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S U M M A R Y
In the last decade, continuous Global Positioning System (GPS) networks have observed
transient crustal deformation associated with various types of aseismic fault-slip event in
many subduction zones. It is important to precisely clarify the entire time history of these
events to understand the physical process of earthquake generation. For this purpose, we
have developed a new time-dependent inversion method for imaging transient fault slips from
geodetic data. Segall & Matthews (1997) presented a time-dependent inversion method to infer
the spatiotemporal distribution of fault slip from geodetic data. They modelled a transient
crustal deformation associated with fault-slip events using a linear Gaussian state space model
and employed a Kalman filter. They introduced a scaling parameter that represents the temporal
smoothness of the fault slip, and assumed that the scaling parameter is constant over the
observation period. Under this assumption, abrupt changes of slip have been overly smoothed,
whereas estimated slips in a ‘quiet’ steady-state period have been oscillatory. To improve
the method, we developed a new filtering technique, a Monte Carlo mixture Kalman filter
(MCMKF), and apply it to time-dependent inversion. The MCMKF allows variations of the
temporal smoothness of slips by regarding it as a stochastic variable. The MCMKF is based
on a Monte Carlo method in which conditional probability density functions of the stochastic
variable are estimated recursively. We examine the validity of the introduced MCMKF-based
inversion scheme through numerical experiments using simulated displacement time-series.
Then, the results are compared with those obtained by a conventional Kalman filter-based
scheme. In all cases, MCMKF gives a significantly smaller Akaike information criterion (AIC)
values than the Kalman filter. This indicates that MCMKF yields better state estimates than
the Kalman filter. We also find that MCMKF is capable of imaging the initiation process of
transient slip events in cases with a high signal-to-noise ratio, while the Kalman filter is not.
Furthermore, MCMKF is superior to the Kalman filter in detecting small signals from noisy
data sets. From all of the results above, we conclude that the new filtering approach introduced
here may provide a powerful tool for imaging the time history of fault slips.

Key words: conditional dynamic linear model, fault slip, geodetic data, Monte Carlo mixture
Kalman filter, time-dependent inversion, transient crustal deformation.

1 I N T RO D U C T I O N

Continuous measurements of surface deformation with dense Global Positioning System (GPS) networks have revealed that transient crustal
deformations, the durations of which vary from hours to years, play a very important role in seismic cycles as well as the mechanism of rupture
propagation. For example, the 1994 Sanriku-Haruka-Oki earthquake was accompanied by a significant afterslip and almost the same amount
of moment was released by the decaying transient slip during the following year (e.g. Heki et al. 1997). Besides such post-seismic transient
events, we have witnessed other slow slip events in the last decade, which include slow thrust slip events in central Japan (e.g. Ozawa et al.
2002), southwest Japan (e.g. Hirose et al. 1999) and the Pacific Northwest (e.g. Dragert et al. 2001). These transient events may be responsible
for the discrepancy between two estimations of seismic coupling, one derived from the seismic slip and recurrence interval (e.g. Pacheco et al.
1993) and the other inverted from GPS station velocities (e.g. Ito et al. 2000). Yagi (2002) recently showed that the area of seismic rupture,
called the asperity, is complementary to that of aseismic slow slip. Heterogeneous frictional and mechanical conditions may be responsible
for such variations of rupture modes. Accurate estimates of spatiotemporal characteristics of the subducting plate interface are very important
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for understanding how large interplate earthquakes or slow events occur. From a geodetic viewpoint, it is important to investigate the detailed
spatiotemporal process of slow events and dense GPS array records provide the most suitable data for this end.

Several studies have tried to image the spatiotemporal variation of transient fault slip. Segall & Matthews (1997) presented one efficient
way to retrieve slip distribution. They modelled the space–time history of fault slip using a linear Gaussian state space model (e.g. Kitagawa
& Gersch 1996), and employed a Kalman filter (e.g. Kitagawa & Gersch 1996). This method is referred to as the network inversion filter
(NIF). The NIF has several advantages over other techniques. First, the NIF employs a non-parametric description of fault-slip evolution.
Thus we do not need to know a priori the nature of time dependence of the transient slip. Second, the NIF models random benchmark motions
(Langbein & Johnson 1997; Wyatt 1982) in a stochastic manner. Accordingly, it can distinguish spatially coherent transient signals from
spatially incoherent random benchmark motions. Their Kalman filter-based method has been updated and applied to several cases (e.g. Aoki
et al. 1999; Segall et al. 2000; Ozawa et al. 2001, 2002; Bürgmann et al. 2001; Miyazaki et al. 2003; McGuire & Segall 2003).

In the Segall–Matthews model, a stochastic model is used for the non-parametric description of fault-slip evolution. The temporal
smoothness of the fault slip is controlled by an optimized scaling parameter of the stochastic model employed. This scaling parameter, often
referred to as a hyperparameter, is optimized with the maximum-likelihood method. In the Kalman filter framework, the scaling parameter
is kept fixed over the observation period. However, the temporally invariable scaling parameter could not trace abrupt changes because the
optimized scaling parameter is too small to allow such a sudden change of fault slip, and vice versa. As a result, estimated slip evolution
is flattened during the event and is oscillatory in the steady-state period; hence, it is hardly possible to identify the initiation of events.
One of the clear manifestations of this difficulty can be found in the work of Ozawa et al. (2001) and Miyazaki et al. (2003). In 1996 and
1997, transient crustal deformation was observed in southwest Japan by the Japanese nationwide GPS network Hirose et al. (1999). Hirose
et al. (1999) attributed the deformation to afterslips of two Hyuganada earthquakes, both M w = 6.7, which occurred on 1996 October 19
and December 2, and a slow slip event, which occurred beneath Bungo Channel in 1997. Ozawa et al. (2001) and Miyazaki et al. (2003)
investigated spatiotemporal slip distribution based on the NIF. Ozawa et al. (2001) found that the slow slip event started shortly before or
immediately after the first Hyuganada earthquake, whereas Miyazaki et al. (2003) found that the event was initiated 1 month after the second
Hyuganada earthquake. This difference may stem from the assumption of constancy for the scaling parameter in both cases and a difference
in its optimization strategy. The constancy of the scaling parameter seems to obscure the causal relationship among multiple events, and hence
motivated us to explore a new approach to time-dependent inversion such that the scaling parameter is variable over time. This generalization
may allow us to uncover small transient phenomena hidden in noisy time-series and help us to understand the mechanism of the earthquake
generation process.

In the present study, we developed a new filtering algorithm called the Monte Carlo mixture Kalman filter (MCMKF) for imaging
time-dependent fault slip from geodetic data. This filter is capable of optimizing the temporal variation of the scaling parameter. In Section 2
we formulate forward models for a transient deformation. The new filtering method is shown in Section 3. In Section 4, the validity of the
proposed method is examined through numerical experiments using simulated data.

2 M O D E L S F O R T R A N S I E N T D E F O R M AT I O N

We employ state space representation (Anderson & Moore 1979; Kitagawa & Gersch 1996) to model transient deformation. State space
representation consists of an observation model and a system model. The observation model relates fault slip at depth to surface displacements
and the system model describes the time evolution of the fault slip based on system dynamics.

2.1 Observation model

We consider a tangential displacement discontinuity s(ξ, t) at a point ξ and at a time t, on a fault surface A(ξ) embedded in a homogeneous,
isotropic, elastic half space as shown in Fig. 1. Let u(x, t) be a cumulative surface displacement as a function of station position x and time

x1

x2

x3

n
s

ξ

A

Figure 1. A schematic diagram showing the coordinate system and the geometry of a fault surface. A denotes a fault surface embedded in a homogeneous,
isotropic, elastic half-space (x 3 ≤ 0). s is a slip vector and n is a unit normal to the fault surface A.
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of measurement t. We model the surface displacements at x = x j and t = tn by

ui (x j , tn) = µ

3∑
p=1

3∑
q=1

∫
A

sq (ξ, tn)[Gip,q (x j , ξ) + Giq,p(x j , ξ)]n p(ξ) d A(ξ) + Li (x j , tn) + ei jn (1)

where the left-hand side is the ith component of u(xj, tn).
The first term on the right-hand side of eq. (1) represents the surface displacement due to cumulative slip s(ξ, t) on the fault surface A(ξ),

where G ip,q (x, ξ) is a spatial derivative of Green’s tensor Gip(x, ξ) with respect to ξ q , np(ξ) is the pth component of a unit normal to the fault
surface and µ is the rigidity of the medium. The analytical expressions of Gip,q are given by Okada (1992).

The second term on the right-hand side of eq. (1),Li (x j , tn), represents temporally correlated noise in measurement time-series (Langbein
& Johnson 1997; Wyatt 1982, 1989). This noise results from small random motions of geodetic monuments, due mainly to interactions between
surface soils and weather (Langbein & Johnson 1997). Thus, the effect is expected to be spatially incoherent, whereas tectonic deformation
is spatially coherent. Segall & Matthews (1997), who incorporated random benchmark motion into the NIF, succeeded in separating it from
tectonic deformation. Therefore, we also incorporate random benchmark motion into our models.

The final term of eq. (1), eijn, represents the observational error that is assumed to follow a Gaussian distribution with zero mean and
covariance σ 2�n , where �n is a data covariance matrix and σ 2 is an unknown hyperparameter. In the case of GPS data, �n is a covariance
matrix of GPS site coordinates derived from GPS data analysis. Because the analysis software does not fully model all error sources such as
multipath or azimuthally varying path delays, the scale factor σ 2 is introduced to account for these error sources.

In the present study, we only consider shear dislocation. The slip vector s(ξ, t) is represented in terms of two unit basis vectors ν 1(ξ) and
ν 2(ξ) on the fault surface as follows:

s(ξ, t) = s ′
1(ξ, t)ν1(ξ) + s ′

2(ξ, t)ν2(ξ). (2)

At the same time, s(ξ, t) is written using a set of arbitrarily selected orthonormal basis vectors ei (i = 1, 2, 3) as follows:

s(ξ, t) = s1(ξ, t)e1 + s2(ξ, t)e2 + s3(ξ, t)e3. (3)

Combining eqs (2) and (3) yields

sq (ξ, t) =
2∑

r=1

s ′
r (ξ, t)νr (ξ) · eq , q = 1, 2, 3. (4)

We represent the slip distribution s ′
r (ξ, t) (r = 1, 2) as a linear combination of spatial basis functions B(r )

k (ξ) with temporally variable
coefficients c(r)

k (t)

s ′
r (ξ, t) =

Mr∑
k=1

c(r )
k (t)B(r )

k (ξ), r = 1, 2 (5)

where B(r )
k (ξ) is the kth basis function for slip in the ν r (ξ) direction, c(r)

k (t) is the coefficient of B(r )
k (ξ) and Mr is the number of basis function

for s′
r(ξ, t).
Substituting (4) and (5) into (1) yields

ui (x j , tn) =
2∑

r=1

Mr∑
k=1

c(r )
k (tn)K(r )

ik (x j ) + Li (x j , tn) + ei jn (6)

where

K(r )
ik (x) = µ

∫
A
B(r )

k (ξ)
3∑

p=1

3∑
q=1

[Gip,q (x, ξ) + Giq,p(x, ξ)](νr (ξ) · eq )n p(ξ) d A(ξ). (7)

From (6), the observation model is represented as follows:

yn = Hxn + wn, wn ∼ N (0, Rn) (8)

where

yn = [u1(x1, tn), u1(x2, tn), · · · , u1(xN1 , tn), u2(x1, tn), u2(x2, tn), · · · , u2(xN1 , tn),

u3(x1, tn), u3(x2, tn), · · · , u3(xN2 , tn)]T
(9)

xn = [
c(1)

1 (tn), c(1)
1 (tn−1), c(1)

2 (tn), c(1)
2 (tn−1), · · · , c(1)

M1
(tn), c(1)

M1
(tn−1),

c(2)
1 (tn), c(2)

1 (tn−1), c(2)
2 (tn), c(2)

2 (tn−1), · · · , c(2)
M2

(tn), c(2)
M2

(tn−1),

L1(x1, tn),L1(x2, tn), · · · ,L1(xN1 , tn),

L2(x1, tn),L2(x2, tn), · · · ,L2(xN1 , tn),

L3(x1, tn),L3(x2, tn), · · · ,L3(xN2 , tn)
]T (10)

wn = [
e11n, e12n, · · · , e1N1n, e21n, e22n, · · · , e2N1n, e31n, e32n, · · · , e3N2n

]T
(11)
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H = [
K(1)J

(1) K(2)J
(2)

INd ×Nd

]
(12)

J
(r ) =




1 0 0 0 · · · 0 0

0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0


 , r = 1, 2 (13)

Rn = σ 2�n . (14)

Here, N 1 and N 2 are the number of stations that observe horizontal and vertical displacement, respectively, and Nd = 2N 1 + N 2 is total
number of time-series. yn is an Nd-dimensional data vector, wn is an Nd-dimensional observational error vector and xn is a 2M 1 + 2M 2 +
Nd = 2M + Nd-dimensional state vector at time tn, respectively, where M = M 1 + M 2 is the total number of basis functions. H is an Nd ×
(2M + Nd) matrix and Ii× j denotes an i × j identity matrix. K(1) is an Nd × M 1 matrix and K(2) is an Nd × M 2 matrix. J(1) is an M 1 × 2M 1

matrix and J(2) is an M 2 × 2M 2 matrix. Rn is an Nd × Nd matrix.

2.2 System model

Next, we introduce a system model to describe the temporal evolution of state variables. For temporal variations of a fault slip, we employ a
non-parametric description in which slip acceleration is nearly zero (Segall & Matthews 1997). Discretizing c̈(r )

k (tn) = δ
(r )
nk yields

c(r )
k (tn) = 2c(r )

k (tn−1) − c(r )
k (tn−2) + δ

(r )
nk , δ

(r )
nk ∼ N

(
0, α2

n

)
. (15)

System noise δ
(r)
nk is interpreted as a slip acceleration for the basis function B(r )

k at time tn, and is assumed to follow a Gaussian distribution
with mean 0 and variance α2

n, where α2
n is the temporally variable variance of slip acceleration.

For temporal variations of random benchmark motion we employ Brownian random walk with scale parameter τ (Langbein & Johnson
1997; Wyatt 1982, 1989) following Segall & Matthews (1997):

Li (x j , tn) = Li (x j , tn−1) + νi jn, νi jn ∼ N (0, τ 2) (16)

where τ is an unknown hyperparameter. In (15) and (16), dependency of αn and τ on tn − tn−1 is included.
Combining (15) and (16) yields the following system model:

xn = Fnxn−1 + vn, vn ∼ N (0, Qn) (17)

where

vn = [
δ

(1)
n1 , 0, δ

(1)
n2 , 0, · · · , δ(1)

nM1
, 0, δ

(2)
n1 , 0, δ

(2)
n2 , 0, · · · , δ(2)

nM2
, 0,

ν11n, ν12n, · · · , ν1N1n, ν21n, ν22n, · · · , ν2N1n, ν31n, ν32n, · · · , ν3N2n

]T
(18)

Fn =




F
W
n 0 · · · 0 0

0 F
W
n · · · 0 0

...
...

. . .
...

...

0 0 · · · F
W
n 0

0 0 · · · 0 INd ×Nd




(19)

F
W
n =

[
2 −1

1 0

]
(20)

Qn =




α2
nQ

W
n 0 · · · 0 0

0 α2
nQ

W
n · · · 0 0

...
...

. . .
...

...

0 0 · · · α2
nQ

W
n 0

0 0 · · · 0 τ 2INd ×Nd




(21)

Q
W
n =

[
1 0

0 0

]
. (22)

Fn and Qn are (2M + Nd) × (2M + Nd) matrices and system noise vn is a 2M + Nd-dimensional vector.
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3 M O N T E C A R L O M I X T U R E K A L M A N F I LT E R

3.1 Conditional dynamic linear model

The previous studies (e.g. Segall & Matthews 1997) treated αn/σ as a temporally invariable parameter. To allow for temporal variations of
αn, we treat αn/σ as a stochastic variable. Note that σ is assumed to be temporally invariable, whereas αn is temporally variable. We first
prepare a finite number of candidate values for αn/σ , {a (1), · · · , a (m)}, where m denotes the number of candidates. Then, we introduce a
discrete stochastic variable In , an indicator variable, which takes an integer value among {1, · · · , m}. A value of In specifies which of the
candidates is selected at t = tn. For example, In = λn means that the value of αn/σ at t = tn is equal to the candidate a(λn). Therefore, it is
sufficient to estimate In to obtain temporal variation of αn/σ .

Given a realization of In, λn , we can represent the system model (17) and the observation model (8) as follows:

xn = Fnxn−1 + vn, vn ∼ N
(
0, σ 2Q̃n(λn)

)
(23)

yn = Hxn + wn, wn ∼ N
(
0, σ 2R̃n

)
(24)

where

Q̃n(λn) =




a2
(λn )Q

W
n 0 · · · 0 0

...
...

. . .
...

...
0 0 · · · a2

(λn )Q
W
n 0

0 0 · · · 0 τ 2/σ 2INd ×Nd


 (25)

R̃n = �n (26)

with QW
n defined in (22). It should be noted that (23) and (24) are not the linear Gaussian state space model (e.g. Kitagawa & Gersch 1996)

that is employed by Segall & Matthews (1997). Eqs (23) and (24) are a special form of the conditional dynamic linear model (CDLM) (Chen
& Liu 2000). The difference between the CDLM and the linear Gaussian state space model is as follows. In the CDLM, some matrices in
state space representation are conditional on an unknown stochastic variable (Chen & Liu 2000). On the other hand, in the linear Gaussian
state space model, these matrices do not depend on any stochastic variables. In (23) and (24), Q̃n is conditional on the stochastic variable In .
Therefore, (23) and (24) are the CDLM. The most important characteristic of the CDLM is that it reduces to the linear Gaussian state space
model if a realization of the stochastic variable is given (Chen & Liu 2000). In the case of (23) and (24), they reduce to the linear Gaussian
state space model if λn, a realization of the stochastic variable In , is given. Hence, the conditional density function of the state xn given the
observation y1: j = (y1, . . . , y j ) and realizations of the indicator variable λ1:k = (λ1, . . . , λk) (k ≥ n) follows a Gaussian distribution:

p(xn|λ1:k, y1: j ) ∼ N (xn(λn), Vn(λn)) (27)

where the state vector xn(λn) and its covariance matrix Vn(λn) are functions of λn. Given λn , xn(λn) and Vn(λn) are recursively obtained using
the Kalman filter and smoother (e.g. Kitagawa & Gersch 1996). The conditional density p(xn| y1: j ) is expressed by

p(xn|y1: j ) =
∫

p(xn|λ1:k, y1: j )p(λ1:k |y1: j ) dλ1:k (28)

where p(xn|λ1:k , y1: j ) is the Gaussian distribution given by (27). Because In is the discrete stochastic variable, (28) reduces to weighted sum
of the Gaussian distributions.

To estimate time evolution of In , it is necessary to specify a stochastic model that describes a time-dependent structure for In . In this
study, In is assumed to follow a stationary Markov process, i.e.

p(In|I1:n−1) = p(In|In−1) (29)

where Ii : j = (Ii ,Ii+1, · · · ,I j ) is a set of indicator variable from time ti to time tj. Evolution of In is realized by the Markov switching model
with transition probability given by

πi j = Pr(In = j |In−1 = i) (30)

where Pr denotes realization probability.
In the following subsections, we present an algorithm that determines the time evolution of In and xn. We call this algorithm the Monte

Carlo mixture Kalman filter (MCMKF).

3.2 Monte Carlo approximation

In contrast to the previous studies in which αn/σ is regarded as a parameter (e.g. Segall & Matthews 1997), in this study αn/σ is regarded
as a function of the stochastic variable In . Therefore, it is necessary to estimate the probability distribution of In rather than its value. The
MCMKF algorithm consists of two steps. First, the temporal variation of the probability distribution of the indicator variable In is determined.
Second, the temporal variation of the probability distribution of the state vector xn is estimated following the history of In .
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Let yi:j be a set of data vectors from time ti to time tj, i.e. yi : j = (yi , yi+1, · · · , y j ). In the MCMKF, two conditional joint distributions of
I1:n : (i) predictive distribution p(I1:n|y1:n−1) and (ii) filter distribution p(I1:n|y1:n), are approximated by many ‘particles’ that can be considered
to be independent realizations from each joint distribution. Let I ( j)

1:i |k = (I ( j)
1|k ,I

( j)
2|k , · · ·I ( j)

i |k ) be the jth realization (particle) of the conditional
joint distribution p(I1:i |y1:k). Each distribution is approximated by Np (Np � 1) realizations as follows:{
I (1)

1:n|n−1,I
(2)
1:n|n−1, · · · ,I (Np )

1:n|n−1

} ∼ p(I1:n|y1:n−1) (31)

{
I (1)

1:n|n,I
(2)
1:n|n, · · · ,I (Np )

1:n|n
} ∼ p(I1:n|y1:n). (32)

Eqs (31) and (32) mean that the predictive and the filter distributions are approximated by the following probability density functions:

p(I1:n|y1:n−1) = 1

Np

Np∑
j=1

δ
(
I1:n − I ( j)

1:n|n−1

)
(33)

p(I1:n|y1:n) = 1

Np

Np∑
j=1

δ
(
I1:n − I ( j)

1:n|n
)

(34)

where δ(x) is the delta function for the discrete variable x defined by δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. Eqs (33) and (34) are equivalent
to the probabilities

Pr
(
I1:n = I ( j)

1:n|n−1|y1:n−1

) = 1

Np
(35)

Pr
(
I1:n = I ( j)

1:n|n|y1:n

) = 1

Np
(36)

which mean all the particles have the same probability, or they are equally weighted. In this study, we refer to{
I (1)

1:n|n−1,I
(2)
1:n|n−1, · · · ,I (Np )

1:n|n−1

}
and

{
I (1)

1:n|n,I
(2)
1:n|n, · · · ,I (Np )

1:n|n
}

as the ‘approximated predictive distribution’ and ‘approximated filter distribution’, respectively. Because I ( j)
n = I ( j)

n|k (k = n − 1 or n) is a
realization of the distribution of In , the CDLM defined by (23) and (24) is satisfied for each I ( j)

n ( j = 1, · · · , Np):

x( j)
n = Fnx( j)

n−1 + v( j)
n , v( j)

n ∼ N
(
0, σ ( j)2Q̃n

(
I ( j)

n

))
(37)

yn = Hx( j)
n + w( j)

n , w( j)
n ∼ N

(
0, σ ( j)2R̃n

)
(38)

where Q̃n(I ( j)
n ) is given by (25) and σ (j) is the scaling factor for the data covariance for the jth particle. Starting from {I (1)

0|0, . . . ,I
(Np )
0|0 } which

are realizations of an initial distribution for In , p(I0), we show that a set of particles approximating the predictive distribution and the filter
distribution are obtained recursively in two steps:

Prediction:
{
I (1)

1:n−1|n−1, · · · ,I (Np )
1:n−1|n−1

} −→ {
I (1)

1:n|n−1, · · · ,I (Np )
1:n|n−1

}
(39)

Filtering:
{
I (1)

1:n|n−1, · · · ,I (Np )
1:n|n−1

} −→ {
I (1)

1:n|n, · · · ,I (Np )
1:n|n

}
. (40)

3.3 Prediction

In this subsection, we show that an approximated predictive distribution at time tn, {I (1)
1:n|n−1, · · · ,I (Np )

1:n|n−1} is obtained from an approximated
filter distribution at time tn−1, {I (1)

1:n−1|n−1, · · · ,I (Np )
1:n−1|n−1}. We assume that {I (1)

1:n−1|n−1, · · · ,I (Np )
1:n−1|n−1} and y1:n−1 are given. Then the predictive

distribution p(I1:n|y1:n−1) is expressed by

p(I1:n|y1:n−1) = p(In,I1:n−1|y1:n−1)

= p(In|I1:n−1, y1:n−1)p(I1:n−1|y1:n−1)

= p(In|I1:n−1)p(I1:n−1|y1:n−1)

= p(In|In−1)
1

Np

Np∑
j=1

δ
(
I1:n−1 − I ( j)

1:n−1|n−1

)

= 1

Np

Np∑
j=1

p
(
In|In−1 = I ( j)

n−1|n−1

)
.

(41)

Here, we used the Markovian assumption in the third and the fourth equalities, (34) in the fourth equality, and the property of the delta function
in the last equality. Eq. (41) indicates that I ( j)

1:n|n−1, the jth particle of the approximated predictive distribution, is obtained by generating a
realization I ( j)

n|n−1 from the distribution p(In|In−1 = I ( j)
n−1|n−1), and setting I ( j)

1:n|n−1 = (I ( j)
1:n−1|n−1,I

( j)
n|n−1). Note that p(In|In−1 = I ( j)

n−1|n−1) is
given by the Markovian transition probability defined by (30). More specifically, Np particles I ( j)

1:n|n−1 ( j = 1, . . . , Np) can be obtained by the
following algorithm:

For j = 1, . . . , Np, repeat the following steps (i)–(iii).
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(i) Generate a uniform random number u( j)
n ∈ U (0, 1) where U(0, 1) denotes uniform distribution over the interval [0,1).

(ii) Find i that satisfies
∑i−1

k=1 Pr(In = k|In−1 = I ( j)
1:n−1|n−1) ≤ u( j)

n <
∑i

k=1 Pr(In = k|In−1 = I ( j)
1:n−1|n−1).

(iii) Obtain I ( j)
1:n|n−1 by I ( j)

1:n|n−1 = i .

3.4 Filtering

In this subsection, we show that an approximated filter distribution at time tn, {I (1)
1:n|n, · · · ,I (Np )

1:n|n} is obtained from an approximated predictive
distribution at time tn, {I (1)

1:n|n−1, · · · ,I (Np )
1:n|n−1}. Though all the particles approximating the predictive distribution have the same probability, or

they are equally weighted (see eq. 35), they do not have the same probability any longer after the given data yn. Given the observation yn, the
posterior probability of the particle I ( j)

1:n|n−1 is expressed by

Pr
(
I1:n = I ( j)

1:n|n−1|y1:n

)
= Pr

(
I1:n = I ( j)

1:n|n−1|y1:n−1, yn

)

= p
(
yn|I1:n = I ( j)

1:n|n−1, y1:n−1

)
Pr

(
I1:n = I ( j)

1:n|n−1|y1:n−1

)
∑Np

i=1 p
(
yn|I1:n = I (i)

1:n|n−1, y1:n−1

)
Pr

(
I1:n = I (i)

1:n|n−1|y1:n−1

)
= w( j)

n (1/Np)∑Np
i=1 w

(i)
n (1/Np)

= w( j)
n∑Np

i=1 w
(i)
n

(42)

where w(j)
n can be regarded as the importance weight of the jth particle and is given by

w( j)
n = p

(
yn|I1:n = I ( j)

1:n|n−1, y1:n−1

)
. (43)

We used Bayes’ theorem in the second equality of (42) and (35) in the third equality of (42). From (42), the probability density function
associated with Pr(I1:n = I ( j)

1:n|n−1|y1:n) is expressed by

1∑Np
i=1 w

(i)
n

Np∑
j=1

w( j)
n δ

(
I1:n − I ( j)

1:n|n−1

)
. (44)

This means that the particle I ( j)
1:n|n−1 with probability or weight w( j)

n /
∑Np

i=1 w(i)
n can be considered to be a realization of the filter distribution

p(I1:n|y1:n). Because we have assumed in (36) that all the particles approximating the filter distribution are equally weighted, it is necessary
to represent (44) by the probability density function of the form (34). This is achieved by generating Np particles {I (1)

1:n|n, · · · ,I (Np )
1:n|n} by the

resampling (sampling with replacement, i.e. a particular particle can be sampled more than once, others not at all) of {I (1)
1:n|n−1, · · · ,I (Np )

1:n|n−1}
with sampling probabilities

Pr
(
I1:n = I ( j)

1:n|n−1|y1:n

) = w( j)
n∑Np

i=1 w
(i)
n

, for i = 1, · · · , Np. (45)

More specifically, the resampling algorithm proceeds as follows:
For j = 1, . . . , Np, repeat the following steps (i)–(iii).

(i) Generate a uniform random number u( j)
n ∈ U (0, 1) where U(0, 1) denotes uniform distribution over the interval [0,1).

(ii) Find i that satisfies 1
C

∑i−1
l=1 w(l)

n ≤ u( j)
n < 1

C

∑i
l=1 w(l)

n where C = ∑Np
l=1 w(l)

n .

(iii) Multiply I (i)
1:n|n−1 to obtain I ( j)

1:n|n by I ( j)
1:n|n = I (i)

1:n|n−1.

Intuitively, the resampling procedure can be considered as a ‘selection procedure’ multiplying/discarding particles I ( j)
1:n|n−1 with high/low

importance weights w(j)
n to obtain Np particles I ( j)

1:n|n . The importance weight w(j)
n for each particle can be obtained using the Kalman filter.

The derivation of w(j)
n is given in Appendix A.

A summary of one cycle of the prediction and the filtering steps is graphically illustrated in Fig. 2. Using the prediction and the filtering
algorithms recursively, we finally obtain Np particles {I (1)

1:Ne|Ne
, · · · ,I (Np )

1:Ne|Ne
} that approximate p(I1:Ne |y1:Ne ), the posterior distribution of I1:Ne

conditioned on all of the available data. Here, N e is the number of observation epochs. p(I1:Ne |y1:Ne ) is called a smoother distribution of I1:Ne .
A sequence of each particle, I ( j)

1:Ne|Ne
= [I ( j)

1|Ne
,I ( j)

2|Ne
, · · · ,I ( j)

Ne|Ne
], is called the trajectory.

This filtering algorithm is conceptually similar to the storing state vector algorithm in the Monte Carlo filter proposed by Kitagawa (1996).
He applied the Monte Carlo approximation directly to the distribution of the state, whereas we apply the approximation to the distribution
of the indicator variable. He showed that in the Monte Carlo filter the repetition of resampling gradually decreases the number of different
realizations of the state vector as time passes, because the number of realizations is finite. Therefore, the shape of the distribution of the state
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I(j)
1:n−1|n−1 I(j)

1:n|n−1 I(j)
1:n|nI(j)

1:n|n−1

Prediction Filtering
Resamplingw(j)

nEvaluate

Data yn

tn−1 tn tn tn

Figure 2. Graphical representation of the prediction and the filtering algorithms for one time step. The vertical axis denotes value of the indicator variable.
The solid circles denote the particles and the area of the particles is proportional to their weights. Starting with the equally weighted particles at time tn−1 (the
first column), a new set of particles is generated at time tn (the second column). Then we evaluate the importance weight of each particles (the third column).
Finally, we multiply/discard particles with high/low importance weights to obtain equally weighted particles at time tn (the fourth column).

deteriorates as time passes. Kitagawa (1996) showed that this difficulty can be eliminated by employing fixed L-lag smoother rather than a
fixed-interval smoother. Although we apply the Monte Carlo approximation to the indicator variable instead of the state, this situation also
applies to the MCMKF. Thus, following Kitagawa (1996), we modify the MCMKF filtering algorithm as follows:

For fixed L, generate Np particles {I (1)
n−L:n|n,I

(2)
n−L:n|n, · · · ,I (Np )

n−L:n|n} by the resampling of {I (1)
n−L:n|n−1,I

(2)
n−L:n|n−1, · · · ,I (Np )

n−L:n|n−1} with the
sampling probability defined by (45).

Kitagawa (1996) recommended not to make L too large (say, 10 or 20 at the largest 50). We adopt L = 20 in our application study shown
in Section 4.

3.5 Estimation of the state

We present here an algorithm to estimate the state using all of the Np trajectories {I (1)
1:Ne|Ne

, · · · ,I (Np )
1:Ne|Ne

}. Given {I (1)
1:Ne|Ne

, · · · ,I (Np )
1:Ne|Ne

}, Q̃n(I ( j)
n ) =

Q̃n(I ( j)
n|Ne

)( j = 1, · · · , Np) in (37) reduce to sets of known matrices, which have different time evolutions corresponding to the trajectories. In
this case, the CDLM defined by (37) and (38) reduces to Np linear Gaussian state space models ( j = 1, . . . , Np):

x( j)
n = Fnx( j)

n−1 + v( j)
n , v( j)

n ∼ N
(
0, σ ( j)2Q̃n

(
I ( j)

n|Ne

))
(46)

yn = Hx( j)
n + w( j)

n , w( j)
n ∼ N

(
0, σ ( j)2R̃n

)
. (47)

Let

x( j)
i |k = E

(
xi |y1:k,I1:Ne = I ( j)

1:Ne|Ne

)
(48)

and

σ ( j)2V ( j)
i |k = Cov

(
xi |y1:k,I1:Ne = I ( j)

1:Ne|Ne

)
(49)

be the conditional mean and the covariance matrix of the state at time ti given data y1:k for the jth trajectory. Then{
x( j)

n+1|n, V ( j)
n+1|n

}Np

j=1
,

{
x( j)

n|n, V ( j)
n|n

}Np

j=1
and

{
x( j)

n|Ne
, V ( j)

n|Ne

}Np

j=1

are recursively obtained by applying the Kalman filter and smoother algorithm (e.g. Kitagawa & Gersch 1996) to the jth state space model.
The unknown hyperparameter σ (j) is estimated by maximizing likelihood for the jth trajectory (see Appendix B for derivation of σ (j)). Given
{x( j)

n|Ne
, σ ( j)2V ( j)

n|Ne
}Np

j=1, the distribution of the final estimate for xn, p(xn|y1:Ne ), is written as

p(xn|y1:Ne ) =
Np∑
j=1

p
(
xn,I1:Ne = I ( j)

1:Ne|Ne
|y1:Ne

)

=
Np∑
j=1

p
(
xn|I1:Ne = I ( j)

1:Ne|Ne
, y1:Ne

)
Pr

(
I1:Ne = I ( j)

1:Ne|Ne
|y1:Ne

)

= 1

Np

Np∑
j=1

N
(
x( j)

n|Ne
, σ ( j)2V ( j)

n|Ne

)
. (50)
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Initialization

• For j = 1, . . . , Np, generate a realization I(j)
0|0 from p(I0). Here, p(I0) is an initial distribution

for In.

• For j = 1, . . . , Np, set initial state (x̃(j)
1|0, Ṽ

(j)
1|0 ).

Repeat the prediction and the filtering steps for n = 1, . . . , Ne.

1. Prediction (Section 3.3)

• For j = 1, . . . , Np, generate a realization I(j)
n|n−1 from p(In|In−1 = I(j)

n−1|n−1).

• For j = 1, . . . , Np, set I(j)
1:n|n−1 = (I(j)

1:n−1|n−1, I
(j)
n|n−1).

2. Filtering (Section 3.4, Appendix A)

• For j = 1, . . . , Np, update (x̄(j)
n−1|n−1, V̄

(j)
n−1|n−1) to obtain (x̃(j)

n|n−1, Ṽ
(j)
n|n−1) and (x̃(j)

n|n, Ṽ
(j)
n|n)

according to (A9), (A10), (A16), and (A17).

• For j = 1, . . . , Np, evaluate the importance weight w
(j)
n according to (A14).

• Obtain
{
I(j)

1:n|n, x̄
(j)
n|n, V̄

(j)
n|n

}Np

j=1
by the resampling of

{
I(j)

1:n|n−1, x̃
(j)
n|n, Ṽ

(j)
n|n

}Np

j=1
with sam-

pling probability w
(j)
n /

∑Np

i=1 w
(i)
n .

State estimation (Section 3.5)

• Obtain
{
x

(j)
n|Ne

, σ(j)2V
(j)
n|Ne

}Np

j=1
by using Kalman filter and smoother.

• Obtain the density p(xn|y1:Ne) according to (50).

Figure 3. Summary of the MCMKF algorithm.

In the third equality, (36), (48) and (49) are used. Therefore, p(xn|y1:Ne ) is a non-Gaussian distribution with mean

xn|Ne = 1

Np

Np∑
j=1

x( j)
n|Ne

. (51)

The procedure for the state estimation using all trajectories described above is computationally massive, both in calculation time and in
memory. A more efficient algorithm is obtained by reducing the number of trajectories to which the Kalman filter is applied. This is done by
sampling N ′

p (N ′
p < Np) trajectories randomly from Np trajectories {I (1)

1:Ne|Ne
, · · · ,I (Np )

1:Ne|Ne
}. Once N ′

p trajectories are selected, the procedure
for state estimation is identical to the case using all Np trajectories. The distribution of the final estimate for xn, p(xn|y1:Ne ), and its mean
vector, xn|Ne , are obtained by replacing Np in (50) and (51) with N ′

p, respectively.
The MCMKF algorithm described in Section 3.3, 3.4 and 3.5 is summarized in Fig. 3.

4 V E R I F I C AT I O N O F O U R A L G O R I T H M A N D D I S C U S S I O N

In this section we apply the proposed method to three simple examples to demonstrate the validity of the method. We consider an infinitely
long strike-slip fault that slips from depth d2 to d1 embedded in a homogeneous, isotropic, elastic half-space as shown in Fig. 4. We set axis
x1 in the direction perpendicular to the strike direction, axis x2 upwards and axis x3 in the strike direction. In this problem, only non-zero
displacement is u3 = u3(x 1, x 2, t). Slip is assumed to be spatially uniform for simplicity. Thus, slip is a function only of time. For a spatially
uniform slip, it is well known that the cumulative surface displacement is written as

u3(x1, x2 = 0, t) = − s(t)

π

[
tan−1

(
x1

d1

)
− tan−1

(
x1

d2

)]
. (52)

We set d 1 = 15 km, d 2 = 5 km and place 10 equally spaced stations in the range −100 km ≤ x 1 ≤ 100 km. In all cases, simulated data of length
N e = 100, sampled regularly, are generated by calculating surface displacements due to true slip history s(t) and adding observational error
(white noise) and random benchmark motion (random walk). The standard deviations (SD) of observational error and random benchmark
motion are set at σ = 4 mm and τ = 0.04 mm, respectively. The data covariance matrix, �n, in (14) is set to be an identity matrix for simplicity.
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Geodetic Stations

200km

5km

15km

Strike slip fault

x

x

1

2

Figure 4. Geometry of the infinitely long strike-slip fault embedded in a homogeneous, isotropic, elastic half-space. The fault slips from depth d 2 = 5 km to
d 1 = 15 km. Ten equally spaced geodetic stations are placed in the range −100 km ≤ x 1 ≤ 100 km.
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Figure 5. True slip history given on the fault surface.

4.1 Accelerating slip

We invert 10 displacement time-series generated by accelerating slip on the fault surface. Here, we use all Np trajectories for the estimation of
state. The true input signal is shown in Fig. 5. Simulated data, which are the sum of contributions from fault slip, random benchmark motion
and observational error, are shown in Fig. 6. We consider m = 13 candidate values for αn/σ :

a(i) = 10i−10, for In = i, i = 1, · · · , 13. (53)

Np = 5000 particles are used for this problem. The initial distribution of the indicator variable is assumed to have a uniform distribution:
Pr(I0|0 = i) = 1/m(i = 1, 2, · · · , m). Initial states x(j)

1|0 and V (j)
1|0 are given by x( j)

1|0 = [0, 0, · · · , 0]T and V 1|0( j) = 16I(2M+Nd )×(2M+Nd ),
respectively. The lag is set at L = 20. The hyperparameter for random benchmark motion, τ , is assumed to be known and is fixed to its correct
value in this analysis, whereas we estimate the hyper-parameter for observational error, σ (j), using (B8). We consider 11 candidate transition
probabilities:

πi j =
{

ptr i = j

(1 − ptr)/(m − 1) i 	= j
(54)

where ptr=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.98 and m = 13. The transition probability is optimized by maximizing the
log-likelihood. Derivation of the log-likelihood is shown in Appendix C. The log-likelihood values for 11 candidate transition probabilities
are shown in Table 1. The ptr value that maximizes the log-likelihood is p tr = 0.95.
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Figure 6. Simulated displacement time-series at the 10 stations due to fault slip (Fig. 5), random benchmark motion and observational error. The SDs of
random benchmark motion and observational error are set at τ = 0.04 mm and σ = 4 mm, respectively. Curves are offset vertically for clarity.

Table 1. The log-likelihood values for 11 can-
didate transition probabilities defined by (54).

ptr Log-likelihood

0.1 −2815.20
0.2 −2814.11
0.3 −2813.12
0.4 −2811.50
0.5 −2810.45
0.6 −2809.44
0.7 −2808.99
0.8 −2808.46
0.9 −2808.29
0.95 −2808.11
0.98 −2808.41

Fig. 7 shows estimated temporal variation of the smoother distribution of In, p(In|y1:Ne ), for p tr = 0.95. The five curves drawn in Fig. 7
are defined by

2k∑
i=1

Pr
(
In = i |y1:Ne

)
, k = 1, · · · , 5 (55)

where k increases from 1 to 5 in order from the lower curve to the upper curve. It should be noted that we can calculate the probability
Pr(In = i |y1:Ne ) by

Pr(In = i |y1:Ne ) = 1

Np

(
number of particles with I ( j)

n|Ne
= i

)
. (56)

Fig. 7 shows that the realization probability of In, Pr(In = i |y1:Ne ), corresponding to larger αn/σ values increases after t = 0.5, reflecting
increasing slip acceleration after t = 0.5. Fig. 8 shows the mean value of the estimated slip history with error bounds of 1 SD. It is clear that
the estimated slip history shows a good agreement with the true slip history. The mean of the estimated hyperparameters for observational

error, σ̂ =
√

1
Np

∑Np
j=1 σ̂ ( j)2, is σ̂ = 3.9149. Fig. 9(a) compares simulated and calculated displacement time-series for the station located

at x 1 = −33.3 km. The estimated state reproduces the simulated ground displacements well. It should be noted that the simulated data
are sums of contributions from fault slip, random benchmark motion and observational error. Figs 9(b) and (c) show fault slip and random
benchmark motion components of the calculated displacement time-series (bold lines), respectively, together with corresponding components
of the simulated data (crosses). As can be seen from this figure, the MCMKF can separate spatially coherent fault-slip signals from spatially
incoherent random benchmark motion as NIF can (Segall & Matthews 1997).
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Figure 7. Estimated temporal variation of the smoother distribution of the indicator variable, p(In |y1:Ne ), for the maximum-likelihood estimate of the transition
probability, p tr = 0.95. The five curves are defined by (55).
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Figure 8. Comparison of the fault-slip history estimated by the MCMKF-based method with the true input signal. The solid curve shows the mean value of
the slip history estimated by the MCMKF for the maximum-likelihood estimate of the transition probability, p tr = 0.95. The dash-dotted curves denote its SD
error bounds. The broken curve shows the true input signal.

To illustrate an advantage of the MCMKF algorithm over a Kalman filter, we estimate state evolution from observation model (8) and
system model (17) with the temporally invariable hyperparameter for slip acceleration (i.e. αn = α in eq. 21), following Segall & Matthews
(1997), using a Kalman filter. The hyperparameter τ for random benchmark motion is again fixed to its correct value, and α and σ are estimated
by the maximum-likelihood method. α and σ are optimized as α̂ = 3.0661 and σ̂ = 3.9071, respectively. Fig. 10 shows the estimated slip
history with 1 SD error bounds. The slip history estimated by the Kalman filter (Fig. 10) is oscillatory compared with the true slip history in
the period t < 0.8. On the other hand, the slip history estimated by the MCMKF (Fig. 8) reproduces true slip more accurately throughout the
entire period. We compare the goodness of the models using the Akaike information criterion (AIC) (Akaike 1974) defined by (C4). Unknown
parameters for the MCMKF are x1|0, σ,I0|0 and ptr. Thus number of unknown parameters is 2M + Nd + 3 (2M + Nd is the dimension of the
state vector). On the other hand, unknown parameters in the case of the Kalman filter are x1|0, σ and α. Therefore, the number of unknown
parameters is 2M + Nd + 2. From (C4), the AIC value for the MCMKF is 5646.22, whereas that for the Kalman filter is 5793.84. This result
indicates that we can obtain a better state estimate using the MCMKF algorithm than the Kalman filter.

In the example shown here, we use all Np trajectories for state estimation. This procedure requires a heavy computational burden because
we need to run the Kalman filter and smoother Np times to obtain {x( j)

n|Ne
, V ( j)

n|Ne
}Np

j=1. However, as described in Section 3.5, it is possible to
reduce this computational burden by decreasing the number of trajectories to obtain the state. Here, we examine the effects of the number of
trajectories. We use N ′

p(N ′
p < Np) trajectories that are randomly sampled from Np = 5000 trajectories. Then, the log-likelihood values for

C© 2004 RAS, GJI, 159, 17–39



Time-dependent inversion of geodetic data 29

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

D
is

pl
ac

em
en

t (
m

m
)

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

Time (year)

(a) Data

(b) Fault-slip contribution

(c) Random benchmark motion

Figure 9. (a) Simulated data (crosses) and calculated displacements from the estimated state (bold line) for the station located at x 1 = −33.3 km. Simulated
data are sums of contributions from fault slip, random benchmark motion and observational error. Calculated displacements contains the fault-slip contribution
and the random benchmark motion contribution. (b) Displacements due to true fault slip (crosses) and estimated fault-slip evolution (bold line) for the same
station. (c) True (crosses) and estimated (bold line) random benchmark motion for the same station.
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Figure 10. Comparison of the fault-slip history estimated by the Kalman filter-based method with the true input signal. The solid curve shows the mean value
of the slip history estimated by the Kalman filter with the dash-dotted curves denoting its SD error bounds. The broken curve shows the true input signal.

each case are computed and compared with one another. Table 2 lists log-likelihood values for various N ′
p values. One can see that for the

cases of N ′
p ≥ 4, the log-likelihood values are rather insensitive to the number of trajectories and the differences of the log-likelihood values

are at most 0.8. Estimated fault slip and random benchmark motion are visually indistinguishable for values N ′
p ≥ 4. This result suggests that

the computational burden can be significantly reduced by decreasing the number of trajectories.

4.2 High signal-to-noise ratio case

The previous example assumed that the fault-slip signal started smoothly. In this subsection, we consider the case in which the transient event
starts more rapidly. The true slip history used in this subsection is shown in Fig. 11. Rapid changes of slip rate are seen at t = 0.45 and
t = 0.55. Because we confirmed in the previous subsection that the number of trajectories used for state estimation can be reduced without
significant effects on state estimate, we use N ′

p = 20 trajectories. Simulated data that contain fault-slip signal, random benchmark motion and
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Table 2. The log-likelihood values for various
number of trajectories to which the Kalman fil-
ter is applied. The trajectories are sampled ran-
domly from Np = 5000 trajectories.

N ′
p Log-likelihood

5000 −2808.11
2000 −2808.04
1000 −2808.10

500 −2808.09
200 −2808.05
100 −2807.94

80 −2807.80
60 −2807.69
40 −2807.41
20 −2807.81
10 −2807.73

9 −2807.82
8 −2807.59
7 −2807.41
6 −2807.54
5 −2807.79
4 −2808.19
3 −2808.93
2 −2809.30
1 −2811.33
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Figure 11. True slip history given on the fault surface.

observational error are shown in Fig. 12. We employ m = 13 candidate values for αn/σ defined by (53). The number of particles, the initial
distribution of the indicator variable, the initial state and the lag are the same as in Section 4.1. The hyperparameter for random benchmark
motion, τ , is again assumed to be known and is fixed to its correct value and σ (j) is determined using (B8). We employ nine candidate transition
probabilities, p tr = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 where ptr is defined by (54). The best transition probability is determined by
maximizing the log-likelihood defined by (C3) with Np replaced by N ′

p. The log-likelihood values for the nine transition probabilities are listed
in Table 3. The optimal value of ptr is 0.8.

Fig. 13 shows estimated temporal variations of the smoother distribution of In, p(In|y1:Ne ), for p tr = 0.8. The five curves drawn in
Fig. 13 are defined by (55). From Fig. 13, we can see that the realization probability of In corresponding to larger αn/σ values suddenly
increases at time points of slip-rate discontinuities. Fig. 14 shows the estimated slip history with 1 SD error bounds. The estimated slip history
closely reproduces the true slip history denoted by the broken line in Fig. 14. The mean of the estimated hyperparameters for observational

error, σ̂ =
√

1
N ′

p

∑N ′
p

j=1 σ̂ ( j)2, is σ̂ = 3.9040. Fig. 15(a) compares simulated and calculated displacement time-series for the station located at
x 1 = 100.0 km. The estimated state closely reproduces the simulated ground displacements. Figs 15(b) and (c) show fault slip and random
benchmark motion components of the calculated displacement time-series (bold lines), respectively, together with corresponding components
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Table 3. The log-likelihood values for nine
candidate transition probabilities defined by
(54).

ptr Log-likelihood

0.1 −2817.97
0.2 −2815.14
0.3 −2813.60
0.4 −2813.13
0.5 −2813.57
0.6 −2811.08
0.7 −2811.12
0.8 −2809.86
0.9 −2810.23
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Figure 12. Simulated displacement time-series at the 10 stations due to fault slip (Fig. 11), random benchmark motion and observational error. The SDs of
random benchmark motion and observational error are set at τ = 0.04 mm and σ = 4 mm, respectively. Curves are offset vertically for clarity.
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Figure 13. Estimated temporal variation of the smoother distribution of the indicator variable, p(In |y1:Ne ), for the maximum-likelihood estimate of the
transition probability, p tr = 0.8. The five curves are defined by (55).
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Figure 14. Comparison of the fault-slip history estimated by the MCMKF-based method with the true input signal. The solid curve shows the mean value of
the slip history estimated by the MCMKF for the maximum-likelihood estimate of the transition probability, p tr = 0.8. The dash-dotted curves denote its SD
error bounds. The broken curve shows the true input signal.
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Figure 15. (a) Simulated data (crosses) and calculated displacements from the estimated state (bold line) for the station located at x 1 = 100.0 km. Simulated
data are sums of contributions from fault slip, random benchmark motion and observational error. Calculated displacements contains the fault-slip contribution
and the random benchmark motion contribution. (b) Displacements due to true fault slip (crosses) and estimated fault-slip evolution (bold line) for the same
station. (c) True (crosses) and estimated (bold line) random benchmark motion for the same station.

of the simulated data (crosses). In this example, we again see that the MCMKF is capable of separating transient signal from random benchmark
motion.

Next, we estimate state evolution with the temporally invariable hyperparameter for slip acceleration, α, using the Kalman filter (Segall
& Matthews 1997). In this case, maximum-likelihood estimates of α and σ are α̂ = 5.6026 and σ̂ = 3.8949, respectively. Fig. 16 shows
estimated slip history with 1 SD error bounds. The estimated slip history is oscillatory in quiet periods, whereas slip-rate discontinuities are
overly smoothed. Therefore, the Kalman filter-based method cannot image the initial process of the transient event accurately, nor can it infer
precisely when the event started. On the other hand, the slip history estimated by the MCMKF (Fig. 14) provides a better reproduction of both
sudden changes of slip rate and quiet portions of the signal. Fig. 14 indicates that initial process of the event can be imaged more accurately
using the MCMKF-based method. Furthermore, the start time of the event can be inferred more precisely based on the estimated slip history
(Fig. 14) and the temporal variation of the distribution of the indicator variable (Fig. 13). The AIC value for the MCMKF is 5649.72, which is
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Figure 16. Comparison of the fault-slip history estimated by the Kalman filter-based method with the true input signal. The solid curve shows the mean value
of the slip history estimated by the Kalman filter with the dash-dotted curves denoting its SD error bounds. The broken curve shows the true input signal.
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Figure 17. True slip history given on the fault surface.

significantly smaller than the value obtained by the Kalman filter, 5810.60. This result again confirms that we can obtain a better state estimate
using the MCMKF than with the Kalman filter.

4.3 Low signal-to-noise ratio case

One of our motivations for developing the new time-dependent inversion method is to elucidate small slow slip events that are buried in noisy
time-series. In this subsection, we examine whether our new scheme is capable of detecting such ‘invisible’ signals. We use the true fault-slip
signal shown in Fig. 17. Sudden changes of slip rate are seen at t = 0.50 and t = 0.55. The cumulative slip is only 30 mm, which is one-tenth
of the previous example. Simulated data, which consist of fault-slip signal, random benchmark motion, and observational error, are shown
in Fig. 18. Note that the transient signal is invisible at all stations. We employ m = 13 candidate values for αn/σ defined by (53), as in the
previous examples. For the state estimation, N ′

p = 20 trajectories are used. The number of particles, the initial distribution of the indicator
variable, the initial state and the lag are kept the same as in the previous examples. The hyperparameter for random benchmark motion, τ , is
again assumed to be known and is fixed at its correct value and σ (j) is determined using (B8). We employ 11 candidate transition probabilities,
p tr = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.98 where ptr is defined by (54). The transition probability is optimized by maximizing
the log-likelihood defined by (C3) with Np replaced by N ′

p. The log-likelihood values for 11 candidate transition probabilities are shown in
Table 4. The ptr value that maximizes the log-likelihood is p tr = 0.95.
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Figure 18. Simulated displacement time-series at the 10 stations due to fault slip (Fig. 17), random benchmark motion and observational error. The SDs of
random benchmark motion and observational error are set at τ = 0.04 mm and σ = 4 mm, respectively. Curves are offset vertically for clarity.

Table 4. The log-likelihood values for 11
candidate transition probabilities defined by
(54).

ptr Log-likelihood

0.1 −2813.62
0.2 −2812.64
0.3 −2809.53
0.4 −2810.27
0.5 −2808.09
0.6 −2808.60
0.7 −2807.60
0.8 −2806.58
0.9 −2806.54
0.95 −2805.01
0.98 −2805.34

Fig. 19 shows the estimated temporal variation of the smoother distribution of In, p(In|y1:Ne ), for p tr = 0.95. The five curves drawn in
Fig. 19 are defined by (55). From Fig. 19, the realization probability of In corresponding to larger αn/σ values is highest at t = 0.5 when the
slip rate suddenly increases. However, the distribution of In is excessively smoothed, reflecting a low signal-to-noise ratio. Fig. 20 shows esti-
mated slip history with 1 SD error bounds. Although the estimated slip history is smoother compared with the true slip history, transient fault

slip is clearly detected. The mean of the estimated hyperparameters for observational error, σ̂ =
√

1
N ′

p

∑N ′
p

j=1 σ̂ ( j)2, is σ̂ = 3.9166. Fig. 21(a)

compares simulated and calculated displacement time-series for the station located at x 1 = 77.8 km. Figs 21(b) and (c) show fault slip and
random benchmark motion components of the calculated displacement time-series (bold lines), respectively, together with corresponding
components of the simulated data (crosses). Even in this noisy example, the MCMKF is capable of distinguishing the fault-slip signal from
random benchmark motion.

For the comparison, we estimate state evolution with the temporally invariable hyperparameter for slip acceleration, α, using the Kalman
filter (Segall & Matthews 1997). In this case, maximum-likelihood estimates of α and σ are α̂ = 0.5009 and σ̂ = 3.9313, respectively. Fig. 22
shows the estimated slip history with 1 SD error bounds. The estimated slip history is excessively smoothed throughout the entire period. It
is obvious that the MCMKF-based method does a better job than the Kalman filter-based method (see Figs 20 and 22). The AIC value for
the MCMKF is 5640.02, which is significantly smaller than the value obtained by the Kalman filter, 5770.52. This result suggests that the
MCMKF is superior to the Kalman filter in detecting a small fault-slip signal from a noisy data set.

C© 2004 RAS, GJI, 159, 17–39



Time-dependent inversion of geodetic data 35

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (year)

D
is

tr
ib

ut
io

n 
of

 th
e 

in
di

ca
to

r 
va

ria
bl

e

Smoother Distribution of the Indicator Variable

In = 1, 2

In = 3, 4

In = 5, 6

In = 7, 8
In = 9, 10

Figure 19. Estimated temporal variation of the smoother distribution of the indicator variable, p(In |y1:Ne ), for the maximum-likelihood estimate of the
transition probability, p tr = 0.95. The five curves are defined by (55).
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Figure 20. Comparison of the fault-slip history estimated by the MCMKF-based method with the true input signal. The solid curve shows the mean value of
the slip history estimated by the MCMKF for the maximum-likelihood estimate of the transition probability, p tr = 0.8. The dash-dotted curves denote its SD
error bounds. The broken curve shows the true input signal.

5 C O N C L U S I O N

We have developed a new inversion method for the imaging of time-dependent fault slip during a transient slip event from surface deformation
data. We modelled crustal deformation resulting from the transient fault slip using state space representation. To improve the temporal
resolution of the fault slip, we assumed that αn/σ , which had been assumed to be a temporally invariable hyperparameter in the previous
studies, was temporally variable. To realize the time dependency of αn/σ , we introduced a stochastic variable In , an indicator variable, which
specified the value of αn/σ at time tn. To estimate the indicator variable and the state, we developed a new filtering method, the Monte Carlo
mixture Kalman filter (MCMKF). In the MCMKF, the predictive and the filter distributions of the indicator variable are approximated by
independent realizations (particles) from each distribution and approximated predictive and filter distributions are calculated recursively by
using the prediction and the filtering algorithms. Once all the trajectories for the smoother distribution of In are obtained, the evolution of the
state for each trajectory is estimated by running the Kalman filter and smoother.

We demonstrated the validity of the new MCMKF-based inversion method through three numerical experiments using simulated surface
displacement time-series. The results were compared with those obtained using the conventional Kalman filter-based method. The MCMKF
clearly reproduces the true slip history better than the Kalman filter. For the high signal-to-noise ratio case, the MCMKF is better capable of
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Figure 21. (a) Simulated data (crosses) and calculated displacements from the estimated state (bold line) for the station located at x 1 = 77.8 km. Simulated
data are sums of contributions from fault slip, random benchmark motion and observational error. Calculated displacements contains the fault-slip contribution
and the random benchmark motion contribution. (b) Displacements due to true fault slip (crosses) and estimated fault-slip evolution (bold line) for the same
station. (c) True (crosses) and estimated (bold line) random benchmark motion for the same station.
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Figure 22. Comparison of the fault-slip history estimated by the Kalman filter-based method with the true input signal. The solid curve shows the mean value
of the slip history estimated by the Kalman filter with the dash-dotted curves denoting its SD error bounds. The broken curve shows the true input signal.

imaging the initiation process of a transient slip event than the Kalman filter. For the low signal-to-noise ratio case, we found that the MCMKF
is superior to the Kalman filter in detecting small fault-slip signals from a noisy data set. Furthermore, the following results are obtained:

(1) The MCMKF gives significantly smaller AIC values than the Kalman filter. This indicates that the MCMKF yields a better state estimate
than the Kalman filter.

(2) The computational burden of the MCMKF can be reduced by decreasing the number of trajectories to which the Kalman filter is applied.
Our numerical experiments confirm that a small number of trajectories (say 10 or 20) is enough to estimate state evolution.

(3) The MCMKF can distinguish a spatially coherent fault-slip signal from a spatially incoherent random benchmark motion even in the
low signal-to-noise ratio case.
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A P P E N D I X A : D E R I VAT I O N O F T H E I M P O RTA N C E W E I G H T

In this appendix we show that the importance weight w(j)
n defined in (43) can be calculated by using the Kalman filter. Consider the conditional

density functions

p
(
xn−1|I1:n−1 = I ( j)

1:n−1|n−1, y1:n−1

)
(A1)

p
(
xn|I1:n = I ( j)

1:n|n−1, y1:n−1

)
(A2)

p
(
xn|I1:n = I ( j)

1:n|n−1, y1:n

)
(A3)

p
(
xn|I1:n = I ( j)

1:n|n, y1:n

)
. (A4)

As described in Section 3.1, these density functions become Gaussian distributions:

p
(
xn−1|I1:n−1 = I ( j)

1:n−1|n−1, y1:n−1

) ∼ N
(
x̄( j)

n−1|n−1, σ
( j)2V̄ ( j)

n−1|n−1

)
(A5)

p
(
xn|I1:n = I ( j)

1:n|n−1, y1:n−1

) ∼ N
(
x̃( j)

n|n−1, σ
( j)2Ṽ ( j)

n|n−1

)
(A6)

p
(
xn|I1:n = I ( j)

1:n|n−1, y1:n

) ∼ N
(
x̃( j)

n|n, σ
( j)2Ṽ ( j)

n|n
)

(A7)

p
(
xn|I1:n = I ( j)

1:n|n, y1:n

) ∼ N
(
x̄( j)

n|n, σ
( j)2V̄ ( j)

n|n
)
. (A8)

Assume that (x̄( j)
n−1|n−1, V̄ ( j)

n−1|n−1) and I ( j)
1:n−1|n−1( j = 1, . . . , Np) are given. First, we generate I ( j)

1:n|n−1 by the prediction scheme of the MCMKF

(Section 3.3), and then obtain (x̃( j)
n−1|n−1, Ṽ ( j)

n−1|n−1) using the prediction scheme of the Kalman filter (e.g. Kitagawa & Gersch 1996) as follows:

x̃( j)
n|n−1 = Fn x̄( j)

n−1|n−1 (A9)
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Ṽ ( j)
n|n−1 = Fn V̄ ( j)

n−1|n−1F
T
n + Q̃n

(
I ( j)

n|n−1

)
. (A10)

From (38), the predictive distribution of data defined by p(yn|I1:n = I ( j)
1:n|n−1, y1:n−1) also becomes a Gaussian distribution:

p
(
yn|I1:n = I ( j)

1:n|n−1, y1:n−1

) ∼ N
(
ỹ( j)

n|n−1, σ
( j)2W̃ ( j)

n|n−1

)
(A11)

where ỹ( j)
n|n−1 and W̃ ( j)

n|n−1 are the mean vector and the covariance matrix of the predictive distribution of yn, respectively, and are defined by

ỹ( j)
n|n−1 = Hx̃( j)

n|n−1 (A12)

W̃ ( j)
n|n−1 = HṼ ( j)

n|n−1H
T + R̃n . (A13)

The left side of (A11) is identical with the importance weight w(j)
n defined in (43). Thus w(j)

n follows the Gaussian distribution with mean ỹ( j)
n|n−1

and covariance matrix W̃ ( j)
n|n−1 as follows:

w( j)
n = (

2πσ ( j)2
)−Nd /2∣∣W̃ ( j)

n|n−1

∣∣−1/2
exp

[
− 1

2σ ( j)2

(
yn − ỹ( j)

n|n−1

)T
W ( j)−1

n|n−1

(
yn − ỹ( j)

n|n−1

)]
(A14)

where |W̃ ( j)
n|n−1| is the absolute value of the determinant of W̃ ( j)

n|n−1. The unknown parameter σ (j)2 is estimated by maximizing w(j)
n . The result

is given by

σ ( j)2 = 1

Nd

(
yn − ỹ( j)

n|n−1

)T
W̃ ( j)−1

n|n−1

(
yn − ỹ( j)

n|n−1

)
. (A15)

It is necessary to obtain (x̄( j)
n|n, V̄ ( j)

n|n ) to calculate the importance weight at the next epoch, w
(j)
n+1. For this purpose, first, (x̃( j)

n|n, Ṽ ( j)
n|n ) are

obtained using the Kalman filter (e.g. Kitagawa & Gersch 1996):

x̃( j)
n|n = x̃( j)

n|n−1 + K ( j)
n

(
yn − Hx̃( j)

n|n−1

)
(A16)

Ṽ ( j)
n|n = (

I − K ( j)
n H

)
Ṽ ( j)

n|n−1 (A17)

where

K ( j)
n = Ṽ ( j)

n|n−1H
T(

HṼ ( j)
n|n−1H

T + R̃n

)−1
. (A18)

It should be noted that whereas (x̃( j)
n|n, Ṽ ( j)

n|n ) is obtained using the particle I ( j)
1:n|n−1, (x̄( j)

n|n, V̄ ( j)
n|n ) is conditional on the particle I ( j)

1:n|n . Because

{I (1)
1:n|n, · · · ,I (Np )

1:n|n} are obtained by the resampling of {I (1)
1:n|n−1, · · · ,I (Np )

1:n|n−1} with sampling probabilities (45) (Section 3.4), {x̄( j)
n|n, V̄ ( j)

n|n }Np
j=1 can

be obtained by modifying the resampling algorithm as follows:
Generate {I ( j)

1:n|n, x̄( j)
n|n, V̄ ( j)

n|n }Np
j=1 by the resampling of {I ( j)

1:n|n−1, x̃( j)
n|n, Ṽ ( j)

n|n }Np
j=1 with sampling probabilities (45).

A P P E N D I X B : E S T I M AT I O N O F T H E H Y P E R PA R A M E T E R σ

The hyperparameter σ (j) is estimated by maximizing the likelihood for jth trajectory. Assume that the hyperparameter for random benchmark
motion, τ , is known by analysing each geodetic time-series separately (e.g. Langbein & Johnson 1997). In this case, the likelihood for the jth
trajectory, which is a function of σ (j), is expressed as follows (e.g. Kitagawa & Gersch 1996):

L ( j)
(
σ ( j)

) = p
(
y1:Ne |I1:Ne = I ( j)

1:Ne|Ne
, τ, σ ( j)

)
=

Ne∏
n=1

p
(
yn|y1:n−1,I1:n = I ( j)

1:n|Ne
, τ, σ ( j)

)

=
Ne∏

n=1

w̃( j)
n

(B1)

where

w̃( j)
n = p

(
yn|y1:n−1,I1:n = I ( j)

1:n|Ne
, τ, σ ( j)

)
= (

2πσ ( j)2
)−Nd /2∣∣W ( j)

n|n−1

∣∣−1/2
exp

[
− 1

2σ ( j)2

(
yn − y( j)

n|n−1

)T
W ( j)−1

n|n−1

(
yn − y( j)

n|n−1

)]
(B2)

y( j)
n|n−1 = E

(
yn|y1:n−1,I1:n = I ( j)

1:n|Ne
, τ, σ ( j)

)
(B3)

σ ( j)2W ( j)
n|n−1 = Cov

(
yn|y1:n−1,I1:n = I ( j)

1:n|Ne
, τ, σ ( j)

)
. (B4)

y(j)
n|n−1 and W (j)

n|n−1 are calculated by

y( j)
n|n−1 = Hx( j)

n|n−1 (B5)

W ( j)
n|n−1 = HV ( j)

n|n−1H
T + R̃n . (B6)
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Substituting (B2) into (B1) yields the log-likelihood for jth trajectory:

l ( j)
(
σ ( j)

) = log L ( j)
(
σ ( j)

)
= −1

2

[
Ne Nd log

(
2πσ ( j)2

) +
Ne∑

n=1

log
∣∣W ( j)

n|n−1

∣∣ + 1

σ ( j)2

Ne∑
n=1

(
yn − y( j)

n|n−1

)T
W ( j)−1

n|n−1

(
yn − y( j)

n|n−1

)]
. (B7)

Therefore, the maximum likelihood estimate of σ (j)2 is obtained by

σ̂ ( j)2 = 1

Ne Nd

Ne∑
n=1

(
yn − y( j)

n|n−1

)T
W ( j)−1

n|n−1

(
yn − y( j)

n|n−1

)
. (B8)

A P P E N D I X C : L I K E L I H O O D O F T H E M O D E L

In this appendix we present a formula for the log-likelihood of the model. Let θ = (τ , σ ) be a vector that contains hyperparameters. Given θ,
the likelihood of the model is expressed by

L(θ) = p
(
y1:Ne |θ

)
=

Ne∏
n=1

p(yn|y1:n−1,θ). (C1)

If we use all Np trajectories for the state estimation, p(yn| y1:n−1, θ) in (C1) is given by

p(yn|y1:n−1,θ) =
Np∑
j=1

p
(
yn,I1:n = I ( j)

1:n|Ne

∣∣y1:n−1, τ, σ
( j)

)

=
Np∑
j=1

p
(
yn|y1:n−1,I1:n = I ( j)

1:n|Ne
, τ, σ ( j)

)
Pr

(
I1:n = I ( j)

1:n|Ne

∣∣y1:n−1, τ, σ
( j)

)

= 1

Np

Np∑
j=1

w̃( j)
n (C2)

where w̃( j)
n is given by (B2). In the third equality, we use the fact that all trajectories are equally weighted. Combining (C1) and (C2) yields

the following formula for the log-likelihood of the model:

l(θ) =
Ne∑

n=1

log p(yn|y1:n−1,θ)

=
Ne∑

n=1

log

(
Np∑
j=1

w̃( j)
n

)
− Ne log Np.

(C3)

If we use N ′
p trajectories that are randomly sampled from Np trajectories, the log-likelihood of the model is obtained by replacing Np in (C3)

with N ′
p.

The goodness of the model is evaluated by the Akaike information criterion (AIC) (Akaike 1974). The AIC is defined as

AIC = −2l(θ) + 2 × (number of unknown parameters). (C4)
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