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Abstract. A geomagnetic jerk is defined as a sudden change in the trend
of the time derivative of geomagnetic secular variation. A statistical time
series model is applied to monthly means of geomagnetic eastward com-
ponent obtained at 124 geomagnetic observatories to detect geomagnetic
jerks objectively. The trend component in the model is expressed by a
second order spline function with variable knots. The optimum parame-
ter values of the model including positions of knots are estimated by the
maximum likelihood method, and the optimum number of parameters is
determined based on the Akaike Information Criterion. The geomagnetic
jerks are detected objectively and automatically by regarding the deter-
mined positions of knots as the occurrence epochs. This analysis reveals
that the geomagnetic jerk in 1991 is a local phenomenon while the 1969
and 1978 jerks are confirmed to be global phenomena.

1 Introduction

A geomagnetic secular variation observed on the ground is believed to have sev-
eral origins. One is the dynamo action in the outer core, which is the liquid
metallic layer in the interior of the earth, and the others are the currents flow-
ing external of the earth such as the magnetopause currents, the ionospheric
currents, the ring current, the tail current, and the field-aligned currents [17].
The geomagnetic field of the core origin is much larger than that of the external
origins [8].

It has been reported that the trends of the time derivative of geomagnetic sec-
ular variations in the eastward component changed suddenly at Europe around
1969 [6], 1978 [18], and 1991 [5] [15] as shown in Fig. 1. This phenomenon is



termed “geomagnetic jerk” [16], which mathematically means that the secular
variation has an impulse in its third order time derivative. It is discussed for a
couple of decades whether the origin of the jerks is internal or external of the
earth and whether their distribution is worldwide or local [3] [7] [16].

In analyzing the geomagnetic jerks, most of the papers assume that the jerks
occurred around 1969, 1978, and 1991, then fit several lines to the time deriva-
tive of the secular variation, and obtain a jerk amplitude as the difference of the
trends of two lines connected at the occurrence epoch of the jerk. Their meth-
ods are subjective in the determination of occurrence epochs [3]. Two objective
methods using the optimal piecewise regression analysis [24] and the wavelet
analysis [1] [2] were developed for determination of the jerk occurrence epochs.
The former method was applied to the geomagnetic annual means, but it is
better to adopt monthly means rather than annual means for jerk analyses be-
cause it takes only a few years to change the trends of the time derivative of
geomagnetic secular variation as seen in Fig. 1, and the temporal resolution of
annual means is not sufficient to analyze the jerk. The latter method, on the
other hand, was applied to geomagnetic monthly means, but this method still
has room for improvement because seasonal adjustment is not taken into ac-
count. In this paper, a statistical time series model, in which the adjustments of
both seasonal and short time scale variations are taken into account, is applied
to geomagnetic monthly means to estimate the trend component of geomagnetic
secular variation. The geomagnetic time series is decomposed into the trend, the
seasonal, the stationary autoregressive (AR), and the observational noise compo-
nents. The model parameters are estimated by the maximum likelihood method
and the best model is selected based on the Akaike Information Criterion (AIC).
Finally, the occurrence epochs of the jerks are determined automatically.

The data description shall be given in Section 2 and the method of our
analysis is developed in Section 3. A result of the decomposition, the occurrence
index of jerks, and the global distribution of jerk amplitudes are shown in Section
4.

2 Geomagnetic Data

We use monthly means of geomagnetic eastward component obtained at obser-
vatories distributed worldwide. The data are collected through the World Data
Center system (e.g., see http://swdcdb.kugi.kyoto-u.ac.jp/). The time se-
ries at an observatory should be continuously maintained for more than ten
years, since the geomagnetic jerks are the sudden changes in the trends of ge-
omagnetic decadal changes. The time series of 124 geomagnetic observatories
are selected according to this criterion. The distribution of these observatories is
shown in Fig. 2. Since the worldwide coverage of the observatories in operation is
not enough before International Geophysical Year (IGY) 1957, we use the time
series from 1957 to 1999. Obvious artificial spikes and baseline jumps in the data
are corrected manually before the analysis. The influences of small errors in the
data at an observatory, which are difficult to be corrected manually, to result of
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Fig. 1. The time derivative of annual means of the geomagnetic eastward component
in (a) Europe, (b) Eastern Asia, (¢) North America, and (d) the Southern Hemisphere.
The trends sometimes change suddenly in a few years around 1969, 1978, and 1991.
These phenomena are called geomagnetic jerks.

the analysis are considered to be identified by comparing with results obtained
from the data at other observatories as shown in Section 4.

3 Method of Analysis

3.1 Statistical Time Series Model

A geomagnetic time series of monthly means in the eastward component obtained
at an observatory is described by the following statistical time series model:

where Y, is a monthly mean value at the consecutive month n starting from
January 1957, t, is the trend component, s, is the seasonal component, p, is
the stationary AR component, and w,, is the observational noise component.

Trend Component The time derivative of decadal geomagnetic time series
of the eastward component is approximated by a piecewise linear curve (first
order spline) as seen in Fig. 1. The trend component ¢, of the geomagnetic time
series, therefore, is expressed by the second order spline function with knots
&1,6, -+, €k, where K is the number of knots. Here &1,&s,---, &k are integer
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Fig. 2. The distribution of the 124 geomagnetic observatories used in this paper.

values, that is, a knot locates at a data point. The position of a knot corresponds
to the occurrence epoch of a geomagnetic jerk.

To derive models for the trend component, we present the continuous time
model:

f(t) = f(t— At) + f'(t — At) At + %f”(t — At (A2 + 0 ((A1?)  (2)
fl(t) = f'(t — At) + f'(t — At) At + O ((At)?) (3)
() = f'(t = At) + O(At) . (4)

The models for the trend component ¢,,, the first time differential component 6t,,,
and the second time differential component §%t,, can be derived by discretizing
the equations (2), (3), and (4), respectively:

1
tn = tp_1 + Otp_1 + 56%_1 (5)
Stn = Otn_1 + 62ty (6)
62tn = 62tn71 + Vn1 (7)

where v,; is the system noise sequence which obeys the normal distribution
function with mean zero and variance 77, i.e., v, ~ N(0,77). The system noise
sequences for the trend component model (5) and the first time differential com-
ponent model (6) are assumed to be zero. Here each interval between successive
knots is assumed to be more than five years to avoid too many knots con-
centrating in a short period [24], and an initial and end knots are kept to be
separated from n = 1 and n = N by more than three years, respectively. Similar
related approaches to a trend component model can be found in [9] and [20].
72 has a large value at every knot where the second order time derivative of
the spline function is not continuous while the value of 72 is zero elsewhere.
The values of 7¥ at the knots &,&, -, €k are written as 75,75, -+, T2, re-
spectively. The parameters which should be estimated in the trend component



are the number and the positions of the knots and the variances of the system
noise at each knot. An alternative way to realize an abrupt change in §2t, is
to replace N(0,7%,)(k = 1,2,--+, K) by the heavy-tailed non-normal distribu-
tion [10] [12]. Namely, we employ the non-normal linear trend model to detect
an abrupt change automatically and objectively. Meanwhile this approach mit-
igates a difficulty of estimating the parameter values (&,77,)(k = 1,2,--+, K),
an identification of jerks is not straightforward from the estimated §t,, obtained
by applying the non-normal trend model. Therefore we did not adopt this ap-
proach in this study. If the jerks occurred simultaneously in the global extent,
it is better to consider a time series model to treat all of observations simulta-
neously instead of analyzing data from each observatory separately. However we
did not adopt this generalized model because the jerks were reported to occur,
in the southern hemisphere, a few years after the occurrence in the northern
hemisphere [2] [7].

Seasonal Component The seasonal component s,, which represents the an-
nual variation in the data, should have a twelve months periodicity, i.e., s, ~
S$p—12. This condition can be rewritten as

11
Z Sn—i = Un2 , (8)
=0

where v,,2 is the system noise sequence which obeys vp2 ~ N(0,73) [12]. 75 is a
parameter to be estimated.

Stationary Autoregressive Component Unless the stationary AR compo-
nent is included in the model (1), the best model tends to have more knots than
expected as shown in the next section. This component may represent short time
scale variations less than one year, such as the solar effects, or responses to the
external field which reflect the mantle conductivity structures. The stationary
AR component is expressed as

m
Dn = Z QiPn—i + Un3 , (9)

i=1
where m is the AR order and v,3 is the system noise sequence which obeys
vn3 ~ N(0,73). 73 is a parameter to be estimated.

Observational Noise The observational noise w, is assumed to be a white
noise sequence which obeys the normal distribution function with mean zero
and variance o2, i.e., w, ~ N(0,0?), where o2 is a parameter to be estimated.

3.2 Parameter Estimation and Model Identification

When a parameter vector involved in the equations (1)-(9)

0= (517527"'751(70'170'27"'7am77-12177-1227"'5T12K’T22’T??’0-2) (10)



is given, the equations (1)-(9) can be represented by the state space model [14]
x, = Fzx, 1+ Guv, (11)

with the state space vector x,, and the system noise vector v,
Tn = (tn 6tn 62tn Sn *'* Spn—10 Pn ttt Pn—m41 )t (13)
Un = ('Unl Un2 Un3 )t ) (14)

where the superscript ¢ denotes the transpose operation, and the matrices F', G,
and H are
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H=(100[10 - 0]10 - 0. (1)
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The log-likelihood function of this model as a function of @ is

N 2
£0) = —% lN log 27 + Z {log dpjn-1 + M}] ) (18)

n—1 dn\nfl

where N is the number of observational data, Y,|,,—1 is the mean of the predictive
distribution for Y, given observational data Y;(i = 1,2,---,n — 1), and dyj,—;



is the variance of that distribution [12]. The quantities of Y, ,—; and d,,— in
the equation (18) can be obtained by the Kalman filter algorithm recursively:

Inpjn-1 = an—1|n—1 ( )

Vn\nfl = Fvn71|n71Ft + GQGt ( )

K, = Vn|n71Ht(HVn|n71Ht + 02)_1 (21)

Lpjn = Tnjn—-1 + Kn(Yn - Hmn|n—1) ( )

Vn|n = (I - KnH)Vn|n—1 ) ( )

where x,|; is the mean vector and V,,|; is the variance covariance matrix of the

state vector x,, given observational data Y;(i = 1,2,---,7), I is the unit matrix,
and @ is the variance covariance matrix of the system noise:

7200
Q=070 ]. (24)
0072
The positions of knots &;(i = 1,2, - - -, K') move to other data points in the course

of this iterative estimation. Other parameters in the parameter vector (10) is
iteratively searched by employing the quasi-Newton method [19] which makes
the log-likelihood (18) larger. This procedure is iterated until the parameter
vector @ makes the log-likelihood maximum. The best model among the models
with different number of the parameters is selected by minimizing the AIC:

AIC = —2/(0) + 2dim §

_ { —2((6) + 2(2K +2) (m = 0) (25)
—20(0) + 22K +m +3) (m #0)
The exceptional handling of m = 0 is necessary to avoid the identification prob-
lem between innovation variance 73 of the 0-th AR component and variance
o? of the observational noise. See [11] for an application of the AIC to deter-
mination of the number and positions of the knots. There are various kinds of
information criteria besides the AIC [13]. Minimum description of length (MDL)
for the selection of the orders of the models is discussed in [21]. Modeling and
simplicity in a field of scientific discovery and artificial intelligence are discussed
in [22] and [23].
The final estimate of the state vector variable for the best model is obtained
by the fixed interval smoother algorithm [12]:

Ap = Vo Frd Vi (26)
TN = Tpjn + An(Tri1 N — Trgign) (27)

The estimated positions of the knots are regarded as the occurrence epochs of
jerks. The jerk amplitude §%Y;, at a knot &; is defined as:

53Y§i = 52t5i — 52t5i_1 . (29)



The unit of this jerk amplitude is not nT(nano tesla)/year® but nT/year? because
it is defined as a simple difference between successive second time differential
components. The definition of the jerk amplitude (29) follows that of the previous

papers (e.g., [7]).
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Fig. 3. (a) The time series of monthly means of geomagnetic eastward component Y,
at Chambon-la-Foret, France, (b) the trend component ¢,, (c) the first time differential
component 8t,, (d) the second time differential component §%¢,, (e) the seasonal com-
ponent sy, (f) the stationary AR component p,, and (g) the observational noise ws,.
The trend component is expressed by a second order spline function, and estimated
positions of the knots (denoted by the plus symbols, i.e., September 1964, Septem-
ber 1969, June 1978, and June 1991) are regarded as the occurrence epochs of the
geomagnetic jerks.

4 Results and Discussion

An example of the decomposition of geomagnetic time series by the method
mentioned in Section 3 is illustrated in Fig. 3. The data used in Fig. 3 are the
geomagnetic monthly means of the eastward component at Chambon-la-Foret
(48.02°N, 2.27°E), France. Although there are no data from March to April 1980
and in October 1981, values of state vector (11) in the missing periods can be
estimated by the Kalman filter and smoother algorithms [4]. The number of the
knots for the best model is K = 4 and they locate at 51 = September 1964,



& = September 1969, & = June 1978, and & = June 1991; our method can
identify the jerks which are believed to have occurred except for 1964. Jerks are
detected by our method around 1969, 1978, and 1991 from geomagnetic eastward
component at most of the European observatories. On the other hand, the ratio
of the number of observatories where a jerk is detected in 1964 to the number of
observatories where a jerk is not detected in that year is much lesser than that in
the years when the jerks are believed to have occurred. That is, the detected 1964
jerk may be a local phenomenon at Chambon-la-Foret. The number of the knots
becomes 5 and the AIC increases from 2461.06 to 2558.86 unless the stationary
AR component p, is included in the model (1). This result indicates that an
inclusion of the stationary AR component is reasonable. The same tendency is
seen in the results obtained from the data at most of the observatories.

Fig. 4 shows the occurrence index of geomagnetic jerks detected by our
method. The occurrence index in the year y is defined by

R, = niyz S 6%, (09)] (30)

i &€y

where §3Ye, (0;) is the jerk amplitude obtained at the i-th observatory O; and n,
is the number of observatories available in the year y. It can be confirmed from
Fig. 4 that Ry has clear peaks in 1969 and 1977 when the jerks are believed
to have occurred [6] [18], which is consistent with the result obtained by [2],
and also has small peaks in 1989 and 1994. However there is no peak in 1991,
when a jerk is also believed to have occurred [5] [15]. Fig. 5 shows the global
distributions of the jerk amplitudes §°Y;, defined by the equation (29) in the
years when the geomagnetic jerks believed to have occurred (i.e., 1969, 1978,
and 1991). The circles indicate positive jerk amplitudes and the triangles indicate
negative ones. It should be noted from these figures that the 1991 jerk is not a
worldwide phenomenon in comparison with the 1969 and 1978 ones. This result
is inconsistent with the conclusion by the previous paper [7].

5 Conclusions

We developed a method to analyze the time series of geomagnetic monthly means
for identifying the geomagnetic jerks. Each geomagnetic time series is decom-
posed into the trend, the seasonal, the stationary AR, and the observational
noise components by applying a statistical time series model. The trend compo-
nent is expressed by a second order spline function because a jerk is an impulse
in the third order time derivative of the geomagnetic time series. The model
parameters including the positions of the knots of the spline function are esti-
mated by the maximum likelihood method and the number of the knots and
the AR order is selected based on the AIC. Distributions of jerk amplitudes are
obtained by regarding the estimated positions of the knots as the occurrence
epochs of the jerks and by defining a jerk amplitude at an optimum knot as
the difference between the successive second time differential components in the
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trend component connected at the knot. The 1969 and 1978 jerks are confirmed
to be worldwide phenomena while the 1991 jerk is found to be localized. Our
method developed in this paper gives a valuable contribution to discovery in the
applied domain.
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