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Abstract. In this paper, we propose a new clustering procedure for
high dimensional microarray data. Major difficulty in cluster analysis of
microarray data is that the number of samples to be clustered is much
smaller than the dimension of data which is equal to the number of
genes used in an analysis. In such a case, the applicability of conventional
model-based clustering is limited by the occurence of overlearning. A key
idea of the proposed method is to seek a linear mapping of data onto
the low-dimensional subspace before proceeding to cluster analysis. The
linear mapping is constructed such that the transformed data successfully
reveal clusters existed in the original data space. A clustering rule is
applied to the transformed data rather than the original data. We also
establish a link between this method and a probabilistic framework, that
is, a penalized likelihood estimation of the mixed factors model. The
effectiveness of the proposed method is demonstrated through the real
application.

1 Introduction

Microarray dataset is a collection of microarray experiments, xj ∈ IRd, j ∈
{1, · · · , N} in which each experiment represents the expression levels of d genes
corresponding to the jth sample. Usually, microarray dataset has a fairly small
sample size N , typically less than one hundred, whereas the number of genes
involved is more than several thousands. Cluster analysis of microarray has been
considered as a challenge to the automated search for molecular subtypes of
desease. In view of statistics, major difficulty in this problem is that the number
of samples to be clustered is much smaller than that of genes, i.e. N << d.
This fact limits the applicability of conventional model-based (or distance-based)
clustering by the occurence of overlearning. For instance, clustering based on
the Gaussian mixture model, which also includes the K-means clustering as
a special case, usually leads to the overfitting during the density estimation
process with N << d. In this article, a new procedure is proposed to overcome
such intractability inherent in microarray studies.

The goal of cluster analysis is to partition a set of N samples {xj}N
j=1 into

G-nonoverlapping clusters {Pg}G
g=1, such that those in a particular cluster are

cohesive and separated from those in other clusters. This problem amounts to
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estimating the vector of G-unknown class labels c(xj)T = (c1(xj), · · · , cG(xj)),
j ∈ {1, · · · , N}:

cg(xj) =

{
1 if xj ∈ Pg

0 otherwise.

The estimation of {c(xj)}N
j=1 is achieved by constructing a suitable classifier

ĉ(xj) = {ĉg(xj)}g which declares the assignment of the jth sample to the gth
cluster by ĉg(xj) = 1 and ĉh(xj) = 0 for h �= g.

Unfortunately, constructing the clustering rule as defined over IRd is very
hard with N << d as the finite mixture model leads to the overfiting during
the density estimation. Reducing the dimension of data, that is construction of
a mapping of data onto the low-dimensional subspace, has been considered as a
key issue in microarray study. In this article we consider to seek a linear mapping
of data onto the low-dimensional subspace, PTxj ∈ IRq as with q << d before
proceeding to cluster analysis:

PTxj = {pT
k xj}k.

Here, the pk stands for the kth column of P. Then, the corresponding classifier
is defined over IRq rather than IRd:

ĉ(xj) ≡ ĉ(PTxj), xj ∈ IRd.

Hereafter, we implicitly assume a correspondence between the q-mappings of
data and the transcriptional module genes as each direction pk plays a role
to correct up the gene expression patterns in a transcriptional module. In this
sense, we call the clustering system based on a linear mapping the transcriptional
module-based clustering.

In clustering context, the q-directions {pk}q
k=1 should be chosen such that

the transformed data {PTxj}N
j=1 successfully reveal the clusters existed in IRd.

Then we can identify the clusters based on the lower-dimensional dataset. These
two tasks are formulated as the statistical estimation for {c, P}. This problem
amounts to an optimization problem that minimizes a loss function Q(c,P) with
respect to the unknown encoders function c(x) and the q-directions {pk}q

k=1.
One of the key results in this study is to establish a link these two processes, i.e.
the dimension reduction of data and the clustering algorithm, and a probabilistic
framework. In this context, the optimization for minc,P Q(c,P) is converted
into a penalized likelihood estimation of a probability model of which we call
the mixed factors model. Such formulation gives us a great deal of utilities,
in either the computation for finding minc,P Q(c, P) and the determination of
the number of clusters and the appropriate dimension of projected data space,
{G, q}, respectively.

The rest of this article is organized as follows. In section 2 we introduce two
criteria to be minimized in the construction of linear mapping. In section 3, we
will define a generalized loss function that links the two criteria introduced in
section 2. Section 4 presents a probabilistic formulation of this approach. Section
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5 present an optimization algorithm for minimizing the proposed generalized
loss function. Section 6 contains the determination of the number of clusters
and some another parameters. In section 7, the effectiveness of our method will
be demonstrated thorough the application to a well-known microarray data, the
small round cell tumors of childhood. Finally, the concluding remarks are give
in Section 8.

2 Clustering based on Linear Mapping

2.1 Principal Component Analysis

Principal component analysis (PCA, [1]) is one of the most commonly used
techniques for constructing a linear mapping of data in statistical data analysis
including bioinformatics ([4],[5]). PCA determines the q-directions {pk}q

k=1 to
minimize the negative variance of {PT xj}N

j=1 with taking account ||pk||2 = 1,
k ∈ {1, · · · , q}. Thus, the objective function to be minimized is

QA(P) := − 1
N

q∑
k=1

N∑
j=1

pT
k xjxT

j pk +
q∑

k=1

λk(||pk||2 − 1).

where the {λk}q
k=1 denote the Lagrange multipliers to impose ||pk||2 = 1, k ∈

{1, · · · , q}. Here, we assume that the origin of {xj}N
j=1 has been shifted to zero

by subtracting the sample mean from all samples.
The optimal q-directions {p̂}q

k=1 are equal to the q-principal axes of the
sample covariance matrix corresponding to the dominant eigenvalues {λ̂k}q

k=1.
However, as was remarked by some literatures, PCA sometimes fails to reveal
the presence of clusters shown by the original data [2, 7]. For instance, when the
within-cluster variance on a particular cluster largely dominates the between-
clusters variance, a direction tends to the principal axis corresponding to one
clusters [2, 7]. Most such limitation are related to the fact that PCA only takes
into consideration the second order characteristic of data.

2.2 Within-Cluster Variances

Alternatively, consider to seek a linear mapping to minimize the overlaps of
clusters revealed onto IRq. Let us define a loss function to be the Euclid distance
between PT x and the unknown centroids {µg}G

g=1 of G-clusters:

L(P, µ; x) :=
G∑

g=1

cg(x)||PTx− µg||2, x ∈ IRd. (1)

Hereafter we stand for the true distribution of data by f(x). Besides, we also
denote the conditional distribution of c(x) by

f(c(x)|x) :=
G∏

g=1

wg(x)cg(x),
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where the unknown functionals w(x) = {wg(x)}g satisfy

{wg(x) ≥ 0}G
g=1,

G∑
g=1

wg(x) = 1, x ∈ IRd.

Taking the expectation of (1) with respect to f(x, c) = f(x)f(c(x)|x) defines
a risk function to be minimized in the construction of estimators for {c(x),P}
although the true distribution of {x, c(x)} is unknown. Instead, replacing f(x)
by the empirical distribution f̂(x), we can obtaine an empirical loss function

QB(w, P, µ) : = EfL(P, µ; x)

=
1
N

G∑
g=1

N∑
j=1

wg(xj)||PT xj − µg||2 −
q∑

k=1

λk(||pk||2 − 1). (2)

Here the {λk}q
k=1 denote the Lagrange multiplier. The first term in (2) presents

just the within-cluster variances of {pT
k xj}N

j=1, k ∈ {1, · · · , q}. An optimal P̂
minimizes the overlap of G-clusters revealed onto the IRq although the condi-
tional distributions {w(xj)}N

j=1 and the G-centroids {µg}G
g=1 remain to be un-

known. The optimization method will be described in later under more general
setting.

3 Generalized Criterion

While the minimum within-cluster variances are a suitable criterion in the con-
struction of linear mapping to reflect the group structure of original dataset, its
applicability might be limited due to the dimensionality of the data. Most limi-
tations are related to the occurence of overlearning. Such unsuitableness occurs
due to the fact that the N data points are sparsely distributed on IRd. Then, the
degree of freedom in the determination of {pk}q

k=1 is extreamly large. Accord-
ingly, the compressed samples {PTxj}N

j=1 might improperly exhibit the clusters
despite no clusters on IRd.

To overcome such limitation, we propose a criterion for estimating parameters
by combining the score functions QA(P) and QB(w, P, µ) of the form

Qα(w, P, µ) = − 1
N

N∑
j=1

||PTxj||2 +
α

N

G∑
g=1

N∑
j=1

wg(xj)||PTxj − µg ||2

+
q∑

k=1

λk(||pk||2 − 1), (3)

where α ∈ [0, 1] is a mixing rate that controls the trade-off between the total vari-
ance and the between-clusters variance. Here the {λk}q

k=1 denote the Lagrange
multipliers for taking account {||pk||2 = 1}q

k=1. Notice that for any {w(xj),P},
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the minimization of (3) with respect to the G-centroids is accomplished by the
weighted average of {PTxj}N

j=1:

µ̂g =
1

Nw̄g

N∑
j=1

wg(xj)PTxj , (4)

where w̄g = (1/N )
∑N

j=1 wg(xj). Equating µg = µ̂g for g ∈ {1, · · · , G}, the first
two terms in (3) can be rewritten as

− 1
N

N∑
j=1

||PTxj||2 +
α

N

G∑
g=1

N∑
j=1

wg(xj)||PT (xj − x̄g)||2. (5)

where the {x̄g}G
g=1 denote the group means corresponding to {xj},

x̄g =
1

Nw̄g

N∑
j=1

wg(xj)xj , g ∈ {1, · · · , G}. (6)

As α → 0, the quantity (5) tends to the variance of {PT xj}N
j=1, and then, the

optimal {p̂k}q
k=1 tends to the principal axes. To the contrary, as α → 1, the (5)

tends to the negative between-clusters variance of {PTxj}N
j=1:

−trace

(
PT

G∑
g=1

x̄gx̄T
g P

)
= −trace

G∑
g=1

µ̂gµ̂
T
g .

Then, a linear mapping of data with the optimal q-directions tends to separate
the G-centroids.

Next, consider a computational aspect in the construction of the optimal
q-directions. Differentiating (3) with respect to pk with equating µg = µ̂g leads
to an equation to be solved,[

1
N

N∑
j=1

xjxT
j − α

N

G∑
g=1

N∑
j=1

wg(xj)(xj − x̄g)(xj − x̄g)T − λkI

]
pk = 0. (7)

Obviously, the solutions can be given by the corresponding eigenvalues which
satisfy

λ̂k = pT
k

[
1
N

N∑
j=1

xjxT
j − α

N

G∑
g=1

N∑
j=1

wg(xj)(xj − x̄g)(xj − x̄g)T

]
pk. (8)

Thus, the minQα(w, P, µ) with any fixed third arguments {w} can be attained
at Q∗ = −∑q

k=1 λ̂k with a series of the dominant eigenvalues, λ̂1 ≥ λ̂2 ≥, · · · ,≥
λ̂q: the optimal p̂1 corresponds to the largest λ̂1, and the rest of directions
{p̂k}q

k=2 are orthogonal to all of the preceding ones.
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Given {P, µ}, the estimation of {w(xj)}N
j=1 can be accomplished by the

K-means-like rule: the solution will put unit value on wg(xj) with a smallest

distance between P̂
T
xj and {µ̂g}G

g=1. In this article, we generalized this type
of clustering, i.e. the hard clustering, to the soft clustering. This goal can be
accomplished by imposing a smoothness on the {wg(x)}g. One such penalization
is the negative entropy of {wg(x)}g:

H(w(x)) :=
G∑

g=1

wg(x) log wg(x).

This function achieves the minimum value for equal values wg(x) = 1/G, g ∈
{1, · · · , G}, and is correspondingly larger as the {wg(x)}G

g=1 tends to more un-
equal. Consequently, the modified criterion becomes

Qα(w, P, µ) − β

N∑
j=1

H(w(xj)). (9)

The quantity β ≥ 0 controls the strength of penalty that tunes the trade-off
between soft and hard clustering. The optimal {ŵg(xj)}G

g=1 for this objective
function turns to

ŵg(xj) ∝ exp
(
− α

β
||PTxj − µg||2

)
. (10)

for all j ∈ {1, · · · , N}. This solution puts the increased weight on a particular
group to be the smallest ||PTxj − µg||2 as β tends to small, and setting β → ∞
places the equal weights on all groups. Correspondingly, our approach alternates
between two steps, solving (7) and the grouping (10) with an initial starting
value until a series of the corresponding Qα is in convergence.

We will revist the computational aspect of this method in section 5. The
proposed optimization algorithm can be implemented without solving the eigen-
values equation that might be computationaly very demanding in microarray
study. The remined tasks are the determination of smoothness {α, β} and a
suitable q on which data are mapped. Moreover, the number of clusters G must
often be deduced from data. As will be shown in section 6, these tasks can be con-
verted into the statistical model selection throught the probabilistic formulation
of the method.

4 Probabilistic Formulation

We now discuss the proposed clustering method within a probabilistic frame-
work. Let f j ∈ IRq be a latent random variable corresponding to the jth sample
where q is much smaller than d. Then, suppose that a set {xj, f j}N

j=1 is inde-
pendently distributed according to

xj = Pf j + εj, (11)



7

f j|cg(xj) = 1 ∼ N(µg , σI), g ∈ {1, · · · , G}, (12)

where the εj is assumed to be Gaussian noise with N(0, γI) and to be indepen-
dent to f j. The observational equation (11) states that for a given f j , the xj is
distributed to be N(Pf j, γI). Accordingly, this generative model also states the
distribution of data conditional on the class label by

xj|cg(xj) = 1 ∼ N(Pµg, σPPT + γI), g ∈ {1, · · · , G}.
Thus, the distributional aspect of data is characterized by G-clusters centered at
{Pµg}G

g=1. This model, called the mixed factors model, was originally proposed
by Yoshida et al. [8] to intend a parsimonious parameterization of the Gaussian
mixture.

As the preceding method imposes the orthogonality on the q-directions, we
now assume the orthogonality of q-columns in the loading matrix P = {pk}k.
Then the logged-density of x can be written as

log P (x|c(x))=const.− 1
γ

(||x||2−||PTx||2) − 1
γ + σ

G∑
g=1

cg(x)||PT x− µg||2.(13)

Taking the expectation of (13) with respect to the empirical distribution f̂(x)
and the conditional distribution of unknown class labels f(c(x)|x) leads to the
log-likelihood function of unknown parameters {w,P, µ} after multiplying (13)
by γ:

L(w, P, µ) = const. +
1
N

N∑
j=1

||PTxj ||2 − α

N

G∑
g=1

N∑
j=1

wg(xj)||PT xj − µg)||2,

where α = γ/(γ+σ). Adding both the regularization term β
∑N

j=1 H(xj) and the
Lagrange terms −∑q

k=1 λk(||pk||−1) to this function gives a criterion equivalent
to the negative of (9). This implies that the problem to be solved in our method
turns to a penalized likelihood estimation of the mixed factors model.

5 Maximization-Maximization Algorithm

Here, we present an optimization algorithm to maximize the penalized likeli-
hood of the mixed factors model, that is equivalent to find the minimizer of
(9). This can be achieved by the EM algorithm (Dempster et al.[3]). The EM
algorithm takes {xj, f j}N

j=1 as a complete data set and then alternates between
the two steps: the expectation of the complete data likelihood with respect to
the posterior distribution of the unknown factors {fj}N

j=1,

P (f j|cg(xj),xj) = φ(f j; αµg + (1 − α)PTxj, λαI),

and the maximization of the expected complete data likelihood. Hereafter, we
let φ( ; a,B) be the Gaussian density with the mean a and the covariance matrix
B.
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Consider now to update the hth direction ph whereas the another param-
eters are fixed at the current values {p̂k}k �=h, {µ̂g}g and {ŵ(xj)}j. By the
definition, the complete data log-likelihood of the mixed factors model, Lc =
(1/N )

∑
j log P (xj , fj |c(xj)), can be explicitly represented by

Lc(w, P, µ) :=
1
N

N∑
j=1

φ(xj; fhjph

+
∑
h�=k

fkjp̂k, γI) +
1
N

G∑
g=1

N∑
j=1

ŵg(xj)φ(f j ; µ̂g , σI), (14)

where fhj is the hth element of f j . Note that the hth direction depends only the
first term in (14) which corresponds to the observational equation (11).

Let 〈Lc〉 be the conditional expectation of (14) where the expectation is
taken with respect to the P (f j |cg(xj),xj) evaluated with the current parameters
{ŵ, P̂, µ̂}. Then the objective function to be maximized at this step is

〈Lc〉 + ηh(||ph||2 − 1) +
∑
k �=h

ηkp̂
T
k ph.

Here, the {ηk}q
k=1 are the Lagrange multipliers to impose the orthogonality on

the q-directions. Solving this gives the optimal p̂h as

p̂h =
1
S

[ N∑
j=1

〈fhj〉xj −
∑
k �=h

p̂T
k

N∑
j=1

〈fhj〉xj p̂k

]
,

where the S denotes the normalizing constant to satisfy ||p̂h||2 = 1, and the
conditional expectation of the latent variables, 〈fhj〉, is equal to the hth element
of

〈f j〉 = α

G∑
g=1

µg + (1 − α)PTxj.

Repeating this process for h ∈ {1, · · · , q}, we would have a series of q-directions
{p̂k}q

k=1.
Given an estimate of q-directions, the G-centroids of clusters and the condi-

tional distribution of class labels, {wg(xj)}g, for j ∈ {1, · · · , N} are estimated by
(6) and (10), respectively. Thus, we just compute the simple recursive formulas
until the sequence of estimates and the corresponding penalized likelihood are
judged to be converged. Such sequence of parameters yields a non-decreasing
sequence of the penalized likelihood of the mixed factors model. To sum up, we
summarize this algorithm in below:

1. Set the initial values for {ŵ, P̂, µ̂} and {G, q, α, β}. Then repeat the step 2
to 4 until the sequence of either parameters and the corresponding penalized
likelihood will be converged:
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2. (q-directions)
for h = 1 to q, update p̂h by

p̂h =
1
S

[ N∑
j=1

〈fhj〉xj −
∑
k �=h

p̂k
T

N∑
j=1

〈fhj〉xjp̂k

]
.

3. (G-centroids) for g = 1 to G, update µ̂g by

µ̂g =
1

Nw̄g

N∑
j=1

ŵg(xj)P̂
T
xj .

4. (Grouping function) for g = 1 to G and j = 1 to M , update ŵg(xj) by

ŵg(xj) ∝ exp
(
− α

β
||P̂T

xj − µ̂g||2
)
.

Notice that we have no need to evaluate the noise variances {γ, σ} of the mixed
factors model during this procudure. However, the model selection method de-
scribed in next section requires the evaluation of these parameters. It follows
from α = γ/(γ + σ) that the σ can be estimated by σ̂ = (1 − α)γ̂/α with a
given estimate γ̂. By the simple calculation, it can be seen that an optimal γ̂
necessarily satisfies

γ̂ =
1

(d − q)N

N∑
j=1

(
||xj ||2 − ||P̂T

xj ||2
)
.

6 Penalized Mixed Factors Analysis

A basic issue arising in this method is the determination of the number of clusters
G, the suitable dimension of the linear mapping q and the strength of penalties
{α, β}. Within statistical framework, this issue can be converted into the model
selection problem that chooses a suitable set {G∗, q∗, α∗, β∗} among the possible
combinations. In this article, we address this problem by selecting a particular
combination to show the best predictability.

Consider to split {xj}N
j=1 into the two disjoint subsets, a training sample

set {xe
j}Ne

j=1 used in the estimation of parameters and a set of the blinded test
sample {xb

j}Nb

j=1. Let {ŵe, P̂
e
, µ̂e} be a set of parameters estimated by the train-

ing samples with a particular {G, q, α, β}. One possible approach is to select a
combination {G∗, q∗, α∗, β∗} to minimize the prediction error

C({G, q, α, β}) := − 1
Nb

Nb∑
j=1

log P (xb
j ; {ŵe, P̂

e
, µ̂e}),
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where P (x; {w,P, µ}) is the unconditional density of data to be the Gaussian
mixture as

P (x; {ŵ, P̂, µ̂}) =
G∑

g=1

1
G

φ(x; P̂µ̂g , σ̂P̂P̂
T

+ γ̂I). (15)

Given a set {G∗, q∗, α∗, β∗}, our method calibrates G-clusters based on the
estimated conditional distribution of class labels {wg(xj)}g. The most common
classifier is to assign xj to a cluster with the highest posterior probability of
belonging:

ĉg(P̂
T
xj) =

{
1 if wg(xj) = max

h∈{1,···,G}wh(xj),
0 otherwise.

Biological interpretation of q-coordinates corresponding to {P̂T
xj}N

j=1 is im-
portant for real data analysis. This can be achieved by investigating the values
in q-directions {p̂k}k. Obviously, a particular element of {xj}N

j=1 had a large
contribution in the calibration of clusters if the corresponding element of |p̂k|
takes a large value. To the contrary, if an element of |p̂k| takes a value close
to zero, the kth coordinate is not affected by the corresponding gene. In this
way, by investigating all values in P̂, each of q-directions can be understood. In
practice, it will be helpful to list the top L of genes to give the highest positive
values in p̂k at Ωk

+ and to give the highest negative values in p̂k at Ωk− for each
k ∈ {1, · · · , q}. As will be demonstrated in next section, for the gene expression
analysis, these 2q sets can be useful either to find the biologically meaningful
groups of genes and to elucidate a causal link from the calibrated clusters to the
biological knowledge.

7 Real Application

Khan et al. [6] classified the small round blue cell tumors (SRBCT’s) of child-
hood into the four diagnostic categories, neuroblastoma (NB), rhabdomyosar-
coma (RMS), non-Hodgkin’s lymphoma (NHL) and the Ewing family of tumors
(EWS) using cDNA gene expression profiles. The dataset is available at the web-
site http://www.nhgri.nih.gov/DIR/Microarray/Supplement/. For each of
the 83 SRBCT samples, the expression levels of 2, 308 genes were measured.
Khan et al. [6] splited the data into two parts; the training set comprising 63
cases (NB, 12; RMS, 20; BL, 8; EWS, 23) and the test set, 20 cases (NB, 6;
RMS, 5; BL, 3; EWS, 6) where Burkitt’s lymphoma (BL) is a subset of NHL.
All samples are summarized in Figure 1. Note that the name of sample spec-
ifies the cancer type suffixed with -T for a tumor biopsy material and -C for
a cell line. Khan et al. [6] successfully classified the tumor types into the four
categories using artificial neural networks. Unlike this, the purpose of our study
is to identify the clusters of these SRBCT’s in the unsupervaised manner, and
then, to look at the association between the caribrated clusters and some medical
outcome, that is, the unsupervised learning.
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For the preprocessing, we removed genes whose range of expression values
across 83 samples is less than 3.0, 680 genes then remain to be analysed. We then
adjusted the columns of 680× 88 data matrix to have mean zero after centering
the rows. To find an optimal {ŵ, P̂, µ̂}, we used the 63 training samples including
tumors and cell lines, 13 EWS-T, 10 EWS-C, 12 NB, 8 BL, 10 RWS-T and 10
RWS-C. The 20 blinded samples were used to select {G∗, q∗, α∗, β∗} and also to
assess the predictability of the resulting clusters.

We candidated a set of the number of clusters ranging from G = 4, 5, 6 and
the dimension onto which the data are mapped varying q = 1 to 11. We also
candidated a set of possible combinations of the regularization parameters as
{α, β} ∈ {0.1, 0, 2, · · · , 0.9}×{0.8, 0.9, 1.0, 1.1, 1.2}. The smallest local minimum
of the generalized criterion corresponding to q = 8 gave the minimum scores
of C({G, q, α, β}) for all G in which the most suitable smoothing parameters
{α∗, β∗} were given. Figure 1 shows the groupings given by G = 4, 5, 6 fixed at
q = 8. The calibrated model with G = 4 correctly grouped all samples into the
diagnostic categories, i.e. EWS, NB, BL and RWS. It also could be seen from
G = 5 in Figure 1 that the RWS samples were divided into the two subgroups
as corresponding to the heterogeneity between RWS-Ts and RWS-Cs. Moreover,
the clustering given by G = 6 yielded a partition as reflecting the molecular
dissimilarity between the tumor samples and cell lines on the EWSs. Indeed,
the model selection based on C({G, q, α, β}) showed the evidence of molecular
subtypes on either EMS and RWS as the model of G = 6 was judged to be
optimal. We also tested the capability of the caribrated clustering rule using
the 20 blinded samples (see Figure 1). When these samples were assigned into
a particular cluster using the resulting classifiers for each G, we obtained the
plausible grouping as likely to reflect the diagnostic categories of cancer types, for
all G. For instance, of the 20 blinded samples, TEST20-EWS-T were misclassified
into the RMS related category for G = 4. In addition, for G = 6, 19 of the 20
test samples were correctly grouped into the related diagnostic categories in
which TEST19-EWS-T was misclassified into the EWS-C related cluster. From
this analysis, the predictability confirm us the effectiveness of the estimated
grouping.

A causal link from the clusters to the biological knowledge can be elucidated
thorough the inspection of relevant genes. Figure 1 illustrates the expression
patterns of 16 set of relevant genes selected by G = 6 and q = 8. For instance,
the genes in Ω1

+ are good discriminators on the basis of the lack of expression
in BL and RMS, and the high expression in EWS and NB. Note also that the
genes in Ω1

− showed the opposite expression patterns to Ω1
+. The relevant genes

in the some sets were expressed in one or two of the six molecular categories as
the Ω5

+, Ω7− and Ω8
+ are specific to NB, EWS and RMS, respectively. Of interest

is that the genes in Ω2
+ are specifically expressed in the tumor samples as EWS-

T, RWS-T and and not expressed in the cell lines. The genes in Ω2− shows the
opposite patterns to Ω2

+ as the lack of expression in the tumor samples and the
high-expression in the cell lines. This fact validates the presence of heterogeneity
corresponding to the molecular types within a cancer type.
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8 Concluding Remarks

In this study, we proposed a method of clustering for the high-dimensional mi-
croarray dataset. A distinction of our method is that the clustering rule is applied
to the linear mapping of data onto the low-dimensional subspace, rather than
the original dataset. In the construction of linear mapping, the directions are
chosen as to minimize a criterion that links the variance and the within-cluster
variances of the compressed data. We also established an optimization algorithm
to find such directions and a suitable clustering rule.

The effectiveness of the proposed method was demonstrated through the ap-
plication to a well-known gene expression data, the small round blue cell tumors
of childhood (SRBCTs). The clustering system could find the biologically mean-
ingful groups of SRBCTs as we confirmed a plausible correspondence between
the calibrated clusters and the diagnostic categories. Besides, the method iden-
tified sets of relevant genes associated with the calibrated clusters. These sets
might be helpful to elucidate the causal link between the obtained grouping and
the existing knowledge on biology.

References

1. Anderson, T.W.: An Introduction to multivariate statistical analysis. Wiley, New
York, (1984)

2. Chang, W.C.: On using principal components before separating a mixture of two
multivariate normal distributions. Applied Statistics 32 (1983) 267–275

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm (with discussion), J. Royal Stat. Soc. B. 39 (1977) 1–38

4. Ghosh, D., Chinnaiyan, A.M.: Mixture modeling of gene expression data from
microarray experiments. Bioinformatics 18(2) (2002) 275–286

5. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gassenbeck, M., Mersirov, J.P.,
Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander,
E.S.: Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science 286 (1999) 531–537

6. Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F.,
Berthold, F., Schwab, M., Atonescu, C.R., Peterson, C., Meltzer, P.S.: Classifi-
cation and Diagnostic Prediction of Cancers using Gene Expression Profiling and
Artificial Neural Networks Nature Medicine 7 (2001) 673–679

7. McLachlan, G.J., Peel, D.: Finite mixture models. Wiley New York (1997)
8. Yoshida, R., Higuchi, T., Imoto, S.: A mixed factors model for dimension reduction

and extraction of a group structure in gene expression data. Proc. 3rd Computa-
tional Systems Bioinformatics (2004) 161-172



13

E
W
S
-
T
1

E
W
S
-
T
2

E
W
S
-
T
3

E
W
S
-
T
4

E
W
S
-
T
6

E
W
S
-
T
7

E
W
S
-
T
9

E
W
S
-
T
1
1

E
W
S
-
T
1
2

E
W
S
-
T
1
3

E
W
S
-
T
1
4

E
W
S
-
T
1
5

E
W
S
-
T
1
9

T
E
S
T
1
2
-
E
W
S
-
T

T
E
S
T
6
-
E
W
S
-
T

T
E
S
T
2
-
E
W
S
-
T

T
E
S
T
2
0
-
E
W
S
-
T

T
E
S
T
1
9
-
E
W
S
-
T

E
W
S
-
C
8

E
W
S
-
C
3

E
W
S
-
C
2

E
W
S
-
C
4

E
W
S
-
C
6

E
W
S
-
C
9

E
W
S
-
C
7

E
W
S
-
C
1

E
W
S
-
C
1
1

E
W
S
-
C
1
0

T
E
S
T
2
-
E
W
S
-
C

B
L
-
C
5

B
L
-
C
6

B
L
-
C
7

B
L
-
C
8

B
L
-
C
1

B
L
-
C
2

B
L
-
C
3

B
L
-
C
4

T
E
S
T
7
-
B
L
-
C

T
E
S
T
1
8
-
B
L
-
C

T
E
S
T
1
5
-
B
L
-
C

N
B
-
C
1

N
B
-
C
2

N
B
-
C
3

N
B
-
C
6

N
B
-
C
1
2

N
B
-
C
7

N
B
-
C
4

N
B
-
C
5

N
B
-
C
1
0

N
B
-
C
1
1

N
B
-
C
9

N
B
-
C
8

T
E
S
T
8
-
N
B
-
C

T
E
S
T
1
-
N
B
-
C

T
E
S
T
1
6
-
N
B
-
T

T
E
S
T
2
3
-
N
B
-
T

T
E
S
T
1
4
-
N
B
-
C

T
E
S
T
2
5
-
N
B
-
T

R
M
S
-
C
4

R
M
S
-
C
3

R
M
S
-
C
9

R
M
S
-
C
2

R
M
S
-
C
5

R
M
S
-
C
6

R
M
S
-
C
7

R
M
S
-
C
8

R
M
S
-
C
1
0

R
M
S
-
C
1
1

R
M
S
-
T
1

R
M
S
-
T
4

R
M
S
-
T
2

R
M
S
-
T
6

R
M
S
-
T
7

R
M
S
-
T
8

R
M
S
-
T
5

R
M
S
-
T
3

R
M
S
-
T
1
0

R
M
S
-
T
1
1

T
E
S
T
2
4
-
E
R
M
S
-
T

T
E
S
T
2
2
-
E
R
M
S
-
T

T
E
S
T
1
0
-
E
R
M
S
-
T

T
E
S
T
4
-
A
R
M
A
S
-
T

T
E
S
T
1
7
-
A
R
M
S
-
T

G=4/q=8

G=5/q=8

G=6/q=8
{
{

{

Training 
Test
Training 
Test
Training 
Test

A. Clustering (G=4,5,6, q=8)

B. Relevant Genes

{ { {{{ test sampletest sampletest sampletest sampletest sample

Image IdE
W
S
-
T
1

E
W
S
-
T
2

E
W
S
-
T
3

E
W
S
-
T
4

E
W
S
-
T
6

E
W
S
-
T
7

E
W
S
-
T
9

E
W
S
-
T
1
1

E
W
S
-
T
1
2

E
W
S
-
T
1
3

E
W
S
-
T
1
4

E
W
S
-
T
1
5

E
W
S
-
T
1
9

T
E
S
T
-
1
2
_
E
W
S
-
T

T
E
S
T
-
6
_
E
W
S
-
T

T
E
S
T
-
2
_
E
W
S
-
T

T
E
S
T
-
2
0
_
E
W
S
-
T

T
E
S
T
-
1
9
_
E
W
S
-
T

E
W
S
-
C
8

E
W
S
-
C
3

E
W
S
-
C
2

E
W
S
-
C
4

E
W
S
-
C
6

E
W
S
-
C
9

E
W
S
-
C
7

E
W
S
-
C
1

E
W
S
-
C
1
1

E
W
S
-
C
1
0

T
E
S
T
-
2
_
E
W
S
-
C

B
L
-
C
5

B
L
-
C
6

B
L
-
C
7

B
L
-
C
8

B
L
-
C
1

B
L
-
C
2

B
L
-
C
3

B
L
-
C
4

T
E
S
T
-
7
_
B
L
-
C

T
E
S
T
-
1
8
_
B
L
-
C

T
E
S
T
-
1
5
_
B
L
-
C

N
B
-
C
1

N
B
-
C
2

N
B
-
C
3

N
B
-
C
6

N
B
-
C
1
2

N
B
-
C
7

N
B
-
C
4

N
B
-
C
5

N
B
-
C
1
0

N
B
-
C
1
1

N
B
-
C
9

N
B
-
C
8

T
E
S
T
-
8
_
N
B
-
C

T
E
S
T
-
1
_
N
B
-
C

T
E
S
T
-
1
6
_
N
B
-
T

T
E
S
T
-
2
3
_
N
B
-
T

T
E
S
T
-
1
4
_
N
B
-
C

T
E
S
T
-
2
5
_
N
B
-
T

R
M
S
-
C
4

R
M
S
-
C
3

R
M
S
-
C
9

R
M
S
-
C
2

R
M
S
-
C
5

R
M
S
-
C
6

R
M
S
-
C
7

R
M
S
-
C
8

R
M
S
-
C
1
0

R
M
S
-
C
1
1

R
M
S
-
T
1

R
M
S
-
T
4

R
M
S
-
T
2

R
M
S
-
T
6

R
M
S
-
T
7

R
M
S
-
T
8

R
M
S
-
T
5

R
M
S
-
T
3

R
M
S
-
T
1
0

R
M
S
-
T
1
1

T
E
S
T
-
2
4
_
E
R
M
S
-
T

T
E
S
T
-
2
2
_
E
R
M
S
_
T

T
E
S
T
-
1
0
_
E
R
M
S
-
T

T
E
S
T
-
4
_
A
R
M
A
S
-
T

T
E
S
T
-
1
7
_
A
R
M
S
-
T

Image Id

EWS-T RMS-TRMS-CNB-CBL-CEWS-C{{ {{{{

E
W
S
-
T
1

E
W
S
-
T
2

E
W
S
-
T
3

E
W
S
-
T
4

E
W
S
-
T
6

E
W
S
-
T
7

E
W
S
-
T
9

E
W
S
-
T
1
1

E
W
S
-
T
1
2

E
W
S
-
T
1
3

E
W
S
-
T
1
4

E
W
S
-
T
1
5

E
W
S
-
T
1
9

T
E
S
T
-
1
2
_
E
W
S
-
T

T
E
S
T
-
6
_
E
W
S
-
T

T
E
S
T
-
2
_
E
W
S
-
T

T
E
S
T
-
2
0
_
E
W
S
-
T

T
E
S
T
-
1
9
_
E
W
S
-
T

E
W
S
-
C
8

E
W
S
-
C
3

E
W
S
-
C
2

E
W
S
-
C
4

E
W
S
-
C
6

E
W
S
-
C
9

E
W
S
-
C
7

E
W
S
-
C
1

E
W
S
-
C
1
1

E
W
S
-
C
1
0

T
E
S
T
-
2
_
E
W
S
-
C

B
L
-
C
5

B
L
-
C
6

B
L
-
C
7

B
L
-
C
8

B
L
-
C
1

B
L
-
C
2

B
L
-
C
3

B
L
-
C
4

T
E
S
T
-
7
_
B
L
-
C

T
E
S
T
-
1
8
_
B
L
-
C

T
E
S
T
-
1
5
_
B
L
-
C

N
B
-
C
1

N
B
-
C
2

N
B
-
C
3

N
B
-
C
6

N
B
-
C
1
2

N
B
-
C
7

N
B
-
C
4

N
B
-
C
5

N
B
-
C
1
0

N
B
-
C
1
1

N
B
-
C
9

N
B
-
C
8

T
E
S
T
-
8
_
N
B
-
C

T
E
S
T
-
1
_
N
B
-
C

T
E
S
T
-
1
6
_
N
B
-
T

T
E
S
T
-
2
3
_
N
B
-
T

T
E
S
T
-
1
4
_
N
B
-
C

T
E
S
T
-
2
5
_
N
B
-
T

R
M
S
-
C
4

R
M
S
-
C
3

R
M
S
-
C
9

R
M
S
-
C
2

R
M
S
-
C
5

R
M
S
-
C
6

R
M
S
-
C
7

R
M
S
-
C
8

R
M
S
-
C
1
0

R
M
S
-
C
1
1

R
M
S
-
T
1

R
M
S
-
T
4

R
M
S
-
T
2

R
M
S
-
T
6

R
M
S
-
T
7

R
M
S
-
T
8

R
M
S
-
T
5

R
M
S
-
T
3

R
M
S
-
T
1
0

R
M
S
-
T
1
1

T
E
S
T
-
2
4
_
E
R
M
S
-
T

T
E
S
T
-
2
2
_
E
R
M
S
_
T

T
E
S
T
-
1
0
_
E
R
M
S
-
T

T
E
S
T
-
4
_
A
R
M
A
S
-
T

T
E
S
T
-
1
7
_
A
R
M
S
-
T

EWS-T RMS-TRMS-CNB-CBL-CEWS-C{{ {{{{
32493
23772
385003
85643
75644
878798
298963
502977
272529
1468310
453183
1475595
502622
245979
1435300
753157
50188
503841
1358393
39722
810063
35483
120881
858292
136821
50117
1471829
221808
39798
810753
1492412
1475595
240634
210687
45233
41199
811108
1473131
49318
1473289
950096
85643
814961
141972
82297
250883
322914
272529
810711
823598
502355
503841
511832
810600
1020315
488276
896949
754649
506548
37553
825411
855755
878406
377314
756490
1404995
298062
1048985
486221
43338
383188
39093
855521
745402
128302
392622
46171
83549
814773
755750
248295
488276
162533
279378
1434905
265102
378488
31842
240634
41199
811161
1472775
767049
154790
384851
769890
823574
1473289
782193
950096
83605
882548
44537
725473
214006
245979
868380
884894
878815
360778
42096
230385
265102
814353
154600
1475797
746232
665674
271102
486787
768370
767049
33327
345430
357220
377252
361688
455128
774078
51740
53316
279378
882522
207274
269381
814266
812196
214816
234191
453689
754406
214816
246304
1456900
263894
245979
47202
771236
782193
812196
586888
760148
271748
1435862
344759
290378
486787
272183
878545
810711

207920
47202
740907
44975
1412503
298612
43021
855061
1456900
453107
731257
486787
811108
754406
214816
377671
767049
771236
289645
756549
1391682
452780
823886
41452
795498
454333
852520
745496
450152
626206
897164
431501
810504
1461737
321529
1455641
68950
724831
137158
768316
756533
297392
28410
298612
756600
740907
1325816
248631
86160
841221
882510
1492304
123916
144816
190887
1493527
432194
486175
795498
1411726
323474
43231
840708
436062
324383
187614
788205
288796
624754
725649
343443
461327
1422723
810124
858469
448432
45464
811166
1434948
182661
70332
487296
50359
823982
825312
586803
770880
130884
740801
506032
814353
360778
141972
756405
128493
357220
882548
878815
1476065
340734
306358
399049
279970
50887
853687
810612
502499
345553
39285
823876
770880
506032
395708
853368
586888
120108
839991
50359
324861
897720
756401
160793
453183
324885
1461104
856796
123916
502977
1323203
182661
128493
48614
214006
745343
280934
307532
43021
250654
503841
40026
544664
25807
453107
841221
502367
855061
280934
282956
32493
1474955
210887
811108
36950
46367
745343
725473
385003
454475
1492104
855391

{

{
{
{
{
{
{
{

{

{
{
{
{
{
{
{

Fig. 1. Caribrated Clusters and relevant genes. A. Clustering result. The 63 SRBCTs
samples (training samples) were used for finding {ŵ, P̂, µ̂}, and then, the training set
and the 20 test samples were grouped into clusters base on the calibrated classifiers for
each combination {G, q, α, β}. Shown here are clusters caribrated by the smallest local
minima of the generalized criterion corresponding to q = 8 for G = 4, 5, 6 where the
smoothness paramters were induced from the test samples. The resulting groups are
depicted by the colors. B. Relevant genes selected by the optimal model, G = 6, q = 8.
Shown in the left panel are the expression patterns of the 8 sets of 20 genes listed at
Ωk

+, k ∈ {1, · · · , 8}. The expression patterns of genes listed at Ωk
−, k ∈ {1, · · · , 8}, are

also shown in the right panel.


