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19.1 Introduction

Mankind, who are full of intelligent curiosity, are always anxious to satisfy such
curiosity and are being engaged in development of new observation instruments. The
observation utilizing spacecraft such as rockets, balloons, etc. has aimed at exceeding
the limitations of the information that can be measured and obtained exclusively
on the ground.- The human desire to make probe in a direction.of height has been
expanded and promoted to the outer space, and furthermore to the universe. Thus
commencement of such observation methods as to dispatch observation equipment and
apparatus has been seen, that is to say, observation by means of artificial satellites,
called satellites simply, has been started.

Satellites that have been dispatched into outer space groping for the farther and
farther distance for the purpose of strenuously approaching unknown regions bring
about a new viewpoint that has never been experienced by the human beings to the
mankind enabling them to make observation of the earth from the outer space, once
the eyes of the observation instrument are directed to the earth. When things are
viewed in perspective, it is pointed out that there exists a side not only allowing
the overall variation to be just glanced at but also permitting various types of the
information gathered from individual parts behaving .as if they are independent of
each other to be united to furthermore deepen the comprehension of the objectives.
One of the major objectives of the observation using satellites are also found in such an
affair. Satellites have become indispensable instruments as an only measure making
it possible to observe a wide range of the earth’s surface repetitively and continuously
for monitoring destruction of the environment and ecological system of the earth
that are now attracting global interest of the people. Satellites’ mission at present
is greatly expanded from qualitative comprehension of the objectives at the primary
stage that is recollected by people in a word of “the probe of the unknown regions”
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to quantitative grasp of the objectives taking up and accumulating a large amount of
data with prediction as a target.

In extracting the information obtained from satellite data, three types of problems
are found. At the first stage, systematic noise with which a possibility to exercise
destructive influence on the inference results is pointed out and none of easy separation
can be made is included in the data in addition to simple observation noise. Thus the
problems to be solved become ill-posed inverse problems. Secondly, it is very difficult
to obtain the data of the fixed area on the earth under the same condition as to a local
time and weather condition, etc. Therefore when yearly trend is examined, deliberate
analysis is required. Thirdly, many of the sensitivity calibration (adjustment of offset,
gain, etc.) of the substances and materials that can be equipped in the satellite have
to be procured from the surrounding nature for the objectives for comparison owing
to the restriction of the weight that can be equipped on the spacecraft, and, strictly
speaking, realization of such calibration is virtually impossible. For comparison of the
calibration with the data of the different satellites, care should fully be taken to this
matter.

From the above description, it is perceived that procedures of analyzing satellite
data require the troublesome and ambiguous matters requiring information processing
based on human experiments and instinct. Even with the ability of the computers that
have been revealing remarkable progress in recent years, it is very difficult to allow
human image and concept to be expressed freely and numerically. However researches
of the data analysis methods by means of modeling which is designed to make the most
use of the information possessed by the data are in progress recently. By adopting
a model rich in flexibility that can freely express features of the data, i.e. a model
having so many of parameters and by avoiding falling into strict objectivism aloof
from reality, the whole frame of the data analysis is constituted based on the fact that
the process itself of the human knowledge acquisition contains a kind of subjective
factor. For objective identification of the model chosen among so many of possible
models, we use an information criterion into which a frame of the Bayesian approach
along a line of AIC is taken. Such a data analysis method provides processing of
satellite data with new possibility.

For actual analysis, it is necessary that modeling should be tailored to each type of
problems. That is to say, the data analysis method by means of a modern Bayesian
mode] becomes made-to-order. In this chapter, we focus on the problems appearing
frequently in the time series analysis of the satellite data, and explain the way of how
to solve the problems by means of a modern Bayesian model referred to above.

19.2 Problems to be Dealt With

19.2.1 Flow of the Procedures of Satellite Data Analysis

In processing the satellite data, there exist several steps in the flow reaching an
intensive operation of the final high-degree/integrated information. However we give
simplified description of such processing hereunder. When some data are transferred
from a satellite to the ground using an electromagnetic wave, bit errors are liable to
be produced due to some causes. First, calibration of the error should be made in the
primary processing for decoding operation of received electromagnetic waves (which
is called demodulation). Secondly, data conversion in a generalized sense such as
transformation of the coordinate system or calibration of the design of hard system of
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the observation instrument ahead of launching should be made. Operations to adjust
geometric distortion of the image brought about by a variety of causes such as the
earth’s rotation, curvature, etc., which are called geometric calibration, should also
be made (for further details of such operations, refer to Tsuchiya 1990). To the stage
of this secondary processing, statistical treatment of the satellite data appears less
frequently.

Thirdly, removal of observation noise should be made. “Blot” or “blur” in the
images should be removed. The processing that is usually called image processing is
the intermediate processing of the above. As observation noise, everything that might
possibly prevent the information available at the final stage from being extracted
should be included in addition to, needless to say, the noise caused by artificial influ-
ence. Vertical, horizontal, or oblique stripes mixed in the images, outliers that were
unable to be removed in the primary processing, etc. are exemplified as such a kind of
noise. Accordingly the procedure that separates phenomena having evidently nothing
to do with the analysis objectives despite the fact of the causes of generation of such
phenomena being unknown is also included in this intermediate processing.

The processing at the final stage is high-degree information accumulation corre-
sponding to analysis objects. As processing methods frequently used in terms of the
statistical terminology, discriminant analysis, principal component analysis, etc. are
designated as representative ones. Detailed interpretation examined from points of
view of the individual subjects in the individual scientific fields is applied to the results
obtained in the above.

19.2.2 Spin Noise

A regular self-rotational motion (spin) around the spin axis of their body is given to
many of satellites for their stabilization of attitude. The spin is likely to bring about
cyclical noise to observations and the information is, in some occasions, buried in false
information in the worst case. For example when a noise source of which intensity
or spatial distribution depends on time is found in a view direction, the observation
device measures the noise every time the device’s sensor is faced in the direction of
the object. As a result, the noise showing an apparent period appears in the obtained
data. The noise relating to the spin is just called spin noise for brevity.

Image data from a meteorological satellite to investigate how the cloud is or re-
vealing how natural disaster or human-caused disaster, e.g. forest fires are never frec
from the influence of this spin noise. Two-dimensional information such as an im-
age is usually composed of combined pieces of one-dimensional information utilizing
two-dimensional scans of a normal measurement instrument (Figure 19.1), which is
due to the fact that one of scans (in the -direction) is usually conducted by the spin
motion itself. Even if a scanning has no correlation with the spin motion, the scans
themselves induce the noise having periodicity in the data.

None of statistical technique is required with the elimination of the spin noise if the
spin noise repeats highly regular cyclic pattern, but it shows a highly temporal/spatial
pattern depending on when and where the observation is made. To deal with such a
problem, an ad-hoc treatment has been made to allow each data sets to be processed
with the instinct based on the application of the existing noise elimination method to
so many of the data sets and an abundantly experienced leader’s penetrative ability as
a judgment criterion. None of sufficient recognition is made at present with not only
on-line processing for spin noise elimination but also with a possibility of high-speed
large-amount batch processing.
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Figure 19.1 A method of the two-dimensional scan to construct an image

In this chapter, elimination of the spin noise classified in the intermediate process-
ing is dealt with as a problem accompanied with the analysis of the time series data
obtained by an satellite. Descriptions concerning the above is made as a problem of
time series as follows. Unless otherwise specified, let the data y, (n = 1,..., N) be
scalar variable. N is the number of the data. Let the angle around the spindle of
the self-rotational motion (called a spin axis) be described with 6,. The angle 6, is
usually assumed to contain none of errors in the measurement values. Even when the
angle is not given as data, we assume that the angle can be defined as a function of
n with a few parameters. For example, the angle is given as 8, = 6y + 27nAt/T with
0o as a parameter representing the initial angle. Here, T is the spin period, and At is
sampling time.

A problem is summarized such that true signals should be estimated after the
spin noise s, as systematic noise is estimated from the data (y,,6,) (n=1,..., N)
comprised of the scalar-variable observation value ¥, and 8,, and is removed from y,.

19.3 Approach by a Bayesian Model —Simple Model—

Here, we deal with a simple model to eliminate spin noise to give an outline of the
satellite data analysis by a Bayesian model.

19.3.1 Composition of an Observation Model

The number of the noise components undesirable in estimating the physical quan-
tities that is to be obtained is not always restricted as one. In addition to spin noise,
observation noise behaving as the white noise sequences, trend component correspond-
ing to the movement of the mean value of the data, etc. are often included in the
data. An important matter in eliminating these components are not to proceed the
processing in succession in a manner as of elimination of the trend components at
first, elimination of the spin noise components at the second stage, and elimination
of the white noise at the final stage, but to decompose simultaneously the data into
the components that are believed to compose the observation. Only by decompos-
ing simultaneously the data, which are complimentarily composed of each other, it
becomes possible to do rational elimination of the noise with avoidance of one-sided
influence by means of the processing of the other components.
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Within a framework of the Bayesian model, we explicitly describe the observations
by an observation model. In case that the observation y, is linearly decomposed into
a trend component t,,, spin noise component s,, and observation noise component wp,,
let y,, be formulated by means of the observation model as

Un = tn+ Sp + Wy . (19.1)

It is intended that observation ¥, is expressed by using the parameters such as ¢,, s,
together with the observation noise w,, in an explicit manner.

Describing the observation model in advance using a state vector makes it possible
to utilize the algorithm of the Kalman filter for parameter estimation, and convenience
is offered thanks to good perspective in the calculation method. The observation

model is given as
Yo = Hpzn +wn, (19.2)

using a state vector z, to express the state of the system at time of n. In case of
(19.1), from the system model to be referred to later, the state vector is defined by

Zn = [tn,tn—lasmsn—l]T- (193)

The mark T denotes transposition. H, is 1 x k matrix dependent generally on time
n, but a constant matrix H, = [1,0,1,0] in the example in (19.1). With the linear
Gaussian Bayesian model, let the observation noise w, be one-dimensional normal

(Gaussian) white noise with the mean 0 and the variance o?.

19.3.2 Composition of the System Model
Suppose the spin noise s, follows the stochastic difference equation

Sp —2C 8p_1+ Sn_2 = &n, (19.4)

where C is given by C = cos(2r f.At) with the spin frequency f. (f. = 1/T). Further-
more, assume that &, is a one-dimensional normal white noise sequences with the mean
0 and variance 72. If 72 = 0, then the right-hand side of (19.4) is always 0, bringing
about a solution of the equation as a sinusoidal wave, i.e. s, = Asin(2rnf.At + b).
Here, A indicates an amplitude, whereas b denotes an initial phase. A behavior of s,
seems far from the sinusoidal wave as 72 becomes greater. Equation (19.4) becomes a
model of the signal so as to be locally a sinusoidal wave with the frequency f.. Even if
the amplitude is changing gradually as time goes or even if the phase is changed in the
course, such a signal (hereafter called a cyclic signal for brevity) can satisfactorily be
expressed by (19.4) so long as no change is seen only with the frequency. By setting
fc as the spin frequency this model is one adequate enough to eliminate cyclic signals
having the performance of the time-dependent amplitude synchronized to the spin

frequency. ‘
In case that C = 1, that is to say, f. = 0, the left hand side of (19.4) becomes

second-order difference of s,. This is a signal varying smoothly in a time-dependent
manner, that is to say, one of the models to represent the trend component. As for
(19.1), the model of the trend component ¢, is given by

tn — 2 tn 1 +lno = Ep, (19.5)

where £, is a one-dimensional normal white noise sequences with the mean 0 and the
variance 2. In this occasion, the magnitude of 12 determines the smoothness of ¢,.
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As a model of the trend, the one taking the left-hand side as the first-order difference
or higher order difference as well can be considered.

In the framework of the Bayesian model, probability distribution is assumed also
for the parameters involved in expressing the observation as shown in (19.4) and
(19.5). Equations (19.4) and (19.5) give a system model. The parameter appearing
in the system model such as 72 or 1?2 is called a hyper-parameter.

The system model is expressed as

zn = Foznoy + Grup (19.6)

by using a state vector z, displaying the state of the system. Together with the above,

2 -1 0 0 10
1 0 0 o oo

Bo=1lo o2 -1 = lo1| (19.7)
0 0 1 0 0 0

where z, is given in (19.3). Furthermore v, = [€,,&,]7 is a Gaussian distribution with
mean vector 0 and the variance covariance matrix

vt 0
[ 0 72 ] . (19.8)

19.3.3 Kalman Filter

Combination of (19.2) and (19.6) is called a state space representation of the ob-
servations. If state space representation is given, then the estimated value 2, of the
state vector z, can be obtained by using Kalman filter and smoother algorithm un-
der the fixed values of hyper-parameters. An optimal value of hyper-parameters can
be obtained by AIC minimization. In actual application, the initial value zg of the
state vector and its variance covariance matrix Vpo should be given. Here, z,); and
Va); express the mean value of the state vector at the time n and variance covariance
matrix under the situation where the data Y; = [y, ...,y;]T are observed. Usually, it
is sufficient to think of a diagonal matrix having 0 vector as zg, a large value (e.g.,
108 times the variance of y,) as Vpjo for the sake of convenience.

19.3.4 Application to Rocket Data

We show in Figure 19.2 the results* obtained by applying the procedure based on
the aforementioned simple model to the data obtained by a rocket which are subjected
to the influence of the spin noise as with the case of an satellite. The data provide the
observation I(z) of the intensity of the 5577A airglow emitted by the excited oxygen
atoms at the altitude (height) z. The quasi-cyclic behavior component seen in Panel
(a) indicates the rocket’s spin noise. The actual observation /(z), is not, the intensity
J(z) of the light emitted by the oxygen atoms in the vicinity of the height (altitude)
z, but the integrated quantity I(z) = [}**° J(z')d2' ranging from the infinity to the
height (altitude) z. To obtain the estimate of J(z) from I(z), it is necessary, first of
all, to eliminate the spin noise together with the observation noise from I(z).

In Figure 19.2(b), the three components t,, s, and w, obtained by decomposing
I(z) are shown. The components s, and w, are the terms corresponding respectively

*The authors are deeply indebted to Professor T. Ogawa of University of Tokyo and Dr. Kazuyuki Kita for the
precious information offered by the distinguished scholars as the fruitful outcomes of their joint researches.
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Figure 19.2 (a) Height profile of the intensity of the 5577A atmospheric light
emitted by the excited oxygen atoms. The ordinate is taken as the altitude
direction. (b) Profile decomposed into the individual components of the trend
tn, spin noise s,, and observation noise wy,.

to the spin noise and observation noise, and it is possible to estimate the discretized
J(z) by taking the first-order difference of the component ¢, obtained as a result of
elimination of an effect associated with a spin from the observation I(z). It is clear
that even such a simple model makes it possible to realize information processing with
extremely high practicality. For details, refer to Higuchi et al. (1988).

19.3.5 Interpretation as a Linear Filter

An estimation of the trend components by using the Bayesian model is regarded as
an equivalent to that of low-frequency components. Let the extraction method of the
spin noise be compared to the trend estimation method by a classical low-pass filter.
When the observation model is given by a simple sum of the several components as
seen in (19.1), a simple relationship can be given between the estimates of the obtained
components and the data. In case of the above example, it is expressed by

Tv = LY Yy (19.9)
Sy = L Yu, (19.10)
where Ty = [ty,...,tn]7, Sv = [s1,...,8n)T, YN = [11,...,yn]T. Furthermore L&’

and sz are N x N matrices corresponding to each ¢, and s, determined by the system
model and the value of the hyper-parameter. Here, a? = v2/0? and 8% = 72/02.

To obtain the expression of (19.9) and (19.10) in a frequency domain, executing
discrete Fourier transformation gives

Ty = L Vn (19.11)
Sy = L VYy. (19.12)

The diagonal components of L¢* and L?* determine the frequency response produced
when the transformation from the data to each components is viewed as a linear filter.
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Figure 19.3 Comparisen of the smoothing by means of the Bayesian model
with the smoothing by means of the moving average. In case of the Bayesian
model, the smoothing parameter is automatically determined. 1/fy/, is the half-
band width obtained from the determined value in accordance with (19.13).

The diagonal component of I:? describes to what extent of the frequency the com-
ponent will be allowed to be preferentially passed in the frequency domain, whereas

the diagonal component of ij * describes to what extent of the frequency compo-
nent around f, is allowed to be selectively passed. The hyper-parameter controls this
frequency response.

When the procedure to extract the trend component is regarded as applying a
low-pass filter that takes out the low-frequency components, the frequency of which
the magnitude of the frequence response attenuates to a half value of that at the
frequency 0, i.e. the half-band width f, is given approximately as a function of the
hyper-parameter o? in accordance with the low-pass filter based on the model given
by (19.5) (Higuchi 1991)

f1/2 =~ —\{SE (fOI' 2-12 < (12 < 22), (1913)
where the frequency domain is restricted in a range from 0 to 1/2 on the assumption
that the measurement time interval At = 1. Shown in Figure 19.3 are the artificially-

generated data y,, -the trend component estimated based on the hyper-parameter
automatically determined in accordance with the AIC minimization procedure, and

the result of smoothing by means of the simple moving average

- 1 K
tn = T 41
K1, 2 U
having a half-band width which is given by the frequency response from the above
expression. K* is defined by Kt where the frequency response function Hg(f1/2) of
(2K + 1)-point moving average

fIt is possible to give in a manner as of K* = [1/(4fy2) — 1/2], where [ - ] represents the integer part.
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.
H T=

k(f172) K +1

takes the nearest value to 0.5. The value of the optimal hyper-parameter obtained

for the data shown in Figure 19.3 is o = 0.25, and it turns out that K* = 2. From

the fact that the trend component almost shows a good agreement with the moving
average, fi/2 given by (19.13) is appropriate enough.

[1 +2 f: cos(éwnfl/g)] (19.14)

19.4 Example of a Simple Model

In this paragraph, we show several models having a possibility for application to
satellite data processing in a concrete manner to exemplify how to construct models.

19.4.1 Extension to Multi-Components

When a signal is composed of several cyclic components, two models can be con-
sidered. One is the model to generalize the observation model as

Yn = Sp+Sp sy Hw,, (19.15)

where s7* is the m-th quasi-cyclic (wavy) component, and as in the case of (19.4), the
system model for each component is given as

sy —20™ sy s, = &7 (19.16)
Furthermore, C™ is a constant given by C™ = cos(27 f* At) in case that the frequency
of s7 is fI*. The variance 72, (m = 1,...,M) of £€™ is also a hyper-parameter for
this model.

With another one, the system model is given as
oM _
Zajsn_j = fn, (1917)
—~

where the coefficient a; is obtained by comparing the coefficients of s,_; in the equality

2M M
Zajsn_j = H (1 - QCmB + B2)Sn , (1918)
7=0 m=1

where B is the backward operator defined By Sn—1 = Bs,,.

19.4.2 Model of the Decaying/growing Wave
Let it be considered that s, is a wavy signal locally decaying or growing. When
it can be supposed that s, = Aexp{2m(g. + if.)nAt + ib}, the model in (19.4) is

generalized as
Sn — 27:€08(2m fe)Sn_1 + Visn_a = &n, (19.19)

where v, = exp(27g.), and the positive g. is called a growth rate of the wave and
the negative one is called a damping rate. When g. = 0, (19.19) evidently coincides
with (19.4). The model in question expresses the free oscillation in case that friction
is found, and is adequate enough to express a wavy behavior globally growing or
decaying.- For an extension to multiple components, it is recommended that (19.19)
be used instead of (19.4) in the discussion in the previous subsection.
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19.4.3 Seasonal-Adjustment-Type Model

Long-term economic activity should be investigated in the time series analysis of the
economic data, and therefore seasonal adjustment to remove the variation concerned
with the season from the data is a very important subject for researches. Because the
seasonal adjustment is to remove the variation having one-year cycle from the data,
the Bayesian model proposed for the seasonal adjustment can be directly applied to
spin noise elimination provided that the cycle of the spin can be given instead of the
yearly cycle. When the cycle is r, the simplest model is given as

Sp—Spn—r = &n. (19.20)

In case of monthly data (i.e. the data obtained every month), » = 12. This model,
which allow s, to have a non-zero mean component such as s, = constant, is not an
adequate one when the trend component in addition to the spin noise component is
intended to be extracted from the data. When (19.20) is re-written as

Sn— Sn—r = (1—B")s,
(1-B)(1+ B+ B*+---+ B s, (19.21)
€n

it can be seen that the first part of the second line coincides with the first order
difference operator used for the model of trend. It is therefore recommended that the
condition required by the second pair of the parentheses should be made the model

for seasonal adjustment, i.e.

r—1
Y Snj = &n. (19.22)
3=0
The seasonal adjustment model can be applied to elimination of the spin noise
by putting » = T/At, provided that the spin period T is of multiple length of the
sampling interval At. With this model, it is utterly unnecessary for the spin noise
to be of sinusoidal wave, and any kind of signals can be expressed as a fundamental
principle provided that the cycle is 7. Needless to say, it is possible for the repeating
patterns to be varied slowly dependent on time.

19.5 Point Noise Source Model

We hereunder show the approach where the physical structure of the noise source
is explicitly taken into the observation model.

19.5.1 Uni-Variate

Suppose the objective generating noise is of the point noise source. At that time,
the noise can be written by the product f(-)I,, where I,, is a time-dependent intensity
of the point noise source and f(:) can be assumed to be described as a function of
the relative angle 6 formed between the point noise source and the instrument. Now
assume that the relative positioning between the satellite and the point noise source
remains unchanged during the period of the observation, then we can get f(-) = f(6).

Under the assumption of such a noise source, let a problem to estimate the physical
quantity z = z(¢,6) depending on the time ¢ and the space (which is equivalent to
the angle 4 in this occasion) be considered. Now suppose that the time dependency
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Figure 19.4 Exemplified schematic relation between the observation and the
instrument. The observation is received by the sensor of parallelly-placed plates.
Around the satellite, the observation is in proportion to the flux from light
sources almost parallel with each other in the distance.

of z is almost negligible within At (|At-0z/0t| ~ 0). Also suppose that the z within
this interval is a physical quantity determined exclusively by the angle. That is to
say, suppose that the component z,, obtained by removing an effect of the point noise
source and observation noise from the data y, at time ¢ = n is given by z, =~ z(6,)
using the angle § = 6,. Furthermore, by using a small angle A8, let z(6 + Af) be
approximated as

z(0+ A0) ~ z(6) + z(8) — z( — A0). (19.23)
At that time, assuming that the 8, is so designed as to allow Af = 8, — 6,_,, we have

z(Op+1) =~ z(6n) + z(6,) — z(6n-1)
Tpgl =~ 2Ty — Tpoy. (19.24)

In short, a trend model is adopted for z, assuming that the second-order difference
shows small variation.

The intensity I, of the point noise varies slowly dependently on time, and we
adopt a trend model assuming that the first-order difference shows small variation.
At that time, z, = [I,,Z,, Tn-1]7 with respect to the state vector, whereas H, of
the observation model is given as H, = [f(6,),1,0]. As f(6), let a function having
small parameters be considered corresponding to the purpose of the application. For
example, when the obtained data are so designed as to be in proportion to the flux
coming out from the noise source, we obtain (Figure 19.4)

_ [cosf 6] <90°
10 = {7 w0 < 150e. (19.25)

In addition to the above, the factors such as cos? 6, exp(—sin?8,), quadratic poly-
nomial, etc. are considered as candidates. f(f) should be designed so as to express
the characteristics of the instruments in dealing with practical problems.

19.5.2 Expansion to Multi-Variate

To examine space-distribution structure of the object, several instruments steered
into different directions are occasionally mounted on a plane onto which a spin axis is
included. At that time, the observation becomes the multi-variate y, = [y3,¥2, ..., y¥]7.
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Furthermore, y* is the observation at time n obtained with the m-th instrument
(channel-m). Here, M is called the channel number. When the angle of the channel
m from the spin axis in the plane including the spin axis is described as ¢™, the
relationship f(-) between the channel m and the point noise source is written by 6,
and ¢™. That is to say, f(-) = f(0., ™). At that time, not by considering a model
with respect to every channels, that is, for ™ of the individuals but by thinking of
an extensive model for multi-variate time series y,, an estimation of a function form
of f(6,,d™) can be made based on the more rational assumption. Furthermore, it
becomes possible to estimate features such as the difference among the equipment
characteristics among channels from the data.

Suppose the component z) which is obtained by removing the influence of the
point noise source at time n and the observation noise from the observation of the
channel m along line of the solving method in case of uni-variate, is in accordance with
the second-order difference model. On the other hand, suppose that [, is expressed by
the first-order difference model as in the case of uni-variate. Fr om this it is understood

that the state vector becomes the (1+2M)x 1 vector 2, = [I,z},z}_,,....aM =M 7.
On the other hand, H,, of the observation model becomes the M X (14 2M) matrix
f(ng) 10 0
On, 10 :
A :¢ ) ) (19.26)
f(6n¢™) O 10

The structure of the variance/covariance matrix of the vector of the observation noise
w, = [wl,w?, ..., wM]T, should be determined by taking into account the factors
including the characteristics among the channels.

19.5.3 Expansion of the Point Noise Source Model

When the influence from the noise source cannot be expressed by the point noise
source referred to above, it is necessary to express I, - f(6,) in a form with higher
flexibility. Let it be considered that the & dependency of the spin noise should be
expressed by a first-order spline function R,(f) at each time n. First of all, let node
points §; ( = 1,...,J) be determined by equally dividing [0,360°] by dy. Here,
J = 360/ds. Secondly, let values of R,(f) at each node points be denoted as r7.
R, (0) in a range of each regions [(j — 1)dg, jdp] is given by

Ra.(6) = (1 —a)r? +arit! (19.27)

where a = 0/dg — [0/dg] with [0/dg) indicating the lntegel part of 6/dg. Also on the
assumption that R,(0) is a periodic function, r*! = r!

By assuming that R, () varies slowly dependently on time, let it be assumed that
rJ is in accordance with the first-order difference model. It is possible for the variance
of the first-order difference to be in common with 7 or to be optimized so that the
likelihood will individually be maximum. In general, some kinds of prior information
are available, and modeling so designed as to effectively utilize such information will
be made. As in the case of uni-variate point noise source, assume that z, to be
measured can be expressed by the second-order difference model. Accordingly the
state vector becomes z, = [r},r2 ..., ) z,, 2, ]]T. H, of the observation model
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Figure 19.5 (a) Intensity of the electric field observed by Pioneer Venus Or-
biter. (b) Data after systematic noise caused by spin noise is eliminated.

becomes 1 x (J + 2) vector defined by

Jn times J—Jjn—2 times
N —"—
H, = [0,...,0,1-a,a, 0,...,0 ,1,0], (19.28)

where j, is an integer defined by [6,./dg).
When there locally exist the generation sources of the signal z to be measured in
space, no approximation of (19.23) can be established. In this occasion, we decompose

the observation y, as
Yn = Wnlnf(On) + Ta, (19.29)

in accordance with selection (by combining the judgment of z, = 0 or no, with
estimation of I,, and f(6) (Higuchi 1993)).

Assume I, varies slowly, and is expressed by the first-order difference model. At
the same time, assume f(#) shows a spatially smooth behavior. These assumptions
can be accomplished by applying the trend model taking the second-order difference of
fi (4 =1,...,360/dy), as an infinitesimal amount, where f; is defined by discretizing
f(8) by dp. The model in question, which is a model of the observation depending on
both time and space, is, in short, one of the simplest statistical model called generally
space-time model. Let a search of the optimal z,, I,, and f; be made by the procedure
to do independently the judgment as to whether z, = 0 or not, smoothing the time
domain to obtain I,, and smoothing the space domain to obtain f;.

The results* obtained by applying this method to real satellite data are shown in
Figure 19.5. Shown in (a) is just part (792 points) of the 20394 data y, observed.

*The authors are deeply indebted to Professor C. T. Russell, Dr. R. J. Strangeway, and graduate student Mr. G. K.
Crawford of Los Angeles School, University of California for the precious information offered by the distinguished
researchers as the fruitful outcomes of their joint researches.
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The cyclic variation is equivalent to the spin noise. When the signal corresponding to
z, is observed, y, takes extremely large values. In (b), the data I,, + z, obtained by
removing and calibrating the influence of f(6,) from the observed data y, are shown.
It is found that the systematic noise evidently concerned with the spin noise seen in
(a) is removed in (b). I, in the interval shown in this figure is almost constant, but
varies when viewed through all of the data.

19.6 Conclusions

In the above, we explain several models to remove spin noise in the satellite time
series data. Although the frame of the Bayesian model is extremely of the unified
style, it is necessary to think of a model specialized into the individual problems in
case of application. To develop a new model for each actual problem takes a time
for the users, but the new analysis method based on the new model will enable the
analyzers’ ideas or knowledge to be effectively utilized to the utmost.
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