ndings: (1) The drop of water level can be seen for most of the earthquakes

with magnitude larger than M > 2:62 log
10
D + 0:2, where D is the hypocen-

tral distance. (2) The amount of the drop can be explained as a function of

M � 2:62 log
10
D. (3) Except for the coseismic e�ect drop, the trend regularly

increases at the rate of about 6cm per year.

x5 Summary
In statistical approach to knowledge discovery, a proper modeling of the

object is a crucial step. In this paper, we introduced an automatic procedure

based on Akaike information criterion, AIC. We demonstrated four applications

of the minimumAIC procedure to the actual large data sets observed in the earth

science. In each case, an appropriate representation of the signals enables us to

give an explicit form of the AIC and results in the realization of an automatic

procedure to handle a large amount of data sets.
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