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ABSTRACT

Motivation: Statistical inference of gene networks by using time-

course microarray gene expression profiles is an essential step

towards understanding the temporal structure of gene regulatory

mechanisms. Unfortunately, most of the current studies have been

limited to analysing a small number of genes because the length of

time-course gene expression profiles is fairly short. One promising

approach to overcome such a limitation is to infer gene networks by

exploring the potential transcriptional modules which are sets of

genes sharing a common function or involved in the same pathway.

Results: In this article, we present a novel approach based on the

state space model to identify the transcriptional modules and

module-based gene networks simultaneously. The state space

model has the potential to infer large-scale gene networks, e.g.

of order 103, from time-course gene expression profiles. Particularly,

we succeeded in the identification of a cell cycle system by using the

gene expression profiles of Saccharomyces cerevisiae in which the

length of the time-course and number of genes were 24 and 4382,

respectively. However, when analysing shorter time-course data,

e.g. of length 10 or less, the parameter estimations of the state

space model often fail due to overfitting. To extend the applicability

of the state space model, we provide an approach to use the

technical replicates of gene expression profiles, which are often

measured in duplicate or triplicate. The use of technical replicates is

important for achieving highly-efficient inferences of gene networks

with short time-course data. The potential of the proposed method

has been demonstrated through the time-course analysis of the gene

expression profiles of human umbilical vein endothelial cells

(HUVECs) undergoing growth factor deprivation-induced apoptosis.

Availability: Supplementary Information and the software

(TRANS-MNET) are available at http://daweb.ism.ac.jp/~yoshidar/

software/ssm/

Contact: yoshidar@ism.ac.jp

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Time-course experiments of gene expression facilitate under-

standing of the temporal structure of gene regulatory mecha-

nisms during development (Arbeitman et al., 2002), drug

response (Baranzini et al., 2005; Imoto et al., 2006; Tamada

et al., 2005) and cell cycle (Orlando et al., 2007; Spellman et al.,

1998). In order to explore the dynamics of gene regulation

by using the gene expression profiles, it is essential to build
statistical models that consider the temporal relationships

between abundance of different transcripts (Bansal et al., 2006;

Beal et al., 2005; Gardner et al., 2003; Rangel et al., 2004;

van Someran et al., 2006; Yamaguchi et al., 2007; Yoshida et al.,

2005). If successful, these models may have broad utility, e.g. the

discovery of transcripts encoding drug targets and the identifica-

tion of gene regulatory networks involved in drug responses or

biological processes (Imoto et al., 2006; Tamada et al., 2005).

To analyse multivariate time-course data, a wide variety of

statistical models have been proposed, e.g. the vector auto-

regressive model (VAR). To our knowledge, their applications

in time-course gene expression profiling, however, have been

limited because the length of the time-course data is fairly short,

e.g. typically less than 10, whereas the number of genes

involved ranges from 102 to 104. Obviously, the length of time-

course gene expression profiles is not sufficient to infer such a

large gene network. For example, the maximum likelihood

estimator of VAR does not exist if the number of genes is

greater than the length of the time series.
One possible solution to overcome such a difficulty is to

explore genetic networks of the transcriptional modules which

are sets of genes sharing a common function or involved in the

same pathway (Lee et al., 2002; Segal et al., 2003) rather than

the use of gene-level networks. In the context of gene expression

analysis, the transcriptional modules may be defined by the
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groups of transcriptionally co-expressed genes. In this article,

we provide an approach to identify the potential transcriptional

modules and map them onto the gene-level networks, i.e. the

module-based gene networks. The proposed method is based on

the state space model (Kitagawa and Gersch, 1996) which has

the potential to estimate large gene networks from time-course

gene expression profiles. Indeed, as will be demonstrated, we

succeeded in the identification of cell cycle system by using the

time-course gene expression data of Saccharomyces cerevisiae

(Spellman et al., 1998) in which the length of the time-course

data and number of genes were 24 and 4382, respectively.

However, when analysing shorter time-course data, e.g. less

than 10, the parameter estimations of the state space model still

fail due to overfitting. To extend the applicability of the

proposed method, we provide a way of using technical or

biological replicates of time-course gene expression profiles,

which are often measured in duplicate or triplicate in order to

assess the reproducibility of data. The use of replicates proves

important for achieving highly efficient inference of gene

network. The potential of the proposed method will be

demonstrated through the time-course analysis of the gene

expression profiles of human umbilical vein endothelial cells

(HUVECs) during growth factor deprivation-induced

apoptosis.

2 STATE SPACE MODEL

2.1 Definition of model

Following the time-course experiments of gene expression,

we obtain a series of gene expression vectors yn 2 Rp,

n 2 N obs � N , where each vector contains expression profiles

of p genes at the n-th time point. The set of entire time points,

N , consists of the observed time set N obs and the unobserved

one N
c
obs. Conventionally, the length of time-course gene

expression data, denoted by N ¼ jN obsj, is fairly short.
One of the most basic models to analyse multivariate time-

course data is the first-order VAR

yn ¼ �yn�1 þ �n: ð1Þ

The �ns follow a zero-mean white noise process with a finite

second moment and � 2 Rp�p is the coefficient matrix which

represents the temporal relationships of the p genes. However,

in its application to short time-course data in which a large

number of genes are involved, the parameter estimations

obviously fail due to overfitting because the number of free

parameters in � becomes larger exponentially as the number of

genes p increases. Indeed, it is conventional that the length of

time-course expression profiles is usually much shorter than the

number of genes, i.e. N � p.
The main challenge in this study is to address the problem of

analysing N � p time-course data. A key idea is to impose the

parameter constraints on the coefficient matrix � of the VAR

(1) by exploiting the state space model. Let xn 2 Rk be the

lower-dimensional hidden state vector (k5 p) which is a blind

source for the generation of yn. As a generative model, the state

space model defines the observational equation as

yn ¼ Hxn þ wn; n 2 N obs; ð2Þ

where H 2 Rp�k is the loading matrix and wns follow a white

noise process. We assume that wn is independently distributed

according to the normal distribution with mean E[wn]¼ 0 and

diagonal covariance matrix E½wnw
T
n � ¼ R � diagðr1; . . . ; rpÞ. In

addition to (2), the evolving time course of xn is modelled by the

first-order Markov process as

xn ¼ Fxn�1 þ vn; n 2 N ; ð3Þ

where F 2 Rk�k, and vns follow the normal distribution with

mean zero and covariance matrix Q. The process of generating

yn and xn follows (2) and (3) with the initial state vector x0 �

N(�0,�0). Note that the state vectors evolve at the overall

successive time points N by following the system model (3)

whereas the observational equation (2) is defined over its

subset N obs.
The basic assumption of the state space model is that a

dynamical behaviour of observed data yns is regulated by the

time evolution of a few latent factors xns. In the context of gene

regulations, a latent factor may be considered as an unobserved

activity of transcription factors which regulate transcriptions of

downstream target genes.
In computational systems biology, several state space

models have been proposed for estimating temporal gene

networks with successful applications (Beal et al., 2005;

Li et al., 2006; Rangel et al., 2004; Wu et al., 2004;

Yamaguchi et al., 2007; Yoshida et al., 2005). For example,

Rangel et al. (2004) and Beal et al. (2005) built an input-driven

state space model as

yn ¼ Hxn þ Ayn�1 þ wn;

xn ¼ Fxn�1 þ Byn�1 þ vn: ð4Þ

The matrix A 2 Rp�p captures the causal relationships of genes

and the matrix B 2 Rk�p captures the influences of the previous

gene expressions to the current hidden state vectors. In this

context, the evolving state vectors represent the latent factors

which cannot be measured by gene expression profiles, e.g.

genes unobserved by microarray experiments, concentrations of

regulatory proteins such as transcription factors, some biolog-

ical entities present in post-transcriptional modifications. Note

that the input-driven model directly describes the temporal

gene–gene relationships with the coefficient matrices A and B,

whereas the standard state space model, i.e. (2) and (3), does

not explicitly describe such direct relationships. Based on

this modelling, Rangel et al. (2004) derived the gene network

model as

yn ¼ ðHBþ AÞyn�1 þHFxn�1 þ wn þHvn:

The temporal structure of gene regulations is inferred by the

estimated HB þ A. However, like the conventional VAR (1),

with an increase in the number of genes, the coefficient

matrices, e.g. A and B, cannot be estimated efficiently due to

overfitting, hence, its applications are still limited to analysing

very few genes if the length of time-course is short.
In this article, we focus on the standard state space model

rather than the input-driven model. Below, we elucidate that

the standard state space model implicitly represents a parsimo-

nious parameterization of the first-order VAR in its canonical

form. Based on this fact, we can infer the large scale gene
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networks by using the standard state space model without the

input-driven modifications.

2.2 Module-based gene networks

The parameter vector � 2 � of the state space model contains

all elements in H, F, R, Q and �0 where the covariance matrix

of the initial state distribution, i.e. �0, is assumed to be given.
We first discuss the lack of identifiability that occurs in the

determination of the parameters. Let C be an arbitrary non-

singular k � k matrix. By considering H*
¼HC�1, x�n ¼ Cxn,

F*
¼CFC�1 and v�n ¼ Cvn � Nð0;CQCTÞ, the state space model

can be transformed into the equivalent form as follows:

yn ¼ H�x�n þ wn;

x�n ¼ F�x�n�1 þ v�n:

This implies that the parameters of the state space model

cannot be uniquely determined by the ordinary estimation

procedures, e.g. the maximum likelihood estimation. To rule

out such an over-parameterization, we must reduce the degree

of freedom of H, F and Q. To avoid it, we establish the

following proposition:

Proposition: The following conditions are sufficient to eliminate

transformations of the parameters by any non-singular C 2 Rk�k;

	 Q¼ I.

	 HT R�1H¼� � diag(�1, . . . , �k) where �14�24
 
 
4�k.

	 An arbitrary sign condition is imposed on the elements of

the first row of H.

Proof: Due to the first condition Q¼ I, it holds that

CQCT
¼CCT

¼ I. Hence, the family of C is restricted

being orthonormal matrices. Furthermore, according to

the second condition HTR�1H¼�, the transformed

CHTR�1HCT
¼C�CT must be a diagonal matrix �*¼

diagð��1; �
�
2; . . . ; �

�
kÞ. This implies that C must be a diagonal

matrix having 1 or �1 at the diagonal elements. Finally, since

the last condition imposes the sign condition on the first row of

HC, we obtain C¼ I.

We refer (2) and (3) with these three conditions the canonical

state space model.
Here, we derive the parsimonious parameterization of the

VAR (1) based on the canonical state space model. By

transforming the observational equation (2) under the specified

constraints, gene expression vectors can be mapped onto the

state space Rk with the projection matrix D 2 Rk�p as follows:

xn ¼ DR�1=2ðyn � wnÞ; n 2 N obs; ð5Þ

where the projection matrix is parameterized as

D ¼ ��1HTR�1=2: ð6Þ

If the state dimension k is specified as a value lower than p, the

dimensionality of the noise-removed gene expression vectors

R�1/2(yn�wn) is reduced by the semi-orthogonal projection

matrix D. During the parameter estimation process, the

reduced-rank data (5) are possibly constructed such that they

are likely to follow the first-order Markov process of (3).

This process automatically discovers k modules of genes that

are relevant to the temporal structure of gene expressions in the

following manner: effects of the j-th gene on the i-th module

(i-th coordinate system of the state space) are removed by (D)ij
lying in the region close to zero and vice versa. The system

model (3) represents the temporal relationships between the k

modules, i.e. the module networks.
Additionally, Yoshida et al. (2005) elucidated that the state

space model implicitly represents the gene-level temporal

structure with the autoregressive form

R�1=2ðyn � wnÞ ¼ �R�1=2ðyn�1 � wn�1Þ þ R�1=2Hvn;

where the autoregressive coefficient matrix is given by

� � DT�FD: ð7Þ

In (7), the degree of freedom in the coefficient matrix � is of

order O(p)¼ p(k þ 1) þ k2 � k(k � 1)/2, whereas that O(p2) in

the standard VAR (1). From this point of view, the state space

model is considered as the parsimonious parameterization of

the VAR, and it provides a method for controlling the model

complexity by selecting the dimension of state vector k. In our

previous work (Yoshida et al., 2005), we proposed the state

space model with Markov switching in order to identify the

structural changes of underlying gene regulatory mechanism.

The model of Yoshida et al. (2005) assumes the time-dependent

autoregressive coefficients in (7) that change smoothly over the

successive time points. The autoregressive representation shown

in (7) is a special case of that proposed by Yoshida et al. (2005).
Note that the coefficient matrix � consists of the product of

the projection matrix D, the scaled-system matrix �F, and the

reconstruction matrix DT, respectively. It represents the

temporal structure of gene-level networks in the following

manner: once the k modules xn�1¼DR�1/2(yn�1 � wn�1) are

given at time n�1, the current modules are generated with the

scaled-system matrix �F as �Fxn�1¼�FDR�1/2(yn�1 � wn�1).

Furthermore, the current modules regulate expression values

of p genes in yn with the reconstruction matrix DT

as DT�Fxn�1¼�R�1/2(yn�1�wn�1). Briefly, the projection

matrix, the scaled-system matrix and the reconstruction

matrix in (7) correspond to the transcriptional modulation,

the module-module interactions and the module-gene interac-

tions, respectively.

2.3 Network construction with permutation test

After estimating the parameters, the temporal relationships

between genes can be inferred through the computed �̂.

Furthermore, the statistical significance for the existence of

each gene–gene relationship can be assessed by testing the

hypothesis

H0 : ð�Þij ¼ 0;

H1 : ð�Þij 6¼ 0;

for i, j 2 f1, . . . , p}. Rejection of the null hypothesis suggests

that there exists a causal relationship from gene j to gene i

across the successive time points.
In this study, the permutation method is used to evaluate

the null distribution. Let YN ¼ fyngn2N obs
be the observed
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data matrix. The method first generates the B permutation

samples Y
ðbÞ
N ; b¼ 1, . . . ,B, by applying random permutations to

all elements in YN and then computes the null coefficients

ð�̂Þ
ðbÞ
ij . By using these estimates, the P-value for each coefficient

can be evaluated by pij¼ (2/B) min f�g, �l} where

�g ¼ #fb : ð�̂Þ
ðbÞ
ij � ð�̂Þijg and �l ¼ #fb : ð�̂Þ

ðbÞ
ij � ð�̂Þijg.

3 APPLICATION TO GENE EXPRESSION
PROFILES OF BUDDING YEAST

3.1 Proposed method

We demonstrate the potential of the canonical state space

model with the application to the gene expression data of

S.cerevisiae, which were measured by the cDNA microarray

experiments conducted during the cell cycle (Spellman et al.,

1998). This dataset has been used for evaluating the ability of a

wide variety of statistical technologies (Li et al., 2006; Wu et al.,

2004; Yamaguchi et al., 2007; Yoshida et al., 2005). Following

them, we decided to use this dataset for performing the

benchmark comparisons.
Here, we present the gene expression analysis with the time-

course data of cdc15-based synchronization. Evolving time-

course data were measured at the 24 unequally spaced

time points, N obs ¼ f1; 3; 5; 7; 8; 9; . . . ; 24; 25; 27; 29g. For

demonstration purposes, we focused on the 4382 genes that

contained no missing data points.
After fitting the state space model under k¼ 4 by applying

the maximum likelihood estimation (for the algorithmic details,

see Appendix 1), we captured the underlying temporal relation-

ships of the potential transcriptional modules with the

estimated system matrix F̂. Figure 1 summarizes the estimated

module network F̂ and the expression profiles of the 8 (¼ 2k)

identified modules, where the genes listed at each module were

selected in the following way: the j-th gene is assigned to the i-th

positive module Miþ or the i-th negative module Mi� if the

(i, j)-th element in the estimated projection matrix (D̂)ij is

ranked in the highest or lowest 100, respectively.
As shown in Figure 1, we observed a very clear aggregation

of the expression patterns in each module. For example,

most of the time-courses in the first two modules M1þ and

M1� contain high-frequency components in which the

up/down-regulations are periodically switched at intervals of

10min for 80–210min. Moreover, the genes in M4
 exhibit the

upward/downward trends across all time points. The genes in

M2
 and M3
 show the cyclic patterns where the periods are

approximately 50min or a slightly longer, but the phases are

notably different from each other. These temporal patterns

are captured through the estimated four state variables which

are also shown in the bottom panel of Figure 1.
The aggregation of temporal expression patterns in the same

module suggests the highly relevance of the genes in each

module. For example, according to the molecular functions of

Gene Ontology (GO), most of the genes in M1þ are related to

the transportation of several chemical compounds, including

sugar, glucose, carbohydrate and so on. Additionally, M1�

contains a large number of genes involved in the synthesis

and modification of rRNAs. The genes relevant to ribosome

biogenesis and oxidoreductase activity are over-represented

in M4þ and M4�, respectively. Finally, a large number

of cell cycle-related genes are captured by M2
 and M3
.

Some over-represented GO terms for the identified transcrip-
tional modules are summarized in Supplementary Table 1.

The inferred temporal structures between the identified

modules F̂ are summarized in Figure 1. First, we focused on
the genes in M1
 having the self-loop edge to which the

negative autocorrelation was assigned (F̂)11¼�0.63. This

negative autocorrelation captures the high-frequency contents

of M1
. Moreover, a strong negative influence from M1
 to

M4
, (F̂)41¼� 1.24 was identified while a weak negative

Fig. 1. (Top) Summary of the identified four modules and the estimated

temporal structure of cell cycle regulatory network. The estimated (F̂)ij
is assigned to each edge. Temporal expression patterns of the most

representative 100 genes for each module are shown in each node.

(Bottom) The estimated four state variables given by the posterior

means E½xnjyn 2 N obs�.
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influence of M4
 on M1
 was also observed, (F̂)41¼� 0.34.

Note that the observed expression patterns of M4
 are

composed of a mixture of trend and periodic components.

The estimated coefficient (F̂)41¼�1.24 suggested that the

periodic components in M4
 are derived from those of M1
.

Notably, according to the GO cellular component, most of the

genes in M1� and M4þ are annotated by the ‘nucleolus’.

3.2 Comparison to input-driven model

Here we present a numerical experiment for comparing the

performance of the proposed state space model and the input-

driven state space model in (4) developed by Rangel et al.

(2004) and Beal et al. (2005). Originally, Rangel et al. (2004)

and Beal et al. (2005) used the same input-driven model to

infer somewhat small-scale gene networks from gene expres-

sion data, but they differ in the way of the parameter estima-

tion scheme: The former and latter adopted the maximum

likelihood estimation and the Bayesian parameter estimation,

respectively. For performing these two methods, we used

the distributed MATLAB programs, LDS_ToolBox and

VBSSM (Ver.3.4.1) (http://public.kgi.edu/wild/LDS/index.htm

and http://www.cse.buffalo.edu/faculty/mbeal/software.html),

respectively.

We used the benchmark data set which are comprised of

4321 genes showing no missing time points. By definition,

the maximum likelihood estimator of the input-driven model

does not exist when the number of genes is larger than

the number of time points. Indeed, Rangel’s program

(LDS_ToolBox) was trapped in ill-posed solutions for all of

the 100 trial run with the different starting values of parameters

and state dimensions.
Beal’s Variational Bayes algorithm (VBSSM) succeeded in

easing of over-parameterization of the input-driven model with

the Bayesian regularization. For Beal’s method and our pro-

posed method, the dimension of state space was preset by k¼ 4.

Figure 2 shows the two gene–gene interaction matrices which

were estimated by Beal’s method (left) and our method (middle).

The 64 genes shown are composed of the eight modules

where expression patterns of the genes in the same module are

clearly aggregated as shown in the right panel of Figure 2.

Each interaction matrix was divided into 8 � 8 blocks corres-

ponding to the eight transcriptional modules observed. It can be

seen from Figure 2 that the gene–gene interaction matrix

estimated by the proposed method shows mosaic-like patterns

across the 8 � 8 blocks. This observation indicates a statistical

nature of our method which implicitly assumes that a set of

co-expressed genes belongs to the same regulatory module. On

the other hand, for the gene–gene interaction matrix estimated

by Beal’s method, the mosaic patterns are unclear. Note that for

the both methods, we incorporated no external biological

information into the network inferences. Thereby, it is hardly

possible that any statistical methods can distinguish differences

in the regulatory relationships of genes showing the same

expression pattern from observed expression profiles only. In

this regard, our method provides a natural consequence.

We also point out difference of the internal modules

identified by the both methods in terms of biological aspect.

For Beal’s method, we computed Moore–Penrose inverseHþ of

the observation matrix H in (4), and constructed the 8 (¼2k)

modules, where the genes listed at each module were selected

in the following way: the j-th gene is assigned to the i-th

positive module Miþ or the i-th negative module Mi� if

the (i, j)-th element in (Hþ)ij is ranked in the highest or lowest

100, respectively. For our method, the procedure of selecting

genes has been shown in the previous subsection. Then, we

proceeded to the significant analysis of the GO terms by using

GO::Term Finder (Boyle et al., 2004). Supplementary Table 1

summarizes the over-represented GO categories for the eight

identified modules which were identified by Beal’s method and

our method, respectively. As was discussed in previous, the

eight modules identified by our method were converted into the

statistically significant molecular functions of GO terms under

1% acceptable level of significance. In contrast, for Beal’s

method, we could not clarify a clear link between the identified

modules and GO terms. This aspect is one of the most

distinctive features between the canonical state space model and

1+ 1-

2+ 2-

3+ 3-

4+ 4-

Fig. 2. Heatmap representation of the estimated coefficient matrices �̂ corresponding to Beal’s method (left) and our proposed method (middle). The

64 genes shown are composed of the eight modulesMi andMi�, i ¼ 1, . . . , 4 where the expression patterns are shown in the right panel. The positive

and negative coefficients are depicted by white and black pixels, respectively.
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the input-driven type model. Possibly, the eight modules

identified by Beal’s method correspond to the unobserved

regulatory factors which cannot be measured by gene expres-

sion profiles.

4 MODELLING REPLICATED TIME-COURSE
DATA

Use of the state space model provides us a way to analyse high-

dimensional time-course data by exploring the aggregation of

gene expression profiles and the temporal gene networks at the

module level, simultaneously. However, although the proposed

approach has the potential to construct large scale gene

networks, its applicability is limited by when the length of

time series is exceedingly short, e.g. less than 10. To overcome

such a limitation, one possible solution might be to incorporate

the replicates of time-course gene expression profiles into the

parameter estimations. Currently, it has become common place

to repeat time-course experiments multiple times in order to

assess the reproducibility of data. Below, we will discuss the

importance of incorporating the replicate data into the

parameter estimation and extend the state space model to

deal with the replicated measurements.
Let yðlÞn 2 Rp and xðlÞn 2 Rk be the gene expression vector

which is measured by the l-th replicate and the corresponding

hidden state vector at time n, respectively. The total number of

replicates is denoted by m (l¼ 1, . . . ,m). Here, we assume that

each of the replicated time-courses is i.i.d. according to

yðlÞn ¼ HxðlÞn þ wðlÞ
n ; n 2 N obs;

xðlÞn ¼ Fx
ðlÞ
n�1 þ vðlÞn ; n 2 N :

Given this generative model, the parameter estimation

amounts to maximizing the likelihood function l(�) over �:

lð�Þ :¼
Xm
l¼1

XN
n¼1

Iðn 2 N obsÞ log pðy
ðl Þ
n jYðl Þ

n�1Þ;

where Yðl Þ
n � fyðl Þ1 ; . . . ; yðl Þn g and pðyðl Þ1 jYðl Þ

0 Þ � pðyðl Þ1 Þ. The mod-

ified EM algorithm for the maximum likelihood estimation is

presented in Appendix 1.
To evaluate the predictive power of the proposed method, we

conducted numerical experiments using synthetic data. Under

the number of genes p¼ 1000, we generated the synthetic

time-course data for n¼ 1, . . . ,10 with the three replicates

(m¼ 3) from the state space model as follows:

H ¼

1250
1250

1250
1250

0
BB@

1
CCA;F ¼

1:03
1:0

0:8
0:5 �0:3

0
BB@

1
CCA;

R¼ (0.1)2 I and �0¼ (10, 10, 10, 10)T where 1q 2 Rq denotes

the vector of one. Supplementary Figure 1 shows the true

module network represented by the F and the generated time-

courses of the four state variables exhibiting the upward trend,

random walk, downward trend and oscillated series,

respectively.
Under the above setting, we learned the artificial gene net-

work by using the six training datasets: (a) (N, m)¼ (7, 1) (one

of the three replicates) (b) (N, m)¼ (7, 1) (averaged time-course

of the three replicates) (c) (N, m)¼ (7, 3) (d) (N, m)¼ (10, 1)

(one of the three replicates) (e) (N, m)¼ (10, 1) (averaged time-

course of the three replicates) and (f) (N, m)¼ (10, 3). In the

creation of the training datasets, we first generated the artificial

gene expression profiles of length 10 with three times

replication from the true model. Among the total 10 time

points, we used the first 7 and 10 time points as the training

datasets for (a)–(c) and (d)–(f), respectively. The single time-

course data in (a) and (d) were chosen arbitrary from the three

replicated time courses in (c) and (f), respectively. The (b) and

(e) were created by averaging the gene expression values over

the three replicates.

For each synthetic dataset, we performed the maximum

likelihood estimations under k¼ 4 and the permutation

significance tests for evaluating the gene–gene connectivity.

The right panel in Figure 3 shows the ROC (Receiver Operating
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Fig. 3. (Left) ROC curves computed by training the state space model with the six synthetic datasets (a)–(f). (Middle) Heatmap of the autoregressive

coefficient matrix � (1000 � 1000) of the true model. Absolute values of the coefficients are depicted by gray scale image. The coefficients of the two

regions, A and B, which correspond to the interactions from the module 1 to 4 and from the module 4 to 4, lie in the regions very close to zero.

(Right) The black line shows the ROC curve computed by using the training datasets with (N, m) ¼ (10, 3). Red line is the ROC curve which were

computed by removing the small coefficients in A and B from the true interactions.
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Characteristic) curves in which the gene networks were

constructed under a variety of acceptable significance levels.

For the gene networks constructed using the single time-

courses datasets, e.g. (a) and (d), the false-positive and the

false-negative rates were greater than 50% (random choice)

across most of the significance levels as the ROC curves (black

and blue) were mostly present in the area under the 45 line.

On the other hand, the predictive accuracy of the network

estimations was considerably improved by using the replicates.

For example, under the 10% significance level, the true-positive

and the true-negative rates of (N, m)¼ (10, 3) were 64.5% and

98.2%, respectively. This result indicates an importance of

using replicated measurements of time-course data.
Here, we should remark the observed fact that the true-

positive rates (64.5%) are much smaller than the true-negative

rates (98.2%). The middle panel in Figure 3 shows the heatmap

display of the true autoregressive coefficient matrix � of the

1000 genes which consist of the four regulatory modules. From

this, we see that a part of the autoregressive coefficients lie in

the region very close to zero (see A and B in the middle panel of

Figure 3). Obviously, the power of tests in the identification of

such a weak connection turns down, and increase in the false

positive rate is caused by the large number of small auto-

regressive coefficients. Indeed, if such weak connections were

removed from the computation of ROC curve, the asymmetry

in the true-positive and the true-negative rates would disappear

(right panel in Figure 3).

5 APPLICATION TO GENE EXPRESSION
PROFILES OF APOPTOSIS-INDUCED HUVECS

5.1 Data

Affara et al. (2007) studied transcriptome of HUVECs with the

time-course gene expression data which were created using

CodeLink 20k arrays. Based on a previous study that showed

endothelial cells undergo a program of transcriptional change

as they prepared to die by apoptosis (Johnson et al., 2003) they

intended to understand the dynamics of gene regulations during

apoptosis in the context of development and remodelling of

blood vessels. mRNAs were prepared at 0.5, 1.5, 3, 6, 9, 12, 24 h

after the induction of apoptosis by growth factor deprivation.

The experiments were repeated independently three times

(m¼ 3). Among approximately 20 000 genes, we focused on

1048 genes. These genes are comprised of 48 genes known to

play important roles in apoptosis and blood vessel development

(Carmeliet, 2000; Gerver et al., 1999) and 1000 genes giving the

highest coefficients of variation. Appendix 2 provides the details

for data preprocessing, including gene selection and normali-

zation. After converting the real time set f0.5 h, 1.5 h, 3 h, 6 h,

9 h, 12 h, 24 h} into N obs ¼ f1; 3; 6; 12; 18; 24; 48g where the

entire time points are defined by N ¼ f1; 2; . . . ; 47; 48g, we

proceeded to the time series analysis.

5.2 Model selection

Unfortunately, we could not determine the state dimension

based on the Bayesian information criterion (BIC) since

the BIC curves were monotone decreasing as increasing of

state dimension. In general, as the number of samples is much

smaller than the dimension of data, the BIC curves tend to be

monotone decreasing. Possibly, this is due to the fact that as the

state dimension is taken to be large, the parameter estimation

algorithm tends to be trapped in ill-posed solutions, i.e.

occurrence of over-leaning. This aspect will be further discussed

in Section 6.
Absence of a reasonable model selection criterion may be a

limitation. In order to address such an indeterminacy of state

dimension, we present a heuristic approach based on the the

singular value decomposition of the projection matrix D. Recall

that our method seeks the direction of projection such that the

projected data xn¼DR�1/2 (yn � wn), n 2 N obs, are likely to

follow the first-order Markov process in (3). During this

process, the gene expression patterns relevant to the temporal

structure of data are aggregated into the k coordinate systems

of the state space Rk. Let r (� k) be the rank of D which is

equal to the number of non-zero singular values of the

projection matrix. If r 5 k, the k rows of D are linearly-

dependent, thereby yielding rank deficiency of the row space.

To avoid such an over-parameterization, we may chose the

state dimension k¼ k* such that all singular values of D lie in

the region far from zero.
In order to find such a state dimension, we propose a

significant test based on the permutations of m replicated time-

courses and the minimum singular values of the projection

matrices. Let dik be the i-th singular values of the projection

matrix under setting the state dimension to k. Then, the

procedure is summarized as follows:

	 Generate 2m� 1 datasets which consist of all possible

combinations of m replicates except for the empty set.

	 For each state dimension k, compute the minimum

singular value mini2f1;...;kg log d
ðj Þ
ik across j¼ 1, . . . , 2m� 1

datasets which are generated in the above step.

	 For each state dimension k, perform the kernel density

estimation of the minimum singular values by using

mini2f1;...;kg log d
ðjÞ
ik , j¼ 1, . . . , 2m� 1. The estimated density

is denoted by fk.

	 Calculate the �% confidential interval Ik based on the fk.

	 Find the minimum k¼ k* such that Ikþ1 \ Ik¼�.

We run this procedure with the expression profiles of

HUVECs. The kernel density estimations were performed

with the Gaussian kernel where the bandwidth of the kernel

function was chosen based on the Silverman’s method

(Silverman, 1986). In the first step, we created the datasets of

size seven which is equal to the number of all possible

combinations of three replicates (m¼ 3). For k � 5, however,

we only used the four datasets because we could find no

solutions for the likelihood functions corresponding to single

time-course data.

In Figure 4, the least singular values of the projection

matrices are plotted across the state dimensions ranging from

k¼ 1 to 7. Bold segments denote Ik for k¼ 1, . . . , 7. This plot

indicates that the least singular values abruptly turn to be small

at k¼ 5. Furthermore, for k¼ 5 or more, the least singular

values remain close to zero. Indeed, it held that I4 \ I5¼�
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under �¼ 50%. According to this result, we decided to adopt

k¼ 4. Besides, Affara et al. (2007) identified the eight internal

groups of genes by the application of k-means clustering to the

same dataset. This result also supports the use of k¼ 4 which

implicitly implies the existing eight clusters of genes.

5.3 Result

Figure 5 shows the heatmap of the expression profiles of the

most representative 50 genes to each of the identified eight

modules. The genes in the same module were mostly

co-expressed with each other. Particularly, the genes in the

positive and the negative modules, Miþ and Mi�, tend to

exhibit the opposite expression patterns. For example, many

genes listed at M3þ and M3� are down/up-regulated from 6 to

9 h after the induction of apoptosis. Furthermore, the expres-

sion levels of the genes in M4þ and M4� decrease/increase

from 12 to 24 h.

A large number of the cell cycle-related genes were

aggregated in M3
 and M4þ. For example, M3þ and M4þ

contained fCCNE1 CDCA7, CDC6, MCM(3, 4, 10), RBL2}

and fCCNA2, CCNB1, CDC(2, 20, 25C, A1, A3), KNSL(1, 4,

6, 7), CENP(A, E, F, M)} in the most representative 50 genes,

respectively. CDC2 (cyclin dependent kinase 1; CDK1) is

known to bind cyclin A (CCNA2) and cyclin B (CCNB1) and

regulates the cell cycle progression through G2 to M phase. It

was found that many G2-M phase-genes were captured by the

M4þ. On the other hand, M3þ captured several G1-specific

genes, e.g. CCNE1 (cyclin E1) which binds to cyclin dependent

kinase 2 and regulates the cell cycle progression during G1

phase. M3� contained cyclin-dependent kinase inhibitor 1C

(CDKN1C; P57KIP2) which binds to CDK2-cyclin E complex

and inhibits progression from G1 to S phase. Temporal

expression patterns of these cell cycle-related genes are shown

in Supplementary Figure 2(1). While genes in M3þ and M4þ

exhibit downward trend across the entire time intervals,

expression levels of CDKN1C in M3� are monotone increasing

after 1.5 h. Possibly, these observations suggest that aberrant
overexpression of G1-cyclin-dependent kinase inhibitor,
i.e. CDKN1C, causes successive down-regulations of the

G1-specific genes in M3þ, e.g. cyclin E1, and is implicated in
cell cycle arrest in G1.
Besides, M4� mainly included the genes involved in immune

and inflammatory responses, e.g. IFI35, IFI78(MX1), IFIT4,
IFIT5, IFITM1, IRF7, STAT1, BAL, CRLF1, and also,
ubiquitin-proteasome system, PSMB9, UBE2L6, USP18. The

ubiquitin-proteasome system is essential at several stages
during NF-�B-inducible inflammatory responses. NF-�B is a
transcription factor which resides in the cytoplasm in inactive

form, complexed to members of a family of inhibitory proteins
referred to as I�B. Activating signals (e.g. binding of TNF-� to
its receptor) cause phosphorylation of I�B kinase. This triggers

the degradation of I�B through the ubiquitin-proteasome
system, and then the free NF-�B can translocate to the nucleus
and activate transcription of many genes involved in the

inflammatory responses. As shown in Supplementary Figure
2(4), these inflammatory response-inducible genes in M4�

are abruptly activated from 12 to 24 h after consecutive

up-regulation of cell-cycle inhibitory factors which possibly
implicate arrest of cell cycle progression.
To understand the estimated temporal structure of the gene

regulations involved in the arrest of cell cycle and the activation
of immune and inflammatory responses, we constructed the
module-based gene networks from the estimated coefficient

matrix �̂ by setting the acceptable level of significance to 5%.
Figure 5 highlights the identified module-based gene network
where the genes shown were ranked in the most representative

50 genes for each module, and selected arbitrary.
Here, we focus on the estimated regulatory role of TRAF1

(tumor necrosis factor-associated factor 1) which is an

important adapter protein involved in TNF (tumor necrosis
factor)-mediated signalling pathway, leading to the activation
of NF-�B, apoptosis, mitogen activated protein kinases

(MAPK) cascades (Aggarwal, 2000). Under 5% significance
level, TRAF1 was identified as the most highly connected gene
(hub gene). The estimated network of TRAF1 is summarized as

follows: As shown in Supplementary Figure 2(3), TRAF1 is
consecutively up-regulated by 12 h after the apoptosis induc-
tion, and then, down-regulated through 12–24 h. According to

the estimated network in Figure 5, TRAF1 and interleukin 8
(IL8) which is also an important inflammatory mediator are
connected by the positive edges, indicating these two genes are

involved in the same pathway. Indeed, Keifer et al. (2001)
reported that transcriptions of either TRAF1 and IL8 are
regulated by the cytokine-induced expression of NF�B.
Interestingly, while IL8 shows the ongoing upward-trend
during 1.5–24 h, TRAF1 is down-regulated after 12 h.
Schwenzer (1999) discovered the positive feed-forward regula-

tion of TRAF1 in the TNF-inducible NF�B pathway due to the
observation of binding of NF�B to three putative binding sites
within the human TRAF genes. The observed expression

pattern indicates presence of inhibitory factors of TRAF1 that
suppress this positive feedback loop between 12 and 24 h.
M1þ captured several important inhibitors of MAPK

signalling pathways, e.g. dual specificity phosphatase
(DUSP2, DUSP6), regulator of G protein signalling (RGS4)

Fig. 4. The result of the rank-deficiency detection for the HUVEC

dataset. The singular values were plotted after transformed into

logarithmic-scale. Bold segments denote 50% confidential interval Ik
for k ¼ 1, . . . , 7. The blue line represents the lower bound of I4.
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Fig. 5. Summary of the gene expression analysis of HUVECs undergoing growth factor deprivation-induced apoptosis: (Upper left) Heatmap

representation of the estimated coefficient matrix �̂ which was divided into 8� 8 blocks corresponding to the eight transcriptional modules

identified. The genes in the i-th positive and negative modules were selected in the following way; the j-th gene was assigned to the i-th positive or the

i-th negative module if the (i, j)-th element of the estimated projection matrix (D)ij was ranked in the highest or lowest 20, respectively. (Upper right)

Gene network constructed under the acceptable level of significance 5% (right). The genes are classified and surrounded by the green-dashed lines

according to the attributed modules. Furthermore, the genes involved in the common function are also classified, e.g. dual specificity phosphatase,

G protein signalling-related genes, cell cycle. Directed edges with the positive or negative value are colored by red or blue. (Bottom) Gene expression

patterns of the transcriptional modules identified.
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and Ras inhibitor (RIN1). Here, we focus on the identified
negative edges between TRAF1 and these inhibitory factors.
Supplementary Figure 2 shows inversely correlated expression

patterns between expression levels of TRAF1 and these
inhibitory factors. According to Schwenzer (1999), the mem-
bers of TRAF family are involved in activation of NF�B and

c-Jun N-terminal kinase (JNK). In addition, several papers
have suggested presence of cross-talk between MAPK and
TNF-mediated signal cascades (Aggarwal, 2000; Han et al.,

1999). DUSPs are the inhibitors of MAPK signaling pathways
by the dephosphorylation of MAPK molecules, e.g. p38, JNK.
Besides, Ras is a small GTPase which activates p38 MAPK

cascade as a MAPKKK, and possibly, this pathway is
suppressed by the expression of its inhibitory factor RIN1.

Regulator of G protein signaling (RGS4) also inhibits activity
of Ras through the GTPase-acceleration that rapidly switches
off G protein-coupled receptor signaling pathways. The

constructed gene network model suggests that these inhibitory
factors possibly affect the suppression of TRAF1 during
12–24 h through the TRAF1-related cross-talk between

MAPK and TNF-mediated signal pathways.
Note also that TRAF1 also connected to cyclin dependent

kinase inhibitor CDKN1C with the positive edge. This

indicates that TRAF1-mediated pathway is involved in
the cell cycle arrest through the aberrant expression of
CDKN1C. Recently, involvement of cell cycle arrest and

TNF-mediated signaling pathway has been reported by several
papers, e.g. Mukherji et al. (2006). Suppression of G1 cyclin
(CCNE1) by CDKN1C was captured by the negative

significant edge.

6 MODEL SELECTION

The use of the state space model is a promising approach for
estimating large scale gene networks from the short time-

courses of gene expression profiles that contain few data points.
However, the problem of selecting the state dimension with the
information criterion is unresolved. For instance, as mentioned

in Section 5, when we analysed the time-course profiles of
apoptosis-induced HUVECs, the BIC curve across k¼ 1, . . . ,10
did not exhibit folds. Such a tendency becomes prominent when

the length of the time-course is short. In Section 5, for a
guidance of the determination of a reasonable state dimension,

we suggested a statistical testing procedure based on the
singular value decomposition of the computed projection
matrices. However, in this context, using the information

criterion may be more acceptable for some users of the
proposed method. Therefore, we discuss here the applicability
of the information criterion-based approach.

We show the performance of model selection using the
information criterion along with the simulation studies. We
generated a number of synthetic data according to the state

space model under k¼ 4 with the parameter values described in
Appendix 3. The number of genes was set to 1000. Appendix 3
shows the change in shape of the BIC curves across several

pairs of the number of time points N and the replicates m;
(N, m) 2 f(7, 1), (7, 2), (7, 3), (10, 1), (10, 2), (15, 1)}. For each
experiment, we generated the simulated time-course data five

times and then depicted the box plots for the computed BICs.

Among these combinations, the BICs corresponding to
(N, m)¼ (7, 1) and (10, 1) were monotone decreasing. In the

other cases, we could correctly identify the number of the
internal modules. These observations suggested that at least

more than two time-course experiments are required for

selecting the state dimension based on the BIC when relatively
few time points are available and the number of genes involved

is of order 103.

7 CONCLUDING REMARKS

A major difficulty in time-course analysis of gene expression is

caused by the large number of genes involved in the pathways.
Due to technical and financial limitations, it is unlikely that

gene expression data containing sufficient data points to infer

large scale gene networks will be available in the near future.
Therefore, the development of statistical technologies for

analyzing exceedingly short time-course data are an important

challenges that need to be taken up.
In this article, we have presented some promising approaches

towards the statistical inference of large gene networks. One
practical solution to overcome such a difficulty is to identify

module-based gene networks by exploring existing transcrip-
tional modules. To this end, the state space model was used.

The method automatically identifies the temporal aggregations

of the gene expression profiles and assembles them into large
scale gene networks. We demonstrated the potential of the state

space model.
We also remarked on its limitation ascribed to small numbers

of time-course data points. According to numerical experi-
ments, we found that the applicability of the state space model

was limited to analysis of time-course data where 15–20 data

points were collected and the number of genes is set to p � 103.
One way to overcome such a limitation is to incorporate the

replicates of time-course data into the parameter estimation

process. To our knowledge, the importance of using the
replicates in time-course gene expression analyses has been

relatively overlooked so far. However, as we demonstrated in
this article, the use of replicated time-course data enables us to

achieve highly efficient estimation of gene networks. This is

especially important for the majority of currently available time
series microarray data in which the number of time points is

relatively small.
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