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Bayesian statistical inference to remove periodic noise in
the optical observations aboard a spacecraft

Tomoyuki Higuchi, K. Kita, and Toshihiro Ogawa

Optical data taken aboard a spacecraft sometimes suffer from an unexpected modulation synchronized with
the rotation or wobble of the spacecraft. This modulation may cause a serious error in estimating the volume
emission rate from the observed column emission rate when an inversion method is used, since the differential
operation in the inversion procedure is sensitive to noise. A new statistical technique that discriminates
between random and periodic noise has been developed in thisstudy. This technique, based on the concept of
entropy maximization, gives the best-fit solution to the data. The criterion of fit used in this procedure is the
logarithmic likelihood of a solution calculated in terms of the probability characteristics of the data. This
method is very effective on data containing a periodic modulation due to the spin motion of arocket as well asa
random fluctuation. We use this technique in the analysis of 5577-A airglow data obtained aboard a rocket.

I, Introduction

Inversion procedures are sensitive to noise in ob-
served data, because they involve differential opera-
tions. Thus far. attempts to eliminate the noise have
been made by smoothing and filtering the observed
data. In particular, in observations obtained with an
optical instrument on board a spacecraft. a spurious
modulation of the observed data sometimes occurs in
conjunction with a periodic change in the spacecraft
attitude. Several procedures have been developed to
recover the volume emission rate from a measurement
of the column emission rate as a function of height.!-3
However. a direct inversion by differentiating the col-
umn emission rate with height leads to an erroneous
result, because the periodic noise due to the spacecraft
wobble is amplified by the differential operation.
This introduces a spurious oscillation in the recovered
height profile of the volume emission rate.! Therefore
it is necessary to remove this noise prior to applying
the inversion procedure.

Smoothing the data or fitting a smooth curve to the
data is useful for eliminating noise. However, the
function form in curve fitting is arbitrarily chosen,
because no a priori criterion is available. To overcome
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this problem. Akaike proposed an information criteri-
on on goodness-of-fit based on the principle of maxi-
mization of likelihood.*® Since the Bayesian ap-
proach to statistical inference is useful in many fields
of data analysis. Akaike extended his information cri-
terion to a choice of parameters of a Bayesian model.?

In this paper we introduce a Bayesian inference
model for observed data. The proposed model has
many parameters that are adjustable to random and
periodic components of the data. The optimal model
is determined using the information criterion of
Akaike.”™® Our procedure is applied not only to the
simulated data but also to observed 5577-A airglow
data in terms of the column emission rate.

Il.  Method

We consider a series of observed values. /;. taken at
constant time intervals, represented by I =
(F1,1a... . Ix]T, where N is the total number of data and
T denotes matrix transposition. Itisassumed thatthe
[j can be decomposed as

I,=T,+S,+q, W

where T}, Sj, and ¢; are trend, periodic, and random
components, respectively. In this model T; and S,
represent the systematic part of the observed data.
Therefore the number of parameters is 2N plus the
variance of the random component which is assumed
to have zero mean. Hereafter we use the following
expression tor these components:

W= (Tl TS Syl ()

Let the periodic component be S; = sin(2xjf.At),
where f.is a characteristic frequency and At is the time



interval of sampling. The constraint on the periodic
component is given by the second-order difference
equation

Su2—2S,., +5,=0, 3)

where c is a constant defined by ¢ = cos(2x7f.At). Since
this equation describes the local characteristics of the
sinusoidal variation, it weakly constrains the modula-
tion of the amplitude. If ¢ is not known beforehand. it
may be determined by visual inspection of the data.

We assume that the trend component. T, varies as a
smooth function locally. The constraints on both the
periodic and trend components are thengiveninsucha
way that M(a) has a minimal, where

M(a) = (aT)* + BTy — T\)* + (5aS))° + (s8[S, - §,))°
N=2

+ z (Tjoz = 2T)ay + T + (5[S;4p = 26S;5, + S} (&)
i=1

« and 8 are constants for special treatment of T, T,
84, and Ss and should be properly chosen, because the
second-order difference equation cannot be defined
for Ty, T», S1. and S;. The particular choice of @ and 8
has little influence on selecting a model. s is a hyper-
parameter whose function is to balance the constraints
for Sjand T;. The periodic component becomes more
evident in the result obtained with an increase of s.
We also assume that the systematic components, T; +
S;. do not deviate very much from the observed data /;.
This assumption leads to the minimization of K(a),
where K(a) is defined by

N N
Kia) = [=T,-§]2=>¢. ®)

el =t

K(a) can be rewritten as
T - Xal?, (6)

where X is an (N X 2N) matrix represented by

1 L
x-= - -, ) (7)
1 1

and ||| denotes the standard Euclidean norm. In
similar matrix-vector notation, M(a) can be expressed
as M(a) = [Dal®>, where D is a (2N X 2N) matrix

defined by
P D, 0 5
T ( 0 .»‘l)/) ! (

with D, and [), heing (V¥ X N) matrices represented by

11 0

and

a 0
-3 B
D;=l 1 T2 1 . (10)

0 1 -2 1

In Eq. (8) O is a zero matrix. Note that ¢ in the matrix
D/ is the same as in Eq. (3). We solve the vector a by
minimizing K(a) + d?M(a), where d is a hyperpa-
rameter used to balance the constraints minimizing
K(a) and M(a). If the values of s and d are given, the
solution for the vector a is reduced to that of a con-
strained least-square problem.

The hyper parameters s and d are determined using
the method of Akaike.® We assume that the following
prior distribution of a defined by

10 " (detld®DTD)* exp(-— ﬂm—?ll;) v (11)
a')‘ 24~

glalo’s,d) = =

where (detld2DTDI)? is the normalization factor of
g(-). and o is a positive constant. When the data [;are
given, the posterior distribution of a determined by the
data distribution is given by

h(a) = f(1l¢*,a)z(alo’s.d), (12)
where f(-) is defined by

f(lla*,a)= _ - Xal|2)

1
ex
('.eraz)Nrz p( 207

N
>
2.6
=1

267

exp| — (13)

(2ro?)?

If d, s, and ¢ are given along with the observational
data I. then a is obtained by minimizing | Z(ald,s)|2,
where

1Z(ald,»)I* = i1 — Xai® + &*|Dal> (14)

The minimum value for given d and s is specified as
| Z(a*|d,$)I?. where a* is given by

am = [XTX + 207D X7 L (15)

The essential concept behind determining the hyper-

parameters d, s, and o? is to consider the mean of the

posterior distribution k(). We consider the marginal
likelihood of (d.s,¢?} defined by

... 4o
L(d,s,a‘-’)=] h(z\)da=J filetalgtalets,dyda.  (16)

Integrating. we get

Lidsur) = - — = - nxl)(— Mﬂ:g‘.‘.—"”—"i)(dcdd'-’zjn)l)"-'
RE 275 M Za

X (detld* D7D + XTXD . Qan
IFor given d and s, the maximum of the logarithm of
L(d,s.%) with respect to o% occurs at
P 1ZGclds i
N

In practical applications we consider linite sets of d
and s values in choosing the model that maximizes

(13)
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Fig. 1. (a) Simulated data I; synthesized from three components:

the trend, periodic, and random components shown in (b). (b)

Three components of the data in (a). The random components ¢;

were generated from a sequence of Gaussian white noise with an
average of 0.

L(d.5,0®*). The coefficient ¢ may be treated as a hy-
perparameter, but in this study it is given beforehand.
In place of L(-), we use

ABIC(d,s) = ~2 logL(d,s,0°") (19)

after Akaike, where ABIC(d,s) represents a Bayesian
information criterion. Therefore, the hyperpa-
rameters s and d are optimal for minimizing ABI/C.
The minimum AB/C value is denoted by ABIC*, which
occursats = s*and d = d*. Although in thisstudy the
optimal value of a has been chosenats =s*.d = d*, o =
o*,itis more appropriate to take an average of a, witha
weight of exp[—ABIC(d,s)/2], for many hyperpa-
rameters s and d near s = s* and d = d*.

Hl. Resuits

A. Application to Simulated Dala

' W.e apply our technique to the simulated data shown
in Fig. 1(a). These data, [;(j = 1,2,....N), were syn-
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thesized from the trend, periodic, and random compo-
nents shown in Fig. 1(b). The random component was
generated from a sequence of Gaussian white noise
which has an average of 0. The technique described in
Sec. I is used to decompose the [; [Fig. 1(a)] into their
original three components [Fig. 1(b)}. ABIC values
are calculated for the data shown in Fig. 1(a) for many
values of s and d. The results are shown in Table I.
We see that ABIC attains its minimum atd = 16 and s
= 1. If we want to specify the values of d and s more
precisely. we should search for the model with the
smallest ABIC in the vicinity of (d.s) = (16,1).

Figure 2(a) shows the three resolved components. T},
S;, and ¢;, of the model with ABIC*. Comparing Fig.
2(a) with Fig. 1(b), it is evident that our technique
reproduces the periodic component as well as the trend
component fairly well. There is. however, a small
change in the amplitude of the periodic component, S;,
from the original one in Fig. 1(b). Also, because local
smoothness has been assumed for the trend compo-
nent, there is a small discrepancy near the corners of
Tj. These differences are minor, however, and the
overall agreement between Figs. 1(b) and 2(a) is excel-
lent.

To demonstrate that the model with ABIC* is the
best estimate of the original three components in Fig.
1(b), two models for (d.s) = (8.0.25) and (64.2) are
shown in Figs. 2(b) and (¢). The corresponding values
of ABIC are 799 and 829, respectively. Since the con-
straints on both the trend and periodic components
becomes stricter as d increases, the trend component
comes to a smooth and monotonically decreasing curve
and the periodic component tends to a sinusoidal oscil-
lation. The opposite is true for a small value of d
where the constraint to the systematic part, (S; + 7)),
is weak. Accordingly, the standard deviation of the
random component becomes small; s determines the
balance of constraints between the periodic and the
trend components. The periodic component is ap-
proximately a sinusoidal oscillation for large s. while
the trend component comes to a smooth curve for a
smalls. Theabove characteristics. arising from differ-
ent values of the two hyperparameters d and s, are
illustrated in Figs. 2(a)-(c).

Another test was done using the data of Fig. 3(a).
These data were synthesized from the three simulated
components in Fig. 3(b). Again ABIC reaches its
minimum at (d,s) = (16,1) as shown in Table II. Fig-

Table . ABIC Values lor Sevoral Hyperparameters d and s
¢
S 34 02 16 H f]
1 827 786 770 749 TH2
2 AL 787 766 T4 84
1 31 785 T TH6 704
0.5 Hit TH TH T Sl
0.25 LARRS TH4 778 Ty K46
* ANTC vithue for The molel with (dx) = 050,2) in Fig, 2te).
b ARIC value Tor the model with (d,s) = (16,1 shown o Fig, 2a)

(A=),
CAHIC value Toe the pudel with (4 = (4,020 1o Fig. 2ih).
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Fig.2. Application to the simulated data in Fig. 1(a). Ijgivenin Fig. 1(a) is decomposed into three components, T}, Sj, and ¢, Psing the tech-
nique described in Sec. II. (a) The model at minimum ABIC. Three components T;. Sj, and ¢; are resolved from [;shown in Fig. 1(a). ABIC
attains its minimum atd = 16 and s = 1. (b) The model with (d,s) = (8,0.25). (c) The model with (d,s) = (64,2).
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Fig. 3. (a) Simulated data synthesized with the three components shown in (b). (b) Three components of the data in (a).

ure 4 illustrates the model with ABIC*.

Both the

trend and periodic components are in good agreement
with their original counterparts [Fig. 3(b)] except for a
small difference in amplitude in the periodic compo-

nents.
Table ll. ABIC Values for Several Hyperparameters d and s
d
S 2] 32 16 8 4
4 70 T30 731 743 765
2 702 ™ 730 741 767
1 751 70 T2 Tl 715
131 104 70 742 703 794
0.25 756 T 142 772 LEA

T ABIC value of the model with ()

LATHC®).

= (16,1) shown in g,

7

—— .
T (d.5)=({16.1)
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Fig. 5. (a) Height distribution of the vertical column emission rate

of the 5577-A airglow, (b) The model at the minimum of ABIC with

(d,s) = (16,0.25) is shown. T represents the estimate of the column
emission rate.

B. Application to Observed Data

Our procedure is applied to the actual data observed
aboard arocket. Thedataset is the height variation of
the vertical column emission rate of 5577-A airglow
and our objective is to infer the height profile of the
volume emission rate. The data were obtained with a
photometer on board the sounding rocket $310.17
flown from Uchinoura (31°15’N,131°05’E) at 1300 UT
on 6 Sept. 1986, and are shown in Fig. 5(a). The side-
looking photometer aboard a spin-stabilized rocket
was used, and its [ook angle was determined by means
of a geometric aspectmeter and a star sensor. Star
background was subtracted from the data, and all the
data are converted to the values at the zenith. Despite
_this shaping of the data, at low altitudes a modulation
in synchronization with the rocket spin is superposed
on t}}e column emission data, in addition to noisy fluc-
tuations. The characteristic period of the modulation
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Table lll. Values of ABIC lor Several Hyperparameters d and 8
d
S 32 16 8
0.5 879 841 854
0.25 852 840¢ 853
0.125 842 842 873

¢ Value for the model with (d,s) = (16,0.25) shown in Fig. 5(b)
(ABIC*).
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Fig. 6. Height distribution of the volume emission rate estimated
by our inversion technique.

is exactly the same as that of the rocket spin. Before
applying an inversion to reconstruct the volume emis-
sion rate. we removed the periodic component as well
as the random fluctuation from the data as described
in the previous subsection. In this case the model
gives the minimum value of ABIC at (d,s) = (16,0.25)
(see Table III). The three components of the model
are shown in Fig. 5(b). Itisinterestingto notethatthe
periodic component is damped at high altitudes as is
the trend component.

The vertical column emission rate I is related to the
volume emission rate J by

Iz) = j 7 dzax, (20)
or in discrete form,
+o
L= Ja:, (21)
=

where z denotes altitude. We calculate the volume

emission rate, J;, using
[t - IIH

29
Az 2)

Jy=
where Az in the present study is 200 m. The volume
emission rate obtained is shown in Fig. 6. A compari-
son with other inversion techniques and a discussion
from a physical viewpoint will be presented in a forth-
coming paper.



V. Summary

The major advantage of our inversion technique is
that our procedure uses an objective criterion. In
discussing a small-scale structure obtained in any in-
version procedure, one should make sure that it is
intrinsic to the inversion procedure. When analyzing
observed data containing noisy fluctuations, one
should, if possible. adopt a procedure that is indepen-
dent of subjective assumptions.

In this study, we took into account only three com-
ponents: trend. periodic. and random components
and constructed the prior distributions for the trend
and periodic components. We may specify other con-
straints in the model according to prior information on
the trend and periodic components or add one or more
components in the model. Our present procedure is
useful for analyzing 5577-A airglow data obtained by a
rocket observation.
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