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Abstract: It is important to precisely know the whole time history of various types of
fault slip events to understand the physics of earthquake generation. We develop a new
time dependent inversion method for imaging transient fault slips from geodetic data.
Past studies employed a linear Gaussian state space model and applied Kalman filter.
The Kalman filter based methods, however, do not allow any variation to the temporal
smoothness (or roughness) of fault slips. In the present study, we develop/apply a new
filtering scheme, Monte Carlo mixture Kalman filter (MCMKF), to the time dependent
inversion. MCMKF allows variation to the temporal smoothing of slips in the following
scheme; (1) we prepare a finite number of competing state space models, each of which
follows a different state space model, (2) we introduce a switching structure among these
competing models.
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1. INTRODUCTION

Recently continuous measurements of surface defor-
mation with dense Global Positioning System (GPS)
network have revealed that transient crustal deforma-
tions with a time scale of hours up to years play a
very important role in seismic cycles. Accurate esti-
mates of these spatio-temporal variation of such slow
events provides us with an opportunity to understand
an earthquake mechanism. From geodetic view point,
it is therefore important to investigate detailed spatio-
temporal process of slow events and dense GPS array
record provides the most suitable data for this end
(Heki et al., 1997; Ozawa et al., 2001).

Several studies have tried to image the spatio-temporal
variation of transient fault slip (Segall and Matthews,
1997). One efficient way to retrieve slip distribution
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is that a space-time history of fault slip is modeled
by using linear Gaussian state space model, i.e., state
space model (Anderson and Moore, 1979; Kitagawa
and Gersch, 1996) and estimated by Kalman filter
(Kitagawa and Gersch, 1996). This method is referred
to as the Network Inversion Filter (NIF) and recog-
nized as one of the standard techniques in the applica-
tion domain.

In the NIF framework, the temporal smoothness of the
fault slip is controlled by a scaling parameter of the
employed stochastic model. This scaling parameter,
often referred to as hyper-parameter, is determined
with maximum likelihood method. In the NIF frame-
work, the scaling parameter is held fixed over the ob-
servation period. The constancy of the scaling param-
eter seems to obscure the causal relationship among
multiple events, and hence motivated us to explore a
new approach to the time dependent inversion such
that the scaling parameter is variable in time.



In the present study, we develop a new filtering al-
gorithm, called as Monte Carlo mixture Kalman fil-
ter (MCMKF) for imaging time-dependent fault slip
from geodetic data. In section 2 a new model to iden-
tify a temporal variation of the scaling parameter is
proposed and formulated by the conditional dynamic
linear model (CDLM). A basic idea of MCMKF is ex-
plained in section 3. In section 4, the recursive calcu-
lations, prediction and filtering, are derived. Section 5
describes a procedure for the state estimation based on
the model averaging principle. Section 6 gives a sum-
mary of the MCMKF procedure and brief discussion
on the numerical experiments.

2. CONDITIONAL DYNAMIC LINEAR MODEL
(CDLM)

In order to allow temporal variation of the hyper-
parameter for slip acceleration, we first prepare a finite
number of competing different state space models,
each of which has different hyper-parameter value.
Then, we realize the temporal change of the value by
introducing a switching structure among them. For the
limited space, we cannot give a detailed explanation
for the system and the observation models in the NIF
framework (Fukuda et al., 2003). In stead, we remark
that a departure of our model from the NIF is a time
dependency of system noise variances. Namely, our
model can be rewritten as follows:

xn = Fnxn−1 +vn, vn ∼ N(0,Qn(In)) (1)
yn = Hxn +wn, wn ∼ N(0,Rn). (2)

In this case only Qn among the four matrices is de-
pendent on In. Thus a value of In specifies a system
model with a certain value of the hyper-parameter.
The dimension of the state vector depends on a way
of how a displacement region of interest is numer-
ically represented. It usually exceeds over one hun-
dred, and then a direct approach of the particle fil-
ter (Doucet et al., 2001) to combine many general-
ized state space model (Kitagawa, 1998; Higuchi and
Kitagawa, 2000; Higuchi, 2001) cannot deal with this
problem.

This generalization to incorporate a time dependency
of hyperparameters can be formulated in the con-
ditional dynamic linear model (CDLM) (Chen and
Liu, 2000; Chen et al., 2000; Liu et al., 2001). The
CDLM can be defined as:

System model
xn = Fn(In)xn−1 +vn, (3)

Observation model
yn = Hn(In)xn +wn (4)

where vn ∼ N(0,Qn(In)) and wn ∼ N(0,Rn(In)). The
indicator vector In is a discrete latent variable which
takes an integer value between 1 ∼ M. Usually a
number of models treated in the Mixture Kalman fil-
ter is about 2 ∼ 3, but we consider a problem of

dealing with a large number of models, M � 100.
Given In, Fn, Hn, Qn, and Rn are known matrices of
appropriate dimension. The CDLM is a direct gen-
eralization of the dynamic linear model (DLM) and
retain a capability of dealing with outliers, sudden
jumps, clutters, and other nonlinear features (Liu et
al., 2001). The CDLM includes other types of gen-
eralization of DLM, e.g., Partial non-Gaussian state
space model (Shephard, 1994; Bergman et al., 2001),
Markov switching state space model, (Kim and Nel-
son, 1999; Frühwirth-Schnatter, 2001) and Dynamic
liner models with switching (Shumway and Stof-
fer, 1991).

3. BASIC IDEA OF MONTE CARLO MIXTURE
KALMAN FILTER (MCMKF)

In this section, we introduce a new filtering scheme
and call it as Monte Carlo mixture Kalman filter
(MCMKF) that allows us to choose the optimal model
from many candidates or to average over many mod-
els.

3.1 Model switching structure

The MCMKF algorithm requires a stochastic model
which describes a time-dependent structure for In. In
this study, In is assumed to follow a stationary Markov
process, i.e.,

p(In|I1:n−1) = p(In|In−1) (5)

where Ii: j = (Ii, Ii+1, · · · , I j) and p() denotes probabil-
ity density function. An evolution of In is realized by
Markov switching model with transition probability
given by

πi j = Pr(In = j|In−1 = i) (6)

where Pr denotes realization probability. In the follow-
ing subsections, we present an algorithm that deter-
mines time evolution of In.

3.2 Monte Carlo mixture Kalman filter

The MCMKF algorithm consists of two steps. First,
temporal variation of the probability distribution of
indicator variable In is determined. Second, temporal
variation of the probability distribution of the state
vector xn is estimated following the history of In.

Let yi: j and Ii: j be a set of data vectors and indi-
cator variable from time ti to time t j, respectively,
i.e., yi: j = (yi,yi+1, · · · ,y j) and Ii: j =(Ii, Ii+1, · · · , Ij).
In MCMKF, two conditional joint distributions of
I1:n: (i) predictive distribution p(I1:n|y1:n−1) and (ii)
filter distribution p(I1:n|y1:n), are approximated by
many “particles” that can be considered as indepen-
dent realizations from each distribution. Let I

( j)
1:i|k =



(I( j)
1|k , I( j)

2|k , · · ·I
( j)
i|k ) be the jth realization of the con-

ditional distribution p(I1:i|y1:k). Each distribution is
approximated by Np (Np � 1) realizations as follows:

{
I

(1)
1:n|n−1,I

(2)
1:n|n−1, · · · ,I

(Np)
1:n|n−1

}
∼ p(I1:n|y1:n−1)

(7){
I

(1)
1:n|n,I

(2)
1:n|n, · · · ,I

(Np)
1:n|n

}
∼ p(I1:n|y1:n) (8)

where

Pr
(
I1:n = I

( j)
1:n|n−1|y1:n−1

)
=

1
Np

, (9)

Pr
(
I1:n = I

( j)
1:n|n|y1:n

)
=

1
Np

. (10)

In this study, we refer to {I(1)
1:n|n−1,I

(2)
1:n|n−1, · · · ,

I
(Np)
1:n|n−1} and {I(1)

1:n|n,I
(2)
1:n|n, · · · ,I(Np)

1:n|n} as “approxi-
mated predictive distribution” and “approximated fil-
ter distribution”, respectively. Given realizations of In,
I( j)
n = I( j)

n|k , following CDLM is satisfied for each I( j)
n

( j = 1, · · · ,Np):

x
( j)
n = Fn(I

( j)
n )x( j)

n−1 +v
( j)
n , v

( j)
n ∼ N(0,Qn(I

( j)
n ))

(11)

yn = Hn(I
( j)
n )x( j)

n +w
( j)
n , w

( j)
n ∼ N(0,Rn(I

( j)
n )).

(12)

Using (11) and (12), we will later show that a set of
particles approximating the predictive distribution and
the filter distribution is obtained recursively by two
steps:

Prediction:
{

I
(1)
1:n−1|n−1, · · · ,I

(Np)
1:n−1|n−1

}
−→{

I
(1)
1:n|n−1, · · · ,I

(Np)
1:n|n−1

}
, (13)

Filtering:
{

I
(1)
1:n|n−1, · · · ,I

(Np)
1:n|n−1

}
−→{

I
(1)
1:n|n, · · · ,I

(Np)
1:n|n

}
. (14)

4. RECURSIVE CALCULATION

4.1 Prediction

In this subsection, we show that an approximated pre-
dictive distribution at time tn {I(1)

1:n|n−1, · · · , I
(Np)
1:n|n−1}

is obtained from an approximated filter distribution
at time tn−1 {I(1)

1:n−1|n−1, · · · ,I
(Np)
1:n−1|n−1}. We assume

that {I(1)
1:n−1|n−1, · · · , I

(Np)
1:n−1|n−1} and y1:n−1 are given.

Then the probability Pr(I1:n = I
( j)
1:n|n−1|y1:n−1) is ma-

nipulated as

Pr(I1:n = I
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n|n−1,I1:n−1 = I
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(15) indicates that
{
I

(1)
1:n|n−1, · · · ,I

(Np)
1:n|n−1

}
is obtained

by sampling a realization I( j)
n|n−1 with probability

or weight Pr(In = I( j)
n|n−1|In−1 = I( j)

n−1|n−1), and set-

ting I
( j)
1:n|n−1 = (I( j)

1:n−1|n−1, I( j)
n|n−1). Note that Pr(In =

I( j)
n|n−1|In−1 = I( j)

n−1|n−1) is given by the Markovian tran-
sition probability defined by (6).

4.2 Filtering

In this subsection, we show that an approximated filter
distribution at time tn {I(1)

1:n|n , · · · ,I(Np)
1:n|n} is obtained

from an approximated predictive distribution at time
tn

{
I

(1)
1:n|n−1, · · · ,I

(Np)
1:n|n−1

}
. Given the observation yn,

the probability Pr(I1:n = I
( j)
1:n|n−1| y1:n−1) is updated

as follows:

Pr(I1:n = I
( j)
1:n|n−1|y1:n)

= Pr(I1:n = I
( j)
1:n|n−1|y1:n−1,yn)

= p(yn|I1:n = I
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1:n|n−1,y1:n−1)

·Pr(I1:n = I
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1:n|n−1|y1:n−1)/p(yn|y1:n−1)

= {p(yn|I1:n = I
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·Pr(I1:n = I
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{
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·Pr(I1:n = I
( j)
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=
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n
1

Np

∑Np
j=1 w( j)

n
1
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=
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∑Np
j=1 w( j)

n

(16)

where

w( j)
n = p(yn|I1:n = I

( j)
1:n|n−1,y1:n−1). (17)

Equation (16) means that the filter distribution p(I1:n|
y1:n) is approximated by giving weight proportional to
w( j)

n to the jth particle of approximated predictive dis-
tribution. For the next prediction step, it is necessary
to represent the approximated filter distribution with
equally weighted particles

{
I

(1)
1:n|n, · · · ,I

(Np)
1:n|n

}
. This is



achieved by generating Np particles
{

I
(1)
1:n|n, · · · ,I

(Np)
1:n|n

}

by resampling
{

I
(1)
1:n|n−1, · · · ,I

(Np)
1:n|n−1

}
with probabil-

ity proportional to
{

w(1)
n , · · · ,w(Np)

n

}
.

4.3 Recursive calculation for the state vector estimation

From (11) and (12), p(xn−1|I1:n−1 = I
( j)
1:n−1|n−1,

y1:n−1) and p(xn|I1:n = I
( j)
1:n|n−1, y1:n−1) becomes

Gaussian distributions. Let us define mean vectors
and covariance matrices of the two distributions as
follows:

p(xn−1|I1:n−1 = I
( j)
1:n−1|n−1,y1:n−1)

∼ N(x( j)
n−1|n−1,V

( j)
n−1|n−1) (18)

p(xn|I1:n = I
( j)
1:n|n−1,y1:n−1)

∼ N(x( j)
n|n−1,V

( j)
n|n−1) (19)

Since I
( j)
1:n−1|n−1 is assumed to be given, the CDLM

(11) and (12) reduces to a linear Gaussian state space
model and thus x

( j)
n−1|n−1 and V ( j)

n−1|n−1 are calculated

by Kalman filter. x( j)
n|n−1 and V ( j)

n|n−1 are also calculated

by Kalman filter using x
( j)
n−1|n−1, V ( j)

n−1|n−1 and I( j)
n|n−1

as follows:

x
( j)
n|n−1 = Fn(I

( j)
n|n−1)x

( j)
n−1|n−1 (20)

V ( j)
n|n−1 = Fn(I

( j)
n|n−1)V

( j)
n−1|n−1FT

n (I( j)
n|n−1)

+Qn(I
( j)
n|n−1). (21)

Note that I( j)
n|n−1 is obtained by the prediction scheme

of the MCMKF.

From (12), the predictive distribution of data also
becomes a Gaussian:

p(yn|I1:n = I
( j)
1:n|n−1,y1:n−1)

∼N(y( j)
n|n−1,W

( j)
n|n−1) (22)

where

y
( j)
n|n−1 = Hn(I

( j)
n|n−1)x

( j)
n|n−1 (23)

W ( j)
n|n−1 = Hn(I

( j)
n|n−1)V

( j)
n|n−1HT

n (I( j)
n|n−1)

+Rn(I
( j)
n|n−1). (24)

The left hand side of (22) is the weight w( j)
n defined in

(17). Thus w( j)
n follows the Gaussian distribution with

mean y
( j)
n|n−1 and covariance matrix W ( j)

n|n−1 as follows:

w( j)
n = (2π)−Nd /2

∣∣∣W ( j)
n|n−1

∣∣∣−1/2

exp
[
−1

2
(yn −y

( j)
n|n−1)

TW ( j)−1
n|n−1 (yn −y

( j)
n|n−1)

]
(25)

where
∣∣∣W ( j)

n|n−1

∣∣∣ is the absolute value of the determinant

of W ( j)
n|n−1. Because x

( j)
n|n−1 and V ( j)

n|n−1 are given in (20)

and (21), the weight w( j)
n is obtained using (23), (24)

and (25).

By using the prediction and the filtering algorithm re-
cursively, we finally obtain Np particles {I(1)

1:Ne|Ne
, · · · ,

I
(Np)
1:Ne |Ne

} that approximate p(I1:Ne |y1:Ne), the posterior
distribution of I1:Ne conditioned on all of available
data. Here, Ne is the number of observation epochs.
p(I1:Ne |y1:Ne) is called smoother distribution of I1:Ne .
A sequence of each particle, I

( j)
1:Ne |Ne

= [I( j)
1|Ne

, I( j)
2|Ne

,

· · ·I( j)
Ne |Ne

], is called the trajectory.

This filtering algorithm is conceptually similar to the
storing state vector algorithm in the Monte Carlo filter
proposed by Kitagawa (1996). He applied the Monte
Carlo approximation directly to the distribution of
the state, whereas we apply the approximation to the
distribution of the indicator variable. He showed that
in the Monte Carlo filter the repetition of resampling
gradually decreases the number of different realiza-
tions of state vector as time passes because the number
of realizations is finite. Therefore the shape of the dis-
tribution of the state deteriorates as time passes. Kita-
gawa (1996) showed that this difficulty can be elimi-
nated by employing fixed L-lag smoother rather than
fixed interval smoother (Anderson and Moore, 1979).
Although we apply the Monte Carlo approximation to
the indicator variable instead of the state, this situation
also applies to the MCMKF. Thus following Kitagawa
(1996), we modify the MCMKF filtering algorithm as
follows:
For fixed L, generate Np particles {I(1)

n−L:n|n, I
(2)
n−L:n|n,

· · · , I(Np)
n−L:n|n} by the resampling of {I(1)

n−L:n|n−1, I
(2)
n−L:n|n−1,

· · · , I(Np)
n−L:n|n−1} with probability proportional to {w(1)

n ,

· · · , w(Np)
n } defined in (17).

It is recommended to take L not so large (say, 10 or
20 at the largest 50) (Kitagawa, 1996; Higuchi and
Kitagawa, 2000). We adopt L = 20 in our application
study shown in Section 6.

5. MODEL AVERAGING

5.1 State Estimation

We present here an algorithm to estimate the state
using all the Np trajectories {I(1)

1:Ne |Ne
, · · · , I

(Np)
1:Ne |Ne

}.

In this case, Fn(I
( j)
n ), Qn(I

( j)
n ), Hn(I

( j)
n ) and Rn(I

( j)
n )

( j = 1, · · · ,Np) in (11) and (12) reduce to sets of
known matrices which have different time evolutions
corresponding to trajectories. Thus the CDLM defined
by (11) and (12) reduces to the conventional linear
Gaussian state space model to which Kalman filter is
applicable for state estimation:



x
( j)
n = F ( j)

n x
( j)
n−1 +v

( j)
n , v

( j)
n ∼ N(0,Q( j)

n ) (26)

yn = H( j)
n x

( j)
n +w
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n , w

( j)
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where F ( j)
n = Fn(I

( j)
n|Ne

), Q( j)
n = Qn(I

( j)
n|Ne

), H( j)
n =

Hn(I
( j)
n|Ne

) and R( j)
n = Rn(I

( j)
n|Ne
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x
( j)
i|k = E(xi|y1:k,I1:Ne = I

( j)
1:Ne |Ne

) (28)

V ( j)
i|k = Cov(xi|y1:k,I1:Ne = I

( j)
1:Ne |Ne

) (29)

be the conditional mean and the covariance matrix
of the state at time ti given the data y1:k for jth

trajectory.
{
x

( j)
n+1|n,V

( j)
n+1|n

}Np

j=1
,

{
x

( j)
n|n,V

( j)
n|n

}Np

j=1
and{

x
( j)
n|Ne

,V ( j)
n|Ne

}Np

j=1
are recursively obtained by Kalman

filter. Given
{
x

( j)
n|Ne

,V ( j)
n|Ne

}Np

j=1
, distribution of the final

estimate for xn, p(xn|y1:Ne), is written as

p(xn|y1:Ne) =
Np

∑
j=1

p(xn,I1:Ne = I
( j)
1:Ne |Ne

|y1:Ne)

=
Np

∑
j=1

p(xn|I1:Ne = I
( j)
1:Ne |Ne

,y1:Ne )

Pr(I1:Ne = I
( j)
1:Ne |Ne

|y1:Ne)

=
1

Np

Np

∑
j=1

N(x( j)
n|Ne

,V ( j)
n|Ne

). (30)

In the 3-rd equality, (10), (28) and (29) are used.
Therefore p(xn|y1:Ne) is non-Gaussian distribution
with mean

xn|Ne =
1

Np

Np

∑
j=1

x
( j)
n|Ne

. (31)

Estimation of standard deviation error bounds for
xn|Ne is not straightforward because p(xn|y1:Ne) is
non-Gaussian distribution. In this study, error bounds
for xn|Ne are approximately obtained as follows:

(1) Generate Ns realizations of N(x( j)
n|Ne

,V ( j)
n|Ne

), X ( j)
n,1 ,

X
( j)

n,2 , · · · , X
( j)

n,Ns
, for each trajectory, j = 1,2,

· · · , Np.
(2) Estimate covariance matrix of p(xn|y1:Ne ), Vn|Ne ,

by

Vn|Ne =
1

NpNs−1

Np

∑
j=1

Ns

∑
k=1[

X
( j)

n,k −X̄
( j)

n,k

][
X

( j)
n,k −X̄

( j)
n,k

]T
(32)

where

X̄
( j)

n,k =
1

NpNs

Np

∑
j=1

Ns

∑
k=1

X
( j)

n,k . (33)

The procedure for state estimation using all trajecto-
ries described above is computationally massive both
in calculation time and in memory. More efficient al-
gorithm is implemented by reducing number of trajec-
tories to which Kalman filter is applied. This is done

by sampling N ′
p (N ′

p < Np) trajectories randomly from

Np trajectories {I(1)
1:Ne |Ne

, · · · ,I(Np)
1:Ne|Ne

}. Once N ′
p trajec-

tories are selected, the procedure for state estimation
is identical to the case using all Np trajectories. The
distribution of the final estimate for xn, p(xn|y1:Ne),
and its mean vector, xn|Ne , are obtained by replacing
Np in (30) and (31) with N ′

p, respectively.

5.2 Likelihood of the meta-model

In this subsection, we present a formula for the log-
likelihood of the model. Let θ be a vector that contains
temporally invariable hyper-parameters. Given θ, the
likelihood of the model is expressed by

L(θ) = p(y1:Ne |θ)

=
Ne

∏
n=1

p(yn|y1:n−1,θ). (34)

If we use all Np trajectories for state estimation,
p(yn|y1:n−1,θ) in (34) is given by

p(yn|y1:n−1,θ) =
Np

∑
j=1

p(yn,I1:n = I
( j)
1:n|Ne

|y1:n−1,θ)

=
Np

∑
j=1

p(yn|y1:n−1,I1:n = I
( j)
1:n|Ne

,θ)

Pr(I1:n = I
( j)
1:n|Ne

|y1:n−1,θ)

=
1

Np

Np

∑
j=1

p(yn|y1:n−1,I1:n = I
( j)
1:n|Ne

,θ). (35)

Combining (34) and (35) yields the following formula
for the log-likelihood of the model l(θ). If we use N ′

p
trajectories randomly sampled from Np trajectories,
the log-likelihood of the model is obtained by replac-
ing Np with N ′

p.

The goodness of the model is evaluated by the Akaike
information criterion (AIC) (Akaike, 1974). The AIC
is defined as

AIC = −2l(θ)+2(number of unknown parameters).
(36)

6. SUMMARY

6.1 An algorithm for MCMKF

The MCMKF algorithm that we propose in this study
is summarized as follows:

(1) Initialization: For j = 1, . . . ,Np,
(a) Sample I( j)

0|0 ∼ p(I0|0).

(b) Set (x( j)
1|0,V

( j)
1|0 ).

(2) For n = 1, . . . ,Ne,
(a) For j = 1, . . . ,Np,



(i) Sample I( j)
n|n−1 ∼ Pr(In = I( j)

n|n−1|In−1 =

I( j)
n−1|n−1).

(ii) Set I
( j)
1:n|n−1 = (I( j)

1:n−1|n−1, I( j)
n|n−1).

(iii) Compute w( j)
n = p(yn|I1:n = I

( j)
1:n|n−1,

y1:n−1).
(iv) Update (x( j)

n−1|n−1,V
( j)
n−1|n−1) to obtain

(x̃( j)
n|n,Ṽ

( j)
n|n ) using Kalman filter.

(b) Obtain {(I( j)
1:n|n,x

( j)
n|n,V

( j)
n|n )}Np

j=1 by the re-

sampling of {(I( j)
1:n|n−1, x̃

( j)
n|n,Ṽ

( j)
n|n )}Np

j=1 with

probability proportional to w( j)
n .

(3) Obtain the distribution of the final estimate
for xn, p(xn|y1:Ne), based on Np trajectories{
I

(1)
1:Ne |Ne

, · · · ,I(Np)
1:Ne|Ne

}
.

6.2 Application Result

A temporally invariable scaling parameter as in the
NIF could not trace abrupt changes because optimized
scaling parameter would be too small to allow such a
sudden change of fault slip, and vice versa. As a result,
estimated slip evolution would be flattened during the
event and oscillatory in steady-state period, and hence,
it would be hardly possible to identify the initiation
of events. In order to overcome this difficulties, we
propose the CDLM and apply the MCMKF for its
state estimation. We apply this space-time inversion
method to simulated data which are generated by an
infinitely long strike slip fault. Results show that the
proposed method can reproduce rapidly accelerating
and decelerating fault slip and coseismic slip as well
as slow variation of fault slip rate, even in a case
that noise level is so high that signal is invisible. We
confirmed that a benefit of applying our approach is
maximized when deformation rate varies rapidly or
coseismic deformation exists, and signal-to-noise ratio
is low. In addition we address that the MCMKF is
designed to deal with the CDLM and then can be
applicable to a wide variety of the nonlinear non-
Gaussian state space models. The MCMKF allows us
to integrate various type of time series models and to
generate a flexible time series model automatically.
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