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Abstract. Recent space plasma observations have provided us with
three-dimensional velocity distributions having multiple peaks. We pro-
pose a method for analyzing such velocity distributions via a multivariate
Maxwellian mixture model where each component of the model repre-
sents each of the multiple peaks. The parameters of the model are deter-
mined through the Expectation-Maximization (EM) algorithm. For the
automatic judgment of the preferable number of components in the mix-
ture model, we introduce a method of examining the number of extrema
of a resulting mixture model. We show applications of our method to
velocity distributions observed in the Earth’s magnetotail.

1 Introduction

From direct measurements of space plasma by spacecraft we have obtained
macroscopic physical quantities by calculating velocity moments of plasma par-
ticle velocity distributions (e.g., number density, bulk velocity and temperature).
This macroscopic description assumes that the plasma is in a state of local ther-
mal equilibrium. Under this assumption a particle velocity distribution is given
as a normal distribution which is called the Maxwellian distribution in a scientific
domain, plasma physics. The Maxwellian distribution is given by

g (v|V , T) =
( m

2πT

)3/2

exp

[
−m |v − V |2

2T

]
, (1)

where m [kg] is the mass of the particle, V [m/s] is the bulk velocity vector and
T [J] is the temperature.

Observational techniques are progressing notably today, and making it possi-
ble to measure detailed shapes of velocity distributions in the three-dimensional
velocity space. These observations have revealed that there frequently happen
cases in which space plasmas are not in a state of thermal equilibrium and
their velocity distributions are not the Maxwellian but consist of multiple peaks.



This is because space plasmas are basically collisionless with large mean-free-
path. Therefore we have to be aware that they may give the same velocity
moments even if the shapes of distributions differ. For instance, when a plasma
has two beam components whose velocity vectors are sunward and anti-sunward,
and each component has the same numbers of particles, the bulk velocity be-
comes zero because their velocity vectors cancel out. On the other hand, when
a stagnant plasma is observed, the bulk velocity also becomes zero. When we
deal with two-beam distributions, we should separate the distributions into two
beams and calculate the velocity moments for each beam. Such non-equilibrium
multi-component distribution have been reported many times, and a kinetic de-
scription of space plasmas that accounts the shape of the velocity distribution
have come to be required.

It has been difficult, however, to evaluate the shape of the velocity distri-
bution. Some of the previous researchers have calculated the velocity moments
of each component separated by their visual inspections; it would be expected
to take time and have limitation. Moreover, resultant moment values will not
be estimated accurately when more than one components partially overlap each
other.

In this paper we develop a method of representing a three-dimensional distri-
bution by a multivariate Maxwellian mixture model [7, 6] in which the parameter
values are obtained by the Expectation-Maximization (EM) algorithm [7, 3, 5].
This method enables us to express the shape of the distribution and to find a
feasible way to conduct a statistical analysis for many multi-component cases.
The organization of this paper is the following. In Sect. 2, we describe the data
of plasma velocity distribution. A fitting method with multivariate Maxwellian
mixture model is described in Sect. 3, followed by considerations on how to judge
the preferable number of components in the mixture model in Sect. 4. Two ap-
plications are demonstrated in Sect. 5. In Sect. 6, we discuss a problem of model
selection. We conclude this paper in Sect. 7.

2 Data

We used ion velocity distributions obtained by an electrostatic analyzer named
LEP-EA on board the Geotail spacecraft. LEP-EA measured three-dimensional
velocity distributions by classifying the velocity space into 32 for the magnitude
of the velocity, 7 for elevation angles and 16 for azimuthal sectors (Fig. 1). Let
us assume that LEP-EA detected the ion count C (vpqr) [#] in a sampling time
τ [s], where vpqr [m/s] is the ion velocity. Subscription p, q and r are indicators
of the magnitude of the velocity, elevation angle and azimuthal sector, and they
take integers p = 1, · · · , 32; q = 1, · · · , 7; and r = 1, · · · , 16. Thus we obtain the
total ion count N [#]:

N =
∑
p,q,r

C (vpqr) . (2)

Under the assumption that the incident differential ion flux is uniform within the
energy and angular responses of the analyzer, the velocity distribution f0 (vpqr)
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Fig. 1. Classes for observation of a velocity distribution with LEP-EA. Three orthog-
onal axes vx, vy, and vz are taken in accordance with the spacecraft coordinates

[s3/m6] is given by

f0 (vpqr) = 2 × 104 1
τεqGq

C (vpqr)(
vT

pqrvpqr

)2 , (3)

where εq is the detection efficiency and Gq [cm2 sr eV/eV] is the g-factor. Inte-
grating f0 (vpqr) over the velocity space, we obtain the number density n [#/m3]:

n =
∑
p,q,r

f0 (vpqr) dvpqr, (4)

where dvpqr is the class interval whose class mark is vpqr.
For convenience of statistical modeling, we deal with a probability function

f (vpqr) instead of f0 (vpqr) defined by:

f (vpqr) =
f0 (vpqr) dvpqr

n
, (5)

so that
∑

p,q,r f (vpqr) = 1. Since f (vpqr) is a function of discrete variables, it is
necessary to consider the mixture of probability functions, but we approximate
it by the mixture of the Maxwellian that is a probability density function.

3 Method

3.1 Multivariate Maxwellian Mixture Model

To deal with multiple components seen in the probability function (Eq. (5), we fit
Eq. (5) by the mixture model composed of the sum of s multivariate Maxwellian
distributions:

f (vpqr) �
s∑

i=1

nigi (vpqr|V i, Ti) , (6)



where ni is the mixing proportion of the Maxwellians (
∑s

i=1 ni = 1, 0 < ni < 1).
Each multivariate Maxwellian gi is written as

gi (vpqr|V i, Ti)

=
( m

2π

)3/2 1√|Ti|
exp

[
−m

2
(vpqr − V i)

T Ti
−1 (vpqr − V i)

]
, (7)

where V i [m/s] is the bulk velocity vector and Ti [J] is the temperature matrix of
i-th multivariate Maxwellian, and superscript T denotes transposition operation.
The multivariate Maxwellian (7) is a generalized form of the Maxwellian (1) as
a thermal equilibrium velocity distribution, and can also deal with anisotropic
temperature. Plasma with anisotropic temperature is often observed in space be-
cause of its collisionless property; it takes a long time for non-equilibrium plasma
to relax into a state of thermal equilibrium due to rare particle interactions.

3.2 Parameter Estimation Procedure

The log-likelihood of this mixture model (Eq. (6)) becomes

l (θ) = N
∑
p,q,r

f (vpqr) log
s∑

i=1

nigi (vpqr|V i, Ti) (8)

where θ = (n1, n2, · · · , ns−1, V 1, V 2, · · · , V s, T1, T2, · · · , Ts) denotes the all
unknown parameters. These parameters directly correspond to the velocity mo-
memts for each component.

Partially differentiate (8) with respect to V i, T−1
i (i = 1, 2, · · · , s) and put

them equal to zero, maximum likelihood estimators (denoted byˆ) of the mix-
ing proportion, the bulk velocity vector and the temperature matrix of each
Maxwellian are given by

n̂i =
∑
p,q,r

f (vpqr) P̂i (vpqr) , (9)

V̂ i =
1
n̂i

∑
p,q,r

f (vpqr) P̂i (vpqr)vpqr, (10)

T̂i =
1
n̂i

∑
p,q,r

f (vpqr) P̂i (vpqr)
1
2
m

(
vpqr − V̂ i

) (
vpqr − V̂ i

)T

, (11)

where

P̂i (vpqr) =
n̂igi

(
vpqr| V̂ i, T̂i

)
s∑

j=1

n̂jgj

(
vpqr| V̂ j , T̂j

) (12)

is an estimated posterior probability.



We should note that when applying a single-Maxwellian model (s = 1),
we will obtain the parameters identical to the usual velocity moments. This is
because the number density is obtained by the usual moment calculation (Eq.
(4)), and because the bulk velocity and the temperature matrix as maximum
likelihood estimators prove to be identical with those obtained from the moment
calculation [8].

On the basis of Eqs. (9)–(12), we estimate the unknown parameters by the
EM algorithm [7]. In the following procedure, t denotes an iteration counter of
the EM algorithm. Suppose that superscript (t) denotes the current values of
the parameters after t cycles of the algorithm for t = 0, 1, 2, · · ·.

Setting Initial Value: t = 0. We classify the observed velocity space in s
groups (Gi; i = 1, 2, · · · , s) using the k-means algorithm, and set the initial
value of the posterior probability as

P
(0)
i (vpqr) =

{
1 (vpqr ∈ Gi)
0 (vpqr �∈ Gi)

, (13)

where i = 1, 2, · · · , s. With P
(0)
i (vpqr), we calculate n̂

(0)
i , V̂

(0)

i , and T̂(0)
i by

Eqs. (9), (10) and (11).

Parameter Estimation by EM Algorithm: t ≥ 1. On the t-th iteration
(t ≥ 1), we compute n

(t)
i and P

(t)
i (vpqr) by Eqs. (9) and (12) as the E-step. At

the M-step, we choose V
(t)
i and T(t)

i as maximum likelihood estimators by Eqs.
(10) and (11).

Judgment of Convergence. We finish the iteration if∣∣∣l (θ̂(t)
)
− l

(
θ̂(t−1)

)∣∣∣ < ε and
∥∥∥θ̂(t) − θ̂(t−1)

∥∥∥ < δ, (14)

where ε and δ are sufficiently small positive number. If the above convergence
condition is not satisfied, return to the E-step with replacing t by t + 1.

4 Preferable Number of Components

When we fit a velocity distribution by the Maxwellian mixture model, we should
examine how reasonable the fit is. That is, for instance, it is inappropriate to
approximate a unimodal observation by a multi-Maxwellian mixture model. Here
we introduce a method of judging which of two models, i.e., a single-Maxwellian
model or a two-Maxwellian mixture model, is preferable for each observation. We
adopt the following principle. If a two-Maxwellian mixture model which resulted
from an observation shows two peaks, the observation will also have two peaks.
Hence we conclude that the two-Maxwellian mixture model is reasonable to use.



On the other hand, if the resulting two-Maxwellian mixture model has only one
peak, the observation will be a unimodal distribution: We should use a usual
single-Maxwellian fitting.

To judge whether the fitting result is reasonable or not, we enumerate the
number of peaks of the resulting fitted model. Actually, to count the number of
peaks, we enumerate the number of extrema of the model. Let us consider when
we fit some data f (v) by a two-Maxwellian mixture model and the fitting result
is computed as

f (v) � n1g1 (v|V 1, T1) + n2g2 (v|V 2, T2) . (15)

To count the number of peaks, we need to count the number of v satisfying

d

dv
[n1g1 (v|V 1, T1) + n2g2 (v|V 2, T2)] = 0. (16)

It is difficult, however, to treat the three-dimensional variable v. We then reduce
this three-dimensional problem to one set of simultaneous equations of one-
dimensional variables (details are given in Ref.[11, 12]):

η (ξ) = ξ, (17)

η (ξ) =
n1g1 (w (ξ) |0, I)

n2g2 (w (ξ) |W , M−1)
, (18)

whose number of solutions is equivalent to the number of v satisfying Eq. (16).
Here we put w (ξ) = (µ1W1/ (ξ + µ1) , µ2W2/ (ξ + µ2), µ3W3/ (ξ + µ3)), W =
(y1, y2, y3)

−1 LT (V 2 − V 1), where L is a matrix that satisfies LLT = T−1
1 ,

and µ1, µ2 and µ3 are the eigenvalues of
(
LT T2L

)−1 whose corresponding unit
eigenvectors are y1, y2 and y3. Consequently, we need to count the nodes of the
line (17) and the curve (18) in the ξ-η plane.

Utilizing Eqs. (17) and (18), we can also evaluate a mixture model with
three or more Maxwellians. That is, we first pick up all the combinations of two
Maxwellians from the multiple Maxwellians, and then apply Eqs. (17) and (18)
for each combination.

5 Application

The left-hand panel of Fig. 2(a) show an ion velocity distribution observed in the
plasma sheet boundary layer of the Earth’s magnetotail. Displayed distribution
is a slice by the vx-vy plane, whose values are black-to-white-coded as shown
in the bar. Used coordinate system is taken in accordance with the spacecraft
coordinate system: The vz axis is parallel to the spacecraft spin axis and positive
northward, the vx axis is parallel to the projection of the spacecraft-Sun line on
the plane whose normal vector is the vz axis and is positive sunward, and the vy

axis completes a right-hand orthogonal system. We can observe a hot component
and a cold component whose bulk velocities are (vx, vy) � (1000, 0) km/s and
(vx, vy) � (−200, −500) km/s, respectively.



(a) 1552:58–1553:10 UT on January 14, 1994
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(b) 1559:58–1600:10 UT on January 14, 1994
Observation Single-Maxwellian Two-Maxwellian Mixture
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Fig. 2. (a) Observation of an ion velocity distribution on the vx-vy plane in the time
interval 1552:58–1553:10 UT on January 14, 1994 (left), fitting functions by a single-
Maxwellian model (center) and a two-Maxwellian mixture model (right). (b) For the
observation between 1559:58–1600:10 UT on the same day

When we fit this data with a single-Maxwellian, we obtain the estimated
parameters given in the second row of Table 1(a). A single-Maxwellian model
with these parameters produces the distribution shown in the central panel of
Fig. 2(a). This corresponds to what we deal with by the usual velocity moments,
and it is hot and has a shifted bulk velocity compared with the observation.

This problem, however, is easily resolved by applying a two-Maxwellian mix-
ture model. Similarly, we give the estimated parameters in the third and fourth
rows of Table 1(a), and display the produced distribution in the right-hand panel
of Fig. 2(a). It can be seen that both the hot and cold components existing in
the observed distribution were properly reproduced.

For this example, we find that the fitting by the two-Maxwellian model is
preferable to the single-Maxwellian model by counting the number of solutions
with simultaneous equations (17) and (18). The two-Maxwellian fitting is there-
fore justified, which agrees with our inspection of the observed distribution.

The other example is a distribution observed in the central plasma sheet.
As can be seen in the left-hand panel of Fig. 2(b), it is appropriate to expect
that this consists of a single hot component whose bulk velocity is located near



Table 1. Estimated parameters for single-Maxwellian and two-Maxwellian mixture
models. The first column n is the number density, that is, the mixing proportion mul-
tiplied by the number density

(a) 1552:58–1553:10 UT on January 14, 1994

n [/cc] Vx [km/s] Vy Vz Txx [eV] Txy Txz Tyy Tyz Tzz

1 0.040 793 −104 6 5515 327 −216 2177 −129 2089

1 0.012 −101 −260 47 120 −138 23 326 −31 95
2 0.028 1167 −38 −11 2815 −347 −90 2800 −130 2912

(b) 1559:58–1600:10 UT on January 14, 1994

n [/cc] Vx [km/s] Vy Vz Txx [eV] Txy Txz Tyy Tyz Tzz

1 0.087 −5 −121 −135 3203 16 44 2936 −174 3185

1 0.029 −94 −46 −27 6495 192 187 5676 −275 6359
2 0.058 39 −158 −189 1512 −20 48 1536 −187 1523

the origin of the velocity space. Hence, when we fit the data, we should adopt a
single-Maxwellian model rather than a two-Maxwellian mixture model.

In the central panel of Fig. 2(b), we show the calculated distribution with
the single-Maxwellian model. The parameters used are given in the second row
of Table 1(b). In this case the single-Maxwellian fitting appears to be sufficient.
Furthermore, we display the result with the two-Maxwellian mixture model. The
right-hand panel shows the calculated distribution with the estimated parame-
ters given in the third and fourth rows of Table 1(b).

By examining the number of solutions of the simultaneous equations for ξ
and η, we find that they have only one solution. We therefore adopt the usual
velocity moments obtained by the single-Maxwellian fitting.

6 Discussion

To select the preferable number of components, we adopt in this study an empir-
ical approach; we first fit the data with a two-Maxwellian mixture model, then
examine whether there is a saddle point on the segment between the bulk ve-
locities of the model. Generally, AIC (Akaike Information Criterion [1]) defined
by

AIC = −2 max l (θ) + 2 dim θ, (19)

has been frequently employed for this problem [6]. However, AIC selected a mix-
ture model having a larger number of components compared with our intuition.
According to AIC, the best number of components was found to be six or more
for both distributions shown in Fig. 2.

This is expected to be due to following three reasons. First, it is not so ap-
propriate in our data set to adopt the Maxwellian distribution as a component



distribution of a mixture model. While the Maxwellian distribution can well rep-
resent the observed distribution near the peak, it cannot follow the distribution
in the large-velocity range. Since the observed distribution has a heavy tail in
the large-velocity range, it is necessary to have many components for fitting such
a tail accurately. In fact, the two-Maxwellian mixture model shown in Fig. 2(b)
consists of two components which present a peak and a heavy tail, respectively.
This problem would be solved when using a mixture model which consists of
heavy tail distributions instead of the Maxwellian distributions.

One of the heavy tail distributions is the κ distribution defined by

gi (vpqr|V i, Ti, κi) =
( m

2π

)3/2 Γ (κi)
Γ (κi − 3/2)

1√|Ti|
·
[
1 +

m

2
(vpqr − V i)

T Ti
−1 (vpqr − V i)

]−κi

. (20)

This converges to the Maxwellian distribution in the limit of κ → ∞, so it
can give a more comprehensive treatment of the data. When we select the κ
distribution as a component distribution, the algorithm presented in Sect. 3 can
work by including the κ renewing step. However, our experiments found that
the estimated κ value was the order of 101, which means that the resultant
distribution is practically the Maxwellian.

The second reason is that the observation has a large total ion count (N =
2925 and 4762 for the Figs. 2 (a) and (b), respectively). The log-likelihood l (θ) is
multiplied by N as defined in Eq. (8), and max l (θ) was on the order of 104–105

in the two examples. On the other hand, the dimension of free parameters θ was
on the order of 100–101. AIC was determined practically by max l (θ) and was
not affected by dim θ as a penalty term.

To take large N into account, we evaluated the competing models by BIC
(Bayesian Information Criterion [9]) instead of AIC. BIC is an information cri-
terion such that posterior probability is maximized and defined as

BIC = −2 max l (θ) + log N dim θ. (21)

BIC, however, yielded the same result as with AIC in our cases.
Finally, we should notice that there exist some classes of vpqr around v = 0

such that f (vpqr) = 0, which is identified as a white region around vx = vy = 0
in the two observations displayed in Fig. 2. This is due to the instrument, an
electrostatic analyzer. That is, when we observe the ambient velocity distribution
as shown in the left-hand panel of Fig. 3 by the electrostatic analyzer, we obtain
the count C (vpqr) as in the central panel. Since C (vpqr) is a count data, it
becomes zero if it is less than unity (under the one count level presented by
the dotted line). The zero count is then converted to zero probability f (vpqr)
through Eqs. (3) and (5). Namely, probability below the one-count level curve
becomes zero in the observation (see the right-hand panel). This cut off effect
with quantization occurs especially around v = 0, which produces the observed
distribution, f (vpqr), having a “hole” around v = 0 as in the right-hand panel.
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Fig. 3. Creation of a “hole” in the observed velocity distribution near the origin. When
the ambient velocity distribution (left) is observed, the obtained count and velocity
distribution become the ones as shown in the central and right-hand panels. The dotted
line and curve present one count level

AIC is expected to choose the model with multi-components to present the edge
of the “hole” precisely.

This “hole” effect will be reduced if we give a probabilistic description to the
ion count C (vpqr). We assume that the ion count observation is generated from
a multinominal distribution in which a detection probability of an ion of velocity
vpqr is h (vpqr). When an ion whose velocity is vpqr is detected C (vpqr) times
in N trials, the likelihood function becomes

λ (C (vpqr) |h (vpqr)) = N !
∏
p,q,r

h (vpqr)
C(vpqr)

C (vpqr)!
. (22)

An expected count of the ion of velocity vpqr is Nh (vpqr). We also assume that
the velocity distribution as a function of h (vpqr) can be approximated by a
mixture model. This approximation can be realized by considering the following
prior distribution for h (vpqr) [4, 10]

π (h (vpqr) |θ) =
∏
p,q,r

[
s∑

i=1

nigi (vpqr|V i,Ti)

]Nf ′(vpqr ,h(vpqr))

, (23)

where we set

f ′ (vpqr, h (vpqr)) =
f ′
0 (vpqr, h (vpqr)) dvpqr∑

p,q,r f ′
0 (vpqr, h (vpqr)) dvpqr

, (24)

f ′
0 (vpqr, h (vpqr)) = 2 × 104 1

τεqGq

Nh (vpqr)(
vT

pqrvpqr

)2 . (25)

With Eqs. (22) and (23), the log-likelihood function is defined by

l′ (C (vpqr) |θ) = log
∫

λ (C (vpqr) |h (vpqr))π (h (vpqr) |θ) dh (vpqr) . (26)

An optimal θ can be also obtained by maximizing l′ (C (vpqr) |θ). An evaluation
of the competing models is again carried out by comparing AIC which is defined



by

AIC = −2 max l′ (C (vpqr) |θ) + 2 dim θ. (27)

In this framework, AIC defined by Eq. (27) is sometimes called ABIC (Akaike
Bayesian Information Criterion [2]). In this approach, an evaluation of model
is conducted by considering two distribution of C (vpqr) and f (vpqr), namely
a Bayesian approach. The low count around v = 0 yields a small “weight” so
that the fitting of f (vpqr) is allowed to be done less precisely around v = 0.
Moreover, a Bayesian approach will treat a problem of a heavy tail in the high-
velocity range. Since the count of ions of high-velocity is also small, modeling
and model comparison with a smaller effect of the heavy tail will be tractable.

7 Conclusion

We have proposed a method for analyzing a multi-peaked velocity distribution
via a multivariate Maxwellian mixture model. With the fitting of this model,
we can extract the velocity moments for each component of the multiple peaks
automatically. The parameters of the model are determined through the EM
algorithm. For the automatic judgment of the preferable number of components
of the mixture model, we introduced a method of examining the number of
extrema of the resulting mixture model. When we use the method, we can adopt
an appropriate fitting result and obtain a tool for a kinetic description of the
plasma dynamics; this is especially effective for dealing with a large data set.
Application of our method to observations confirmed that the method works well
as shown in Fig. 2. More scientific application is presented in our recent work
[12].
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