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Abstract

Quasi-periodic oscillation models for analysis of small count time series are considered within a
framework of a generalized state space model (GSSM). In particular. we focus on the analysis of sea-
sonal count data. The Monte Carlo filter (MCF) is fully employed in this study to handle a generalized
state space model with higher state dimensions. To illustrate, we study three seasonal count data sets:
polio incidence time series, the monthly number of drivers killed in road accidents, and the monthly
number of the sun’s spotless days. In addition, we demonstrate an application of the model proposed
to the yearly occurrence of intense hurricanes with a quasi-periodic component associated with solar
cycle activity. (© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this study we are concerned with analysis of time series of small count data
that are frequently obtained in many fields such as biomedical statistics and astro-
physics. Our attention is focused on seasonal time series involving small counts, for
example monthly numbers of Polio incidences (Zeger, 1988), because time-series
involving relatively larger counts can be well analyzed by means of a time-series
model without regarding the fact that the observed data follow a discrete distribu-
tion, and do not require a more sophisticated model in practice. Recent Bayesian
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approaches to time-series modeling have paid considerable attention to the analysis
of small count data to illustrate their applications (e.g., West et al., 1985; Harvey and
Fernandes, 1989; Fahrmeir, 1992; Kashiwagi and Yanagimoto, 1992; Frithwirth-
Schnatter, 1994a; Chan and Ledolter, 1995; Grunwald et al., 1997; Durbin and
Koopman, 1997; Shephard and Pitt, 1997).

Most of the Bayesian models proposed for dealing with small count data can be
formulated to take a convenient form from a computational point of view, called the
generalized state space model (GSSM) (Kitagawa, 1987). The GSSM is defined by
a set of two models:

system model x,, = f,,(Xu_1,n) (1)
and
observation model y, ~ r(:|x,, Bo), (2)

where x, is a kx1 vector of unobserved state variables at discrete time of 1, and y, is
a univariate observation. {v,} is independently and identically distributed (i.i.d.) with
v, ~ q(-| Bs), where g(-) denotes the /-dimensional non-Gaussian distribution, and r(-)
is the conditional distribution of y, given x,. f, : R¥ — R* is the system transition
function and its form is assumed to be known. f; and B, are parameter vectors
for describing ¢ and r, respectively, and are called hyperparameters in Bayesian
terminology (Lindley and Smith, 1972). For convenience, we combine f; with f,
and denote them by BT =[BT, BI], where T is a transposition.
If the system model is a linear Gaussian transition equation given by

X :ann—l + v, (3)

and r(y,|x,, B,) depends on the state vector x, through the linear predictor p,=H,x,,
where F, and H, are the £ x & and | x k matrices, respectively, then it is usually
called a dynamic generalized linear model (DGLM) (West et al., 1985). Several ex-
amples for GSSM including DGLM can be seen in e.g., Kitagawa (1987, 1991), West
et al. (1985), West and Harrison (1989), Fahrmeir (1992) and Friihwirth-Schnatter
(1994a).

The GSSM approach which enables us to use recursive formulations together with
an evaluation of the likelihood, has a unified framework. However, the GSSM still
requires, for its practical application to data analysis, computationally extensive and
difficult tasks due to the relatively high dimensionality of the state vector. In a
case with a low dimension (for an example £ < 2), a simple but flexible approach
to approximate any conditional distribution by a first order spline or simple step
functions is feasible. Several applications of this approach can be found in Kitagawa
(1987, 1991).

For 2 < k an implementation using this simple approach is rarely practicable due
to the inherent computational complexity and the large storage requirement (Fahrmeir
(1992), Frilhwirth-Schnatter (1994a)). To handle the high dimensionality the Monte
Carlo method for filtering and smoothing has been proposed (Kitagawa, 1993, 1996;
Gordon et al., 1993). While Gordon et al. (1993) called it Bootstrap filter, we
refer to it as the Monte Carlo Filter according to a manner of Kitagawa (1993).
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The treatment of the high dimensionality within the GSSM framework is not dis-
cussed in the present paper and can be found in West and Harrison (1989), Carlin
et al. (1992), Fahrmeir (1992), Friihwirth-Schnatter (1994a, b), Durbin and Koopman
(1997), and references therein.

As mentioned above, we are focusing on seasonal time series involving small
counts. Usually, an analysis of the seasonal time series is carried out in terms of the
procedure called seasonal adjustment which is designed to decompose a time series
yn into several possible components: a trend component ¢,, seasonal component s,
stationary component u,, observation noise component ¢,, etc. Within the framework
of the GSSM, its decomposition can be achieved by assuming the stochastically per-
turbed linear difference equation on each component. As for the seasonal component
with a period of L, we usually adopt a simple representation such as s, =s,_; + v, or
its modification S, = —(Sy—z+1 + Su_g42 + + - - + Su—2 + 8,1 ) + U, where v, ~ N(0, 7).
This representation for the seasonal component, which is usually called the standard
basic structural model (BSM), has been already adopted in the DGLM to deal with
monthly count data with low means (Durbin and Koopman, 1997). Although this rep-
resentation of the seasonal component is usually adequate for economic time-series, it
may give less accurate estimate for geophysical data because the seasonal frequency
is often lower.

In 'this study, an alternative model for the seasonal component (e.g., West, 1995)
is employed to satisfy this request from a geophysical point of view. In this model,
the seasonal component is simply expressed as a sum of several pseudocyclical
components. Each pseudocyclical component can be represented by a second order
AR model (Higuchi et al., 1988; West, 1995). The presence of system noise makes
the cycle stochastic rather than deterministic. As a result, this kind of AR process
appears to have a quasi-periodic oscillation (QPO). This model has been adopted
to represent the pseudocyclical behavior of an annual economic time-series within a
framework of the structural time-series model (Harvey, 1985), but it takes a different
form in the state-space representation. West (1995) called such a model a cyclical
component model and demonstrated interesting examples of its application to real
data. The performance of these models as a linear filter in a frequency domain has
been numerically investigated (Higuchi, 1991).

The article is organized as follows. In Section 2 we propose a new model for
analyzing the seasonal small count time series. In Section 3 we give a brief descrip-
tion of the Monte Carlo Filter (abbreviated to MCF henceforth) together with an
explanation of the recursive formulation for an estimation of the conditional prob-
ability distribution. In Section 4, we describe the application of our methods to
the seasonal count data set previously analyzed by Zeger, polio incidence time se-
ries (Zeger, 1988; Chan and Ledolter, 1995). We also illustrate our approach by
demonstrating the application to the monthly numbers of car drivers killed in road
accidents which is shown in pp. 519-523 of Harvey (1989), and the monthly num-
bers of the sun’s spotless days. In Section 5 we modify the model to study binary
time-series. An application to the yearly occurrence of intense hurricanes in the At-
lantic basin will be given. Finally, Section 6 describes some computational aspects of
the procedure.
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2. Seasonal count data
W

We propose the GSSM for analysis of the seasonal small count data resulting in
relatively higher state vector dimension. We give a description of the proposed model
and a comparison with the model given by Chan and Ledolter (1995), denoted by
CL model henceforth in this study, for dealing with the monthly number of cases
of poliomyelitis from January 1970 to December 1983 (N = 168), as well as that
examined originally by Zeger (1988). Here N is the total number of data points.
The observations of polio incidences are indicated by crosses in Fig. 1.

2.1. Observation model

As in the previous publication (Chan and Ledolter, 1995), we also assume that
the observation is generated from a Poisson distribution with time-varying mean 4,:
V. ~ Poisson(4,). Usually there exists seasonality in monthly data, and we model
it by decomposing log A, into two factors: log4d, = ¢, + s,, where ¢, and s, are
the trend and seasonal components, respectively. In other words, we deal with the
non-stationary Poisson model in which the time-varying mean is expressed as the
multiplicative form given by 4, = exp(t,)exp(s,).

2.2. Chan and Ledolter’s model

Before we begin a description of our system model for the seasonal component,
we refer to the CL model. In their model, ¢, is decomposed into the deterministic
and stochastic components: ¢, = «; + a,n/1000 + W,, where W, is assumed to be a
stationary Gaussian AR(1) process defined by W, = pW,_| + vow, vuw ~ N(O, 1%4, ).
s, 1s given as the deterministic form by using trigonometric components involving
the first two harmonics;

¢ = g co <2Ttn> 4 dasi (27tn n (2101) ta Sin<21tn> )
n =3 COS|{ — % sin{ — %5 Cos| — 6 c )

As seen in Fig. 1, the observation in November 1972 (n = 35) appears to be an
outlier (Chan and Ledolter, 1995), and thus they dealt with it by introducing an
additive component, o/, into ¢,, where I, is the indicator function which is equal
to 1 in November 1972 (n=35) and to zero elsewhere. The trend component in the
CL model is summarized as ¢, = a; + 0,n/1000 + 071, + W,.. {&;} G =1,...,7), p,
and 1}, are hyperparameters to be optimized. This GSSM they adopt is extremely
simple due to the one dimensional state vector x, = [¥,].

2.3. Representation of seasonal pattern

We adopt a first-order trend model for ¢,: t,=t,_; +v, , v, ~ N(0,7?). Our model
for s, is completely different from that in the CL model. We use the quasi-periodic

oscillation (QPO) model (e.g., Higuchi et al., 1988) of the form snzyjzl 8., j» Where
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Fig. 1. Monthly number of cases of poliomyelitis from January 1970-December 1983, taken from

Zeger (1988). The thin line connects the median of the posterior density of p(A.|Yn) corresponding

to the smoothed time-varying Poisson mean in the Chan and Ledolter’s model (1995). The thick line

connects the median of the posterior density of p(4,|Yx), which is obtained by applying the QPO
model we used in this study.

each component s, ; is represented by

271
Sn,j = 2 cos (?’) Sn—l,j - Sn—l.j + Un,sj9 vn,s,- ~ N(0~ T_%,) (5)

J

with a fixed period 7;. This model allows us to represent a periodic component
of distinct frequency with stochastically time-varying amplitude and phase (West,
1995). It therefore provides us with an opportunity to identify possible changes in
amplitude and phase, in contrast to traditional parametric models such as harmonic
regression, used in the CL model.

Similarly to the CL model, our interest is focused on the first two harmonic
components, and s, is expressed in this study by s, =5,y + 5,0 With

2n

Sny = 2 COS(E) Sp—1,y — Su-2,y + Uny, Uny o~ N(O,Tz), (6)

27 s :
Sph =2 005<?) Sui—1.h — Su=2.h + Unn>  Unn ~ N(O, 73), (7)
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where s, and s, mean the QPO component with a yearly and half-yearly period,
respectively. This model provides us with the GSSM

yn ~ Poisson(4, = exp(Hx,)),
Xn :Fxn—l + GU,, (8)

with a five-dimensional state vector, x, = [t,,,s,,'y,s,,_.,y,s,,_h,s,,_l,h]T and with the
following ingredients:

H=(1,1,0,1,0),

|
o 2lcos(-2|—’2‘)—l
2cos(3) —|
|
1 0 O
0 1 O
¢G=10 0 0],
0 0 1
0 0 O

T
Uy = [Un.ta Dn,ya Uy, h] .

Here the empty entries of F are all zero and v, ~ N(0,R) with a diagonal variance
matrix of R = diag(t?,3,73). Here 77, 72, and 7} are unknown hyperparameters to
be optimized.

The combination of six harmonics to express the seasonal component has already
been used to deal with the monthly economic time series (Ameen and Harrison,
1985). However, in the QPO model proposed here the system noise variance of
each harmonic component composing the seasonal variation differs while it is com-
mon to all harmonic components in their model. Of course, to treat each variance
independently requires computational tasks in terms of the optimization, but enables
us to represent a wide class of time-varying seasonal patterns.

3. Monte Carlo filter (MCF)

In this section we give a brief explanation of the MCF that is adopted to estimate
the conditional probability distribution of the state vector x,. A detailed description
of the MCF can be seen in Gordon et al. (1993) and Kitagawa (1996).

3.1. Recursive estimation
We begin by explaining the recursive formula underlying the MCF. (1) and (2)

yield useful recursive formulas for the estimation of the conditional probability dis-
tribution of the state vector x; given data ¥; = [y, y»,..., ¥;], p(xi|Y;), which are
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formed by a set of the following two steps at each time n: prediction and filtering
(e.g. Kitagawa, 1987; Harvey, 1989).

(1) prediction: Assuming knowledge of the posterior distribution for the state
vector at time n— 1, p(x,-|Y,-), compute the one-step-ahead predictive distribution
at time n, p(x,|Y,—), by

p(xnlyn—l) = /P(xn—llYn—l) - p(xn|xn—l)dxn—l- (10)

(2) filtering: Based on the obtained distribution, p(x,|Y,—), compute the posterior
distribution at time n, p(x,|Y,), by

p(ynlxn) * p(xnlyn—l) — p(ynlxn) : p(xnlYn—l)
p(ynlYn—l) fp(yn|xn) ' P(xnlYn—l)d-xn
An initial distribution p(xo|Y,) is defined a priori.

For the fixed (distribution) forms of g(-) and r(-), the optimal value of hyperpa-
rameters, %, is selected by assessing the log-likelihood, log p(Yx|f) (Good, 1965),

p(x,,|Y,,) =

(11)

N
1(B) =log p(Yn|B) =log [ P(yulYu-1, B)

n=|

N
:'Zlogp(ynlyn—l,ﬂ): (12)

n=|\

where p(y,|Y.-1,pB) is the conditional distribution of y,, given data Y,_;. We note
that p(y,|Y._1,B) is the one-step-ahead predictive density which appears in Eq. (11).
The best function forms among competing candidates are chosen so as to maximize
Eq. (12) in the same manner. The conditional distribution, p(x,|Yy), given the data
Yy, can be obtained by using the following recursive algorithm with help of all of
p(xn|Y,—1) and p(x,|Y,) stored on the pass of Eqgs. (10) and (11).

smoothing:

Xn Y * Xn Xa
p(.r,,|Y~)=p(x,,|Y,,)/”( w1l W) - POtwiln) 4 (13)
p(xn-HIYn)

3.2. MCF algorithm

An essential idea of the MCF (Kitagawa, 1993, 1996; Gordon et al, 1993) is
that we approximate an arbitrary conditional probability density function, p(x:|Y;),
by a set of realizations where the number of realizations, m, is fixed at each time n.
For example, we express p(x,|Y,—)) by a set of m realizations: Z,,_, = {szlf,_l |i=
1,...,m}. Similarly, p(x,|Y,) is approximated by a set of m realizations: Z,, =

z,(,'g, li=1,...,m}.

The recursive calculations corresponding to Egs. (10) and(11) are, respectively,

defined in the following manner:

(MCEF-1) prediction
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Realize Z,),—; of which each element is obtained by passing szl,ln_l through the
system model (1)
1(1![21 | f(zr(rl)l|n—l’vff))’ (14)

where v is a realization sampled from g(-).
(MCF-2) filtering ‘ _
Given the observation V., evaluate the likelihood of each particle z,(,'lf,_[, r( y,,[zf,’li_[ ),
and resample z!

n|n

, with probability proportional to

- (i) _
(y"l nl|n l)p(zn - ZnIm IIY"—l)
( )
Z’" r(y" Iznln l)p(z" - nl(n 1|Y" 1 )

'(y"lznln—l )( l/’n)
:" 1 r(ynlznln ] (1/”1)

(1
¥ (y"lznln 1

= , (15)
1 lr(y"|“l(:|31 l

to generate samples Z,,. In the MCF the value of p(y,|Y,—i) appearing in Eq. (12)
is approximated by (1/m) > i, #( y,,|zf,13,_,).

In Kitagawa’s numerical integration approach (1987) to GSSM, a final or smoothed
estimation of the state vector is given using Eq. (13). In the MCF, Kitagawa (1993,
1996) proposed two alternative formulas for the smoothing algorithm: storing the
state vector and a two-filter formula. It is not feasible to apply the former as it is,
and so a modification is necessary for a workable algorithm. The easiest way is to
use the fixed-lag smoothing (Anderson and Moore, 1979) which reduces to a filtering
problem for extended state x} ;= [xI_,,xf_, ,,...,xI] (Doucet et al., 1995).

(i)
p(z” = nI|n—l |Y") =

4. Real data application
4.1. Polio incidence time-series

We first applied the MCF to the CL model, explained in Section 2.2, with the
estimates of hyperparameters given by Chan and Ledolter (1995). The thin line in
Fig. 1 shows an estimated 4,, /ﬁ,, obtained by taking the median of the posterior
density, p(4,|Yy). The number of particles used here is m = 100000. The fixed lag
is set L =20. The major difference between the result obtained using the MCF and
that given by Chan and Ledolter (Fig. 1 of Chan and Ledolter) is the estimate of
A, at the outlier, )T; The deterministic part in log 435 of the CL model given by
5 + 535 — W35 at the outlier point is approximately 2.28. The value of the smoothed
means taken from Fig. 1 of Chan and Ledolter (1995) is, by visual inspection, about
6.5. This could imply an approximation of the stationary y component, W;s=10g(6.5)—
2.28=—0.48. This is quite different from our estimate, W;D =0.334. We do not know

why )T;s presented by Chan and Ledolter takes such a small value, but ):, obtained
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Fig. 2. The thin and thick lines correspond to the estimated seasonal component for the CL model and
the QPO model, respectively.

by the MCF shows fairly good fit to the observation. Except for the estimation at
n = 35, the MCF provides us }:, in good agreement with the result of Chan and
Ledolter.

A thick line in Fig. 1 shows the median of the posterior density of p(4,|Yy), that
is obtained by applying the QPO model explained in Section 2.3. The number of
particles used here is m = 100000. The fixed lag is also set L = 20. For compari-
son with the result based on the CL model, a treatment of the outlier observed in
November 1972 (n = 35) is also carried out, in the same manner mentioned above,
by introducing an additive component o7/,. The value of «; is beforehand given by
using the estimate obtained by Chan and Ledolter (1995) in order to make it easy to
search for optimal hyperparameters glvmg the maximum likelihood. The estimated

values for hyperparameters are 12—0 0068, 1:- =0.0024, and rgzO 00046. The smaller
estimate on the variance of the system noise for the trend component compared with
that given by the CL model (%:2 = 0.0336) comes from the presence of the system
noise for the seasonal component in our model, resulting in a gradual change in
the variation of the seasonal pattern. In other words, the trend component in the
CL model accounts for the stochastic behavior of the seasonal pattern in the QPO
model.

We show the estimated seasonal component, §,, in Fig. 2. The thin and thick lines
represent the results based on the CL and QPO models, respectively. It should be
reminded that the seasonal component for the CL model is deterministically given,
as in Eq. (4), and then §, for the CL model repeats an identical cyclical pattern. In
contrast, §, for the QPO model is based on a stochastical description and is capable
of representing explicit time variation in amplitude and phase. 5, for the QPO model
is in good agreement with §, for the CL model, indicating that a parametric approach
for describing the seasonal component is reasonable. However, further comparison
makes it clear that the amplitude of §, for the QPO model gradually changes with
time. In summary, it is pointed out that the QPO model provides us an opportunity
to identify possibly time-varying amplitude characteristics. The components of §,,
Sy and 5y, are shown in Fig. 3a and b, respectively. Detailed interpretation from
a viewpoint of epidemiology is left open in this study.
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Fig.’ 3. Decomposition of seasonal component. (a) Yearly period component. (b) Half-yearly period
component.

4.2. Analysis of monthly numbers of drivers killed in road accidents

We demonstrate an interesting feature of the QPO model for the seasonal time-
series analysis by the example. The data we examine is the monthly number of
light goods vehicle drivers killed in road accidents from 1969 to 1984 in Great
Britain shown in pp. 519-523 of Harvey (1989). These data, shown with crosses in
Fig. 4, have been recently analyzed with the GSSM given by Durbin and Koopman
(1997). In their model (referred to as the DK model henceforth), the observations
are assumed to have non-stationary Poisson distributions with a time-varying mean
A, of which the logarithm is decomposed into three factors: trend, seasonal, and
intervention factor. The intervention factor is simply expressed as al,, where [, is
the indicator function which is equal to | after the February 1983 (n =170) when
the seat belt legislation has been introduced. a, called the intervention parameter
in Durbin and Koopman (1997), is a parameter to be optimized. The trend com-
ponent is assumed to be a first-order trend model as adopted in Section 4.1. We
also follow their GSSM except for the system model for the seasonal component.
While they use the usual BSM model for the seasonal component expressed as
S, =— ,”=1 Su—j + Un,sUns ~ N(O, 17), the QPO model is employed in this study. As
in previous application, we will focus on the first two harmonics, resulting in a state
vector of which element is given by x, =[t.|s..y, Su—1. y|s,,,h,:s‘,,_|_h]T. If no significant
variation with a period of less than half-yearly is expected to be observed, then
this representation allows a more parsimonious parameterization for the state vector:
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Fig. 4. Numbers of light goods vehicle drivers killed in road accidents in Great Britain from 1969 to
1984. The thick line indicates the exponent of the trend component given by exp(s, + al,). where /,
is an indicator function for the post legislation period and « is an intervention parameter.

for J = 2 the dimension of the state vector is 5 instead of 12 for the BSM. The
hyperparameters in this GSSM are f§ = [rf,rﬁ,tﬁ,a]T.

The exponent of ¢, +dl, based on the median of the posterior distribution through
MCF is plotted by a thick line in Fig. 4. The vertical dashed line indicates the
time of the seat belt legislation being introduced. It is clearly seen that the seat
belt legislation reduces the number of drivers killed in the accidents effectively. The
estimated seasonal component based on the QPO model is shown in Fig. 5. It is
obvious that the seasonal variation demonstrates a stochastic behavior that is gener-
ated by the presence of system noise. By visual inspection, the seasonal component
can be divided into three periods (separated by two solid lines in figure) in terms
of its pattern in time domain: 1969-1974 (n=1-72), 1975-1980 (n = 73-144), and
1981-1984 (n=145-192). However, a discussion on what factors would change the
seasonal pattern is out of the scope of this study, we simply address that the QPO
model is capable of representing the seasonal pattern sufficiently.

On the other hand, the seasonal variation in the DK model takes a deterministic
form, because the variance of the system noise for their model was estimated to be
zero; see details in Durbin and Koopman (1997). A comparison between the QPO
and DK models is given in Table | using AIC (Akaike, 1974; Kitagawa, 1987), an
alternative to BIC (see comment on the Kitagawa’s paper, (1987), given by Martin
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Fig. 5. Estimated seasonal component based on the QPO model.
Table 1
Comparison of two models
Model type Mean of 100 AICs Variance Range of 100 AICs
DK 997.74 0.0083 997.53-997.96
QPO 991.53 0.0174 991.15-991.77

and Raftery, 1987, and the Kitagawa’s rejoinder to it). The AIC value for the DK
model is also dependent on the log-likelihood value calculated by the MCF. We used
the hyperparameter values for the DK model shown in Durbin and Koopman (1997).
We conduct 100 trials given the hyperparameter values for each model and show
their simple statistic in Table 1. Table 1 suggests that the stochastic representation
by the QPO model is favorable for this data set.

4.3. Analysis of monthly spotless days

We show one more example to demonstrate an application of the MCF to the
QPO model! designed to deal with a monthly time series. The data we examine is
the monthly number of spotless days of the sun from January 1993 to July 1996
(N =43). The spotless days data taken from a publication given by US Department of
Commerce, National Oceanic and Atmospheric Administration (NOAA) (1996) are
collected and compiled from the USAF Solar Electro-Optical Network sites and Mt.
Wilson Solar Observatory (http://www.astro.ucla.edu/~ obs/150_srep.htm).
The observations are denoted by crosses in Fig. 6. Other spotless days data sets
are available by compiling and editing the daily sunspot number data set that is ob-
tained from the Sunspot Index Data Center (SIDC), Royal Observatory of Belgium,
via the website (http://www.oma.be/ KSB-ORB/SIDC/ index.html), and some-
times takes slightly different values from the data examined here, as demonstrated in
Table 2, due mainly to a different way of defining the sunspot number. The spotless
data based on the SIDC data set are defined by the number of days with no sunspots
and its difference from the NOAA data set is indicated by the value parenthesized
in this table.
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Fig. 6. Monthly sun spotless days (denoted by x). The thin line is the estimated time-varying mean
for the T+Y+H model. The thick line is for the T+Y model.

Table 2
Monthly number of spotless days of the sun

Year 1993 1994 1995 1996
January 0 0 2 (-2) 10 (+3)
February 0 0 0 15
March 0 0 1 12 (-2)
April 0 5 11 (+2) 14 (+2)
May 0 5(+1) 7 16 (+1)
June 0 5 2 5

July 0 0 6 12
August 0 0 3 (+2)

September 4 (—-4) 2 8 (-1)

October 0 0 7

November 0 0 6 (+1)

December 0 1 6

We adopt the same observation model as used in the Polio data set. While
we used a first order trend model in the previous example, here we assume that
t, follows a second order trend model given by ¢, = 26,1 — ti—2 + Uy Unt ~
N(0,7?). The system model for s, is exactly the same as in Section 2.3. Accord-
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Fig. 7. Estimated seasonal component. (a) Seasonal component for the T+Y-+H model (thin line) and
T+Y model (thick line). (b) Yearly period component for the T+Y+H model. (c) Half-yearly period
component for the T+Y+H model.

ingly, this modeling results in giving the GSSM with a six-dimensional state vector,

X0 =[tns tac1 | Snys Su=1.y | Snhs Su—1, »]T. The number of particles and fixed lag used here
are m = 100 000 and L = 20, respectively. The estimated hyperparameter values are
1,'- = 0.0019, 't* =0.015, and 72 = 0.00043.

The estlmated time-varying mean is indicated by a thin line in Fig. 6. The thick
line seen also in this figure is the estimate of time-varying mean based on the other
model that will be explained below. The vertical lines indicate the data for April
and October. Fig. 7a shows the seasonal component. It is clear that the seasonal
variance decreases with time. Fig. 7b and ¢ show the decomposition of Fig. 7a into
yearly and half-yearly components, respectively. The half-yearly component appears
to show a maximum phase in March and October. However, it is possible to consider
simpler model without taking into account the seasonal variation, we therefore com-
pare four models for describing log 4, by using AIC: log A, = ¢, model (T-model),
=t, + s,y model (T+Y-model), =t, + 5, model (T+H-model), =t, + $,.y + Sun
(T4+Y+H-model).

In the MCF, the log-likelihood is approximated by (1/m)Y i, r(yu |z,,," ), and
intrinsically suffers from a sampling error. As a result, the AIC value is also subject
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Table 3
Hyperparameter values

)

kn
~

Model type ;? 154 T} Mean of 100 AIC values

T

T+Y
T+H
T+Y+H

0.0098 204.56
0.00093 0.029 200.83
0.0036 0.028 206.50
0.0019 0.015 0.00043 205.70
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Fig. 8. Distribution of the AIC values for four different system models: T-model (logi, = 1),

T+Y-model (=t, + sun.y), T+H-model (=t, + s..n). T=Y+H-model (=t, + suy + sun). Three hori-

zontal lines for each model are the 25%. 50%. and 75% quantiles. respectively. The crosses are the
maximum and minimum values.

to this sampling error. A discussion on how to deal with this problem will be given
briefly in the final section. The values of the hyperparameters involved in each model
are optimized by maximizing the log-likelihood based on the MCF, and are listed
in Table 3. Each calculation for the fixed value of hyperparameters is performed
at least 100 times, and its value is defined by the mean among these trials. For
simplicity, we fix the number of particles m = 100000 without paying attention to
the difference in both the state vector dimension, k, and the system noise vector
dimension, /, for each model. Fig. 8 shows the distribution of 100 AIC values with
the best hyperparameters for each model. For each model, the three horizontal lines
indicate the 25%, 50%, and 75% quantiles, respectively, of 100 AIC values. The
crosses denote the maximum and minimum AIC values. It is clear in this figure
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Table 4
Yearly number of cyclones and intense hurricanes

0 1 2 3 4 5 6 7 8 9

1940s
Total cyclone number 11 11 6 9 9 13
Intense hurricane number 3 2 1 2 4 3
1950s 13 10 7 14 11 12 8 8 10 11
6 2 3 3 2 5 2 2 4 2
1960s 7 11 5 9 12 6 11 8 8 18
2 6 0 2 5 1 3 1 0 3
1970s 10 13 7 8 11 9 10 6 12 9
2 1 0 1 2 3 2 1 2 2
1980s 11 12 6 4 13 11 6 7 12 11
2 3 ] 1 1 3 0 1 3 2
1990s 14 8 7 8 7 19
1 2 ] 1 0 S

that the spotless days number data set favors the T+Y model. The inclusion of
the half-yearly component in log 4, appears to be unnecessary for this data set.
The estimated time-varying mean and seasonal component for the T+Y model are
indicated in Fig. 6 and Fig. 7a, respectively, by the thick line.

5. Analysis of occurrences of intense hurricanes

In this section we demonstrate the possibility of developing the observation model
to handle a small count binary time series. The data set examined is the yearly data
for the total number of Atlantic tropical cyclones and numbers of intense hurricanes
during the years 1944-1995, shown in Table 4. A description of this data set such
as a definition of an intense hurricane can be seen in Landsea et al. (1996).

Landsea et al. (1996) investigated each trend by applying a linear fit to each time
series and concluded there was a significant downward trend in intense hurricanes
in contrast to an insignificant decrease in the total number of tropical cyclones.
Their result is important geophysically because it is contrary to the expectation that
globally tropical cyclone activity may be enhanced due to increasing concentration
of greenhouse gases (Landsea et al., 1996). In this study, we focus only on the
time series of the possibility of having an intense hurricane given by the ratio of y,
to C,, where C, and y, are the numbers of total cyclones and intense hurricanes,
respectively. Specifically, we deal with a conditional probability p(y,|C,) instead of
considering a joint probability p(y,, C,).

For an analysis of this data set, we consider the following dynamic binary logit
model (in Fahrmeir notation, 1992):

G\ |, —
Yn ~ (y >O<;‘,"(1 - O(,,)C" -“", (16)

n
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Fig. 9. The estimate of the intense hurricane probability in Atlantic basin, &,. A ratio of the intense
hurricane number to the total cyclone number, y,/Ca. is given by a thin line. The thin and thick lines
are a median point of posterior densities of a, for the T+S and T models. respectively.

where the probability of an occurrence of the intense hurricane, «,, is related to g,
by o, =exp(q,)/(1 + exp(g,)) through a logit transformation. ¢, is in this study de-
composed into two factors: a trend component ¢,, and solar cycle activity component
Suy Gu =, + 5, in an attempt to investigate the effect of solar cycle activity on the
occurrence of intense hurricanes. The solar cycle activity component, s,, is described
by the QPO model with a period of 11 yr;

2 >
S = 2 COS(TT) Sp—1 — Sy-2 + Un‘51 Un,s ~ N(Oa T; ) (17)

We assume that ¢, follows a first-order trend model given by ¢, = t,—1 + Ui, Ut ~
N(0, 7). This modeling results in giving the GSSM with a three-dimensional state
vector x,, = [t,,|s,,,s,,_|]T.

Fig. 9 shows a median of &, based on the posterior distribution p(a,|Yy). The
number of particles and fixed lag for a smoothing are set to be m = 100000 and
L =20, respectively. The optimized hyperparameter values, t? and 72, are 77 =0.0053
and ;3 =0.00091, respectively.

We show in Fig. 10a and b the estimated component, t, and §,, respectively.
In Fig. 10b, 16% and 84% points (the so-called +o points) for p(s,|Yy) are also
shown. A significant trend of fewer intense hurricanes is clearly seen in Fig. 10a.
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Fig. 10. (a) Estimated trend components 7, for the T+S model (thin line) and T model (thick line).
The results of two models are visually indistinguishable. (b) Solar cycle activity component §, with
+o points for the T+S model. (¢) Yearly sunspot number.

Fig. 10b shows that the QPO component does not show a consistent 11yr period
associated with solar cycle activity. In Fig. 10c, we show a time series of yearly
sunspot numbers, calculated using the SIDC data set to show the association of the
QPO component to the solar cycle activity. The maximum and minimum points in
each solar cycle are indicated by the vertical thick and thin lines, respectively, in
Fig. 10b and c.

It is apparent that the phase of the QPO component does not have a good accor-
dance with that of the sunspot number, due mainly to a gradual change in the period
of the QPO component. We therefore compare this model (T+S model) with a model
(T model) with the simplest description of g,: g, =t,. The values of the hyperparam-
eters involved in each model are optimized by maximizing the log-likelihood based
on the MCF, and are listed in Table 5. As in the previous attempt to compare four
models in Section 4.3, each calculation for the fixed value of hyperparameters is
performed at 100 times, and each mean and range of 100 AIC values are shown
in Table 5. For simplicity, we fix the particle number m = 100000 for each case.
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Table 5

Comparison of two models

Model type & | 1 22 Mean of 100 AICs  Range of 100 AICs
T I 1 0.0050 164.16 164.11-164.22
T+S 32 00053  0.00091 178.74 178.56-178.89

A significantly smaller AIC value for the T model in comparison with that for the
T+S model suggests that a trend component alone is sufficient for describing the
fluctuation in the intense hurricane probability. It appears that there is no QPO com-
ponent associated with solar activity. The estimated &, and t, for the T model with
the best hyperparameter value are superposed in Figs. 9 and 10a by a thick line,
respectively. A difference between two estimated trend components can not be seen
visually in Fig. 10a.

6. Computational considerations

The log-likelihood value computed through the MCF is intrinsically subject to a
sampling error. The simplest way to solve it is to increase the particle number m as
much as possible within the limits of computer memory. Another simple technique
for reducing the sampling error is to define the log-likelihood value for a fixed
value of hyperparameter as a summary statistic based on multiple evaluations of
the log-likelihood. In this study, we use both ways together. Actually, because the
models adopted in this study belong to the DGLM that is a special case of the GSSM,
an other approach based on the importance sampling method is more efficient for
estimating the log-likelihood of DGLM (Durbin and Koopman, 1997).

The final estimate of the state vector is given by the result with the maximum
likelihood value among trials. Of course, there are other possibilities to define the
final estimate by making use of information gathered by a multiple evaluation of the
log-likelihood. As for the smoothing, we can take another approach which relies on
Markov chain Monte Carlo (MCMC) (e.g., see Shephard and Pitt, 1997 and refer-
ences therein). If we are simply interested in the smoothing, estimation and testing
of model parameters, the method based on MCMC is favorable because an exact
calculation of smoothing is difficult within a framework of the MCF. In contrast, if
we are concerned with model diagnostics through recursive residuals and functional
evaluation of the likelihood for computing, e.g., model choice criteria, the MCF is
superior.

In this study we do not pay serious attention to fine tuning of initial-state values
to avoid the computational time necessary for optimizing them, because the effect of
initial state values on the log-likelihood value is not a significant factor in optimiza-
tion, in particular for a case with relatively larger N. Actually an ad hoc treatment to
control the initial-state values has been applied so as to maximize the log-likelihood.
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