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0. Background 
0.1 What are galaxies?

A galaxy is a huge agglomeration of stars, interstellar medium
(ISM: gas+dust), and dark matter (DM), a complex system with
a complicated interaction between each component.
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If we observe the Milky Way from outside, it would appear as 
a disk with spiral structure which consists of gas and stars.

0.2 Galaxies to the Large-Scale Structures

VERA, NAOJ



From galaxies to groups and clusters of galaxies
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From groups and clusters to the Large-Scale Structure



From groups and clusters to the Large-Scale Structure

The distribution of galaxies is globally homogeneous, but 
strongly inhomogeneous even at scales larger than clusters. 
This is called the Large-Scale Structure in the Universe. 



From the Large-Scale Structure to the Hubble horizon



1. Introduction
1.1 Structure formation in the Universe

All the structures in the Universe have emerged from a tiny
fluctuation at very early epoch (380,000 yr).



1.2 Galaxy formation from the cosmic initial condition
Galaxies are supposed to have formed from a tiny (order of
~ 10-5) fluctuation of matter (mainly dark matter: DM) in
the early Universe.

The initial condition is imprinted on the Cosmic Microwave
Background (CMB) observed at radio wavelengths.

http://www.rssd.esa.int/index.php?project=Planck



Gaussian random field is a stochastic field whose distribution
is described by Gaussian and its Fourier phases have no
correlation.

(1)

(2)

Gaussian random field: initial condition of matter fluctuation

All the stochastic properties of a field is uniquely characterized 
by the power spectrum P(k) for Gaussian random fields. 



Gaussian random field is a stochastic field whose distribution
is described by Gaussian and its Fourier phases have no
correlation.

(1)

(2)

Gaussian random field: initial condition of matter fluctuation

All the stochastic properties of a field is uniquely characterized 
by the power spectrum P(k) for Gaussian random fields. 

Observationally, the initial density fluctuation in the
Universe can be regarded as (almost) Gaussian.



Formation of dark halos: statistical description

First step

A random Gaussian density field of DM evolves through
gravity. When the density of a patch of the field exceeds a
certain threshold, the patch starts to be gravitationally bound
to form a dark halo.

Peacock (1998)



Formation of dark halos: statistical description

Kerscher (1999)
Second step

In the dark haloes, baryons (normal gas) start to contract to
form stars and galaxies. Halos and galaxies are not one-to-one
corresponding. From a density field to galaxies, the
mathematical treatment changes from a continuous field to a
point field.



Formation of dark halos: statistical description

Lacey &Cole (1993)
Third step

Dark halos merge with time, and galaxies in them also merge,
but not in the same way, because baryons evolve also through
electromagnetic interaction. If we want to incorporate galaxy
properties with environment etc., a proper treatment is needed.



1.3 Formation and evolution of galaxies 

The mass in the Universe is known to be dominated by DM.
The initial Gaussian fluctuations of DM start to grow by
gravitational interactions. Resulting virialized structures are
called dark halos.

The hierarchical structure formation

Dark halo



The dark halos approach each other and finally merge to
form larger halos. The formation proceeds from smaller to
larger structures. This is the so-called hierarchical structure
formation, currently the most reliable scenario of the
structure formation in the Universe.

The hierarchical structure formation

Dark halo



Dark halo

First stars

During the merging of dark halos, the baryonic gas falls into
the gravitational potential wells of DM and is compressed
there. First stars are formed in dark halos. When they
explode as supernovae, first heavy elements are provided to
the Universe.

The hierarchical structure formation



Galaxy

The supply of heavy elements makes the condition of star
formation much easier. Then, the gas turns into stars
collectively, and galaxies form as large agglomerations of stars
and remaining gas in dark halos.

The hierarchical structure formation

Dark halo



Galaxy

Dark halos continue merging and form larger and larger
halos. Consequently, galaxies in these halos start to cohabit in
the same newly formed halos. Baryonic structures cannot
merge as easily as dark halos because of gas pressure.

The hierarchical structure formation

Dark halo



Galaxy

Then, sometimes dark halos are occupied by one or more
galaxies and sometimes no galaxies. The occupation number
is stochastic (but loosely a function of the halo mass). Merging
goes on with the cosmic time.

The hierarchical structure formation

Dark halo



Galaxy

Finally, some galaxies merge and form larger galaxies.
Present-day large galaxies (up to Mbaryon ~ 1012 M☉) are
thought to have formed in the merger process. Strong merging
process is often accompanied by an effective compression of
gas, inducing burst of star formation.

The hierarchical structure formation

Dark halo



http://cosmicweb.uchicago.edu/filaments.html

Evolution of DM distribution (numerical simulation)



1.4 Internal galaxy evolution

Galaxies have formed at various epochs in the Universe,
merged, and grown. In parallel, gas has transformed into stars.
Stars die and return back their gas into the ISM, and next
generation of star formation proceeds.

Star formation in galaxies



ISM

Star formation

Stellar evolution

Stellar death

Mass ejection

Mass ejection

Stellar winds 
PNe

SNRs

Supply of heavy 
elements

Heavy element production

Heavy element production

Heavy element production

Chemical evolution of galaxies: metal and dust
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Chemical evolution of galaxies: metal and dust



2. Matter Distribution via Persistent Homology
2.1 Spatial distribution of matter and galaxies
As we have already seen, galaxies have formed from a
Gaussian random field of matter (DM and normal matter
(baryon)).



2. Matter Distribution via Persistent Homology
2.1 Spatial distribution of matter and galaxies
As we have already seen, galaxies have formed from a
Gaussian random field of matter (DM and normal matter
(baryon)).

⇒ Cosmological matter distribution at any epoch should be
characterized by a statistical way.



Evolution of DM distribution revisited

http://cosmicweb.uchicago.edu/filaments.html



Traditional characterization of matter distribution

Density fluctuation:                                                               (3)

Dispersion:                                                                             (4)

Fourier component:                                                              (5)

Power spectrum:                                                                   (6)

Higher-order power spectra (bispectrum  3-point
correlation function; trispectrum  4-point correlation
function) are also defined.

In general, a set of infinite number of moments (or their
Fourier counterparts) are needed to specify the properties
of a stochastic field.



Traditional characterization of matter distribution

Density fluctuation:                                                               (3)

Dispersion:                                                                             (4)

Fourier component:                                                              (5)

Power spectrum:                                                                   (6)

Higher-order power spectra (bispectrum  3-point
correlation function; trispectrum  4-point correlation
function) are also defined.

Thanks to the near-Gaussian property of the matter
distribution, the power spectrum still can play a central
role for describing the matter distribution.



The correlation function of the density field is defined
through the ensemble average

(7)

This can be expressed through the Fourier transform

(8)

Using the translational invariance in Fourier space, we get

(9)

Since the correlation function only depends on the distance,

(10)
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• First measured by Totsuji & Kihara (1969), then Peebles et al.
• A power law is a fairly good approximation (but no strong

physical reason)

• Correlation length r0= 5.4 h-1 Mpc *
• Exponent is around γ = 1.8

* From the latest measurement, h = 0.7.
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To evaluate the statistical properties beyond the Gaussian
approximation, we have to introduce a series of infinitely
high correlation functions, which is not realistic.

⇒ More flexible method is desired!

Limitation



2.2 Baryon acoustic oscillation (BAO)

Baryons evolve in a very complicated way via electromagnetic
interactions (with radiative heating/cooling, gas pressure, fluid
dynamical processes, etc.)

A typical example of such a nontrivial phenomenon is the
baryon acoustic oscillation (BAO) generated in the matter-
radiation fluid in the early Universe (Peebles & Yu 1970;
Sunyaev & Zel’dovich 1970).



Matter and radiation were tightly coupled by Thomson
scattering

⇒ hot dense matter-photon plasma (two fluid)

State of matter in the early Universe

Microscopically, photons are scattered by free electrons 
and cannot go straight. 

Nuclei Free electrons

Photons

T > 3000 K



Acoustic peak

Consider a point-like initial perturbation in the primordial
matter-photon plasma. In the plasma, the matter and photons
are locked into a single fluid.

Since the photons are so hot and numerous, the combined
fluid has an tremendous pressure with respect to its density.

http://background.uchicago.edu/~whu/physics/physics.html



Acoustic peak

Consider a point-like initial perturbation in the primordial
matter-photon plasma. In the plasma, the matter and photons
are locked into a single fluid.

Since the photons are so hot and numerous, the combined
fluid has an tremendous pressure with respect to its density.

The pressure tries to equalize itself with the surroundings,
which results in an expanding spherical sound wave. The
sound speed at this early epoch is evaluated by

which is ~ 57 % of the light speed at early epoch.

(12)



Acoustic peak

Sound horizon (final radius) rs is obtained by

where dec stands for the decoupling.
(13)

©Harvard University



Acoustic peak

©Umut Emek Demirbozan & Kerim Demirel



© UCLA ©Harvard University

What we observe is the superposition of many acoustic
waves imprinted on the large-scale structure emerged
from the primordial fluctuations.

BAO



The BAO length scale is constant in comoving coordinates.

⇒ In principle, we can detect the signal on the galaxy 2-point
correlation function.

BAO on the correlation function

© E.M. Huff, the SDSS-III team, and the South Pole Telescope team



However… the BAO scale is very large compared with the
typical scale of the large-scale structure.

BAO on the correlation function



However… the BAO scale is very large compared with the
typical scale of the large-scale structure.

⇒ We need a very large galaxy sample with dense sampling,
since we must measure the signal at such a large scale.

BAO on the correlation function



The SDSS is the largest optical photometric and spectroscopic
surveys ever existed. It covers one-third of the sky.

Sloan Digital Sky Survey (SDSS)

The advent of the SDSS finally made it realistic to detect the
BAO signal on the 2-point correlation function.



Eisenstein et al. (2005)

First detection of the BAO signal on the correlation function

Eisenstein et al. (2005) first detected the signal around 150
Mpc on the 2-point correlation function.

Currently this analysis is
only possible with SDSS
data.



Eisenstein et al. (2005)

First detection of the BAO signal on the correlation function

Eisenstein et al. (2005) first detected the signal around 150
Mpc on the 2-point correlation function.

Currently this analysis is
only possible with SDSS
data.

More flexible method is
desired!

⇒ Persistent homology!



Radius of a ball r

Birth of a hole: 𝒓𝒓𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 Death of a hole: 𝒓𝒓𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝

The topological information is characterized with holes
constructed from n-dimensional sphere with radius r from
discrete data points.
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2.3 Persistent homology
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3
2

Loops

90% confidence
band

Data with three loops

⇒ From persistent diagram, we can find three significant
structures.

Persistent diagram: finding loops from data



Xu et al. (2019) applied the persistent homology for a large
galaxy data set generated from N-body simulation
(Libeskind et al. 2018) and found 23 voids (A-W) in the
simulation data.

Xu et al. (2019)

Preceding work: void finding (Xu et al. 2019)



SDSS DR12 (Alam et al. 2015) Band: u, g, r, i, z
Sky coverage area: 14555 deg2

Luminous red galaxies (LRG)
Relatively massive (~ 1011-12 M☉) elliptical galaxies. In this
study, we followed selection criteria suggested by Eisenstein
et al. (2001). We further randomly sampled 2000 galaxies.

N.B. We do not use the full dataset but a sparsely drawn
subsample of the SDSS.

Local galaxy data (z ~ 0)



There are 10 loops above the 90% confidence band whose 𝒓𝒓𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
is ~ 150 Mpc. This exactly corresponds to the BAO signal.

⇒ Much more efficient than the correlation function method!

Result at z ~ 0

[Mpc]

[M
pc

]



SDSS DR14 quasar catalog (Bautista et al. 2018)

Quasars are though to form in very high density peaks of
the fluctuation field. Again we construct a subsample of size
2000 extracted from the parent sample.

Quasar data at z ~ 0-3: explore the evolution

Bautista et al. (2018)



Result at 0 < z < 1
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Again we see clear signatures of BAO.
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Result at 1 < z < 2
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Result at 2 < z < 3

Birth

D
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However, it is not easy to evaluate the evolution, i.e.,
compare the difference between different redshifts. We plan
to introduce Wasserstein metric to quantify it.
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3. Galaxy Evolution through Manifold Learning
3.1 Galaxy evolution from a modern point of view

Galaxies evolve in various aspects:



x = x(T|T > t)

Galaxies evolve in various aspects:

3.1 Galaxy evolution from a modern point of view



This is the formal and ultimate goal of the studies on
galaxy evolution, but clearly it is a substantially
complicated problem. It is time to define the evolution of
galaxies with more objective point of view.

Galaxies evolve in various aspects:

3.1 Galaxy evolution from a modern point of view



Bruzual & Charlot (1993)
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Star formation history (SFH)
is one of the key factors of
galaxy evolution.

SFH is directly reflected to the
spectral luminosity of galaxies.

3.2 Galaxy evolution in multiband luminosity space
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Star formation history (SFH)
is one of the key factors of
galaxy evolution.

SFH is directly reflected to the
spectral luminosity of galaxies.

3.2 Galaxy evolution in multiband luminosity space

Galaxy evolution related to the
SFH will be well represented in
the multiwavelength (band)
luminosity space.



If we plot galaxy luminosity
(absolute magnitude) vs.
color, a clear dichotomy is
found: the color bimodality.

Redder galaxies:
red sequence

Bluer galaxies:
blue cloud

Boundary: green valley

Blanton (2006)

Color-magnitude relation

Absolute magnitude Mg
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3.3 Traditional methods and its limitation



Colors are basically ratios of two luminosities.

⇒ Selection effect is always too entangled and messy.

⇒ Completeness test is almost impossible in a simple way.

Potential problem in the traditional color-based methods



Colors are basically ratios of two luminosities.

⇒ Selection effect is always too entangled and messy.

⇒ Completeness test is almost impossible in a simple way.

Suggestion: forget about colors!

Instead, we can simply use the distribution of galaxies in
a multidimensional luminosity (absolute magnitude)
space.

Potential problem in the traditional color-based methods



Since we have a bimodality in color-color space, we
must have an equivalent peaks in the multidimensional
luminosity space. Color-color plots only show reduced
information.

Potential problem in the traditional color-based methods
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Potential problem in the traditional color-based methods

The boundary can be automatically defined by the
machine-learning type method.

Since we have a bimodality in color-color space, we
must have an equivalent peaks in the multidimensional
luminosity space. Color-color plots only show reduced
information.



• Reference Catalog of galaxy Spectral Energy
Distributions (RCSED) (Chilingarian et al. 2016)

• Catalog of galaxies produced as join between GALEX,
SDSS, and UKIDSS catalogs, and processed with state-of-
the-art spectral analysis methods

• Covers approximately 25% of the sky and contains k-
corrected ultraviolet-to-near-infrared photometry (11
bands of FUV, NUV, u, g, r, i, z, Y, J, H, K) of some 1
million galaxies, as well as some of their physical
properties

3.4 Data: RCSED

http://rcsed.sai.msu.ru

http://rcsed.sai.msu.ru/


Generate a subsample with all 11 rest-frame magnitudes
(FUV, NUV, u, g, r, i, z, Y, J, H, K) ~ 800,000 galaxies

⇒ Construct a volume limited sample that is representative
of the whole galaxy sample of ~ 30,000 galaxies.

3.5 Classification in multiwavelength luminosity space

Perhaps impossible to classify by intuition.



Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

1. Assign initial cluster (class) centers by k-means++
2. Execute FEM

i. E-step: calculate the complete log-likelihood
under the current value of the Gaussian
mixture model

ii. F-step: boundary is chosen to maximize the
distances between groups, and to minimize the
internal scatters

iii. M-step: parameters of Gaussian functions are
optimized by maximizing the conditional
expectations of the complete log-likelihood

iv. Back to 2.i (E-step) until the result converges.
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Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

1. Assign initial cluster (class) centers by k-means++
2. Execute FEM

i. E-step: calculate the complete log-likelihood
under the current value of the Gaussian
mixture model

ii. F-step: boundary is chosen to maximize the
distances between groups, and to minimize the
internal scatters

iii. M-step: parameters of Gaussian functions are
optimized by maximizing the conditional
expectations of the complete log-likelihood

iv. Back to 2.i (E-step) until the result converges.
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We classified the whole galaxy sample into 11 classes (based
on Siudek et al. 2018).

3.6 Classification result 
Classification from machine learning



Intrinsic smooth structure?

However, the groups do not
seem to be sharply separated
on this projection.

Classification to manifold learning

We classified the whole galaxy sample into 11 classes (based
on Siudek et al. 2018).



Intrinsic smooth structure?

A manifold! 

However, the groups do not
seem to be sharply separated
on this projection.

Classification to manifold learning

We classified the whole galaxy sample into 11 classes (based
on Siudek et al. 2018).



Historically, in 80’s, astronomers introduced a method of
classical multivariate analysis such as PCA to find and unify
various scaling relations (e.g., Djorgovski 1992).

Djorgovski (1992)

However, since classical PCA-
type analysis could only find
linear structure in the feature
space, the idea worked only to a
limited problems, and have
been once forgotten.

3.7 Galaxy evolution from a galaxy manifold
Galaxy manifold



Chilingarian et al. (2012)

Galaxy manifold
Some preceding studies have suggested the existence of a
smooth relation of galaxies in the 3D color–color–magnitude
space smoothly continuing from the blue cloud to the red
sequence (e.g. Chilingarian et al. 2012).

⇒ general idea of a low dimensional submanifold existing
in a higher dimensional feature space: revival of the galaxy
manifold!



A strongly nonlinear structure was discovered on the SFR-M*
plane. This is also regarded as one of the projections of the
galaxy manifold.

Galaxy manifold

log M* [M☉]
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Quest for the optimal representation of the manifold

Can we use a machine learning technique to identify what
parameters represent the manifold the best?

?

?



Quest for the optimal representation of the manifold

Can we use a machine learning technique to identify what
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Quest for the optimal representation of the manifold

Can we use a machine learning technique to identify what
parameters represent the manifold the best?

⇒ Yes, if we ask a right question to the machine learning.

?

?

Since most of the astronomers are interested in luminosities
(colors), we focus on the search for the best-representing
photometric bands in this work.



https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-b9523be65147

Random forests for feature selection

Random Forests or random decision
forests are clustering algorithms that
generates random decision trees based
on the given features.



https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-b9523be65147

Random forests for feature selection

Random Forests or random decision
forests are clustering algorithms that
generates random decision trees based
on the given features.

Many of such trees produce a random
forest.



https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-b9523be65147

Random forests for feature selection

Random Forests or random decision
forests are clustering algorithms that
generates random decision trees based
on the given features.

Many of such trees produce a random
forest.

By providing the answer (class
membership), the random forest will
learn the important features.



Random forests for feature selection

Input all the
magnitudes and
colors with class
information.

Random 
forest

Features ranked
based on the
importance

Removing highly 
correlated features
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Star forming bluer galaxies 

Quenched redder galaxies



Now it is clear that the M*-SFR relation is a projection of the 2-
dim manifold. The blue galaxy populations are strongly
degenerated (seen from edge-on): galaxy main sequence.

Two dimensional galaxy manifold: M*-SFR plane revisited
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Important implications

Bruzual & Charlot (1993)

The distribution in MNUV-MY can be explained intuitively by
the evolution of a single-population stellar spectrum.
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• Surprisingly the galaxy spectra
are discriminated only by a few
broadband luminosities, and
NOT complicated combinations
of quantities.

• Multimodality, and dispersions
in classical diagrams are merely
a consequence of unsuitable
projection of the galaxy manifold.
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The distribution in MNUV-MY can be explained intuitively by
the evolution of a single-population stellar spectrum.
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Important implications

• Surprisingly the galaxy spectra
are discriminated only by a few
broadband luminosities, and
NOT complicated combinations
of quantities.

• Multimodality, and dispersions
in classical diagrams are merely
a consequence of unsuitable
projection of the galaxy manifold.

It is a good time to rethink how to parametrize galaxies. We
should characterize the evolution by a continuous parameter.

Bruzual & Charlot (1993)

The distribution in MNUV-MY can be explained intuitively by
the evolution of a single-population stellar spectrum.



4. Conclusions

1. Persistent homology in cosmology
 In the local Universe, we found ~ 10 loops above the

90% confidence band, whose average radius is r ~
150 Mpc from the 2000 galaxy subsample extracted
from SDSS DR12 data.

 To explore the effect of evolution, we applied the
persistent homology to SDSS DR14 QSO data. We
discovered the BAO signal at all the cosmic age. We
plan to introduce Wasserstein metric to quantify it.

 This demonstrates the power of the TDA method for
the studies on cosmology and galaxy evolution.

We applied two different methods of the TDA, the persistent
homology and manifold learning to the galaxy survey data.



2. Manifold learning for galaxy evolution
 We demonstrated how machine learning methods can

aid our understanding of galaxy evolution.

 We found highly nonlinear continuous structure in
the multidimensional luminosity space: the galaxy
manifold. This is a revived, improved version of the
concept discussed in 80’s.

 All the known empirical relations are projection of
the manifold.

 The galaxy manifold represents the evolutionary
sequence of galaxies. Possibly we can parametrize the
galaxy evolution by a few parameters.

4. Conclusions



4. Conclusions

Take-home message

Machine learning can serve as a powerful
and revolutionary method to develop
fundamental part of astrophysics!
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0-, 1-, 2- and 3-simplexes

A simplex is a generalization of the notion of a triangle or
tetrahedron to arbitrary dimensions.

A simplicial complex is a set
composed of points, line segments,
triangles and their 𝒏𝒏 -dimensional
counterparts.

Simplicial complex



𝑷𝑷 = 𝒙𝒙𝒊𝒊 ∈ ℝ𝑵𝑵|𝒊𝒊 = 𝟏𝟏, … ,𝒏𝒏

𝑩𝑩𝒓𝒓 𝒙𝒙𝒊𝒊 = 𝒚𝒚 ∈ ℝ𝑵𝑵| 𝒚𝒚 − 𝒙𝒙𝒊𝒊 ≤ 𝒓𝒓

𝓒𝓒 𝑷𝑷, 𝒓𝒓 = 𝒙𝒙𝒊𝒊𝟎𝟎 ⋯𝒙𝒙𝒊𝒊𝒌𝒌 |�
𝒋𝒋=𝟎𝟎

𝒎𝒎

𝑩𝑩𝒓𝒓 𝒙𝒙𝒊𝒊𝒋𝒋 ≠ ∅

The Čech complex 𝓒𝓒 𝑷𝑷, 𝒓𝒓 is the nerve of

Sphere with radius 𝒓𝒓.

𝚽𝚽 = 𝑩𝑩𝒓𝒓 𝒙𝒙𝒊𝒊 | 𝒙𝒙𝒊𝒊 ∈ 𝑷𝑷

For a set 𝑷𝑷, the center of spheres,

・

・・

𝑩𝑩𝒓𝒓 𝒙𝒙

𝓒𝓒 𝑷𝑷, 𝒓𝒓・

・・𝓒𝓒 𝑷𝑷, 𝒓𝒓 = 𝓝𝓝 𝚽𝚽

Čech complex



・

・
・・

・

Voronoi diagrams and Delaunay complex

𝑷𝑷 = 𝒙𝒙𝒊𝒊 ∈ ℝ𝑵𝑵 |𝒊𝒊 = 𝟏𝟏, … ,𝒏𝒏

𝑽𝑽𝒊𝒊 = 𝒙𝒙 ∈ ℝ𝑵𝑵 | 𝒙𝒙 − 𝒙𝒙𝒊𝒊 ≤ 𝒙𝒙 − 𝒙𝒙𝒋𝒋 , 𝒋𝒋 ≠ 𝒊𝒊 Voronoi cell

ℝ𝑵𝑵 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝑽𝑽𝒊𝒊 Voronoi decomposition

For a set 𝑷𝑷 of the center of spheres,

a Voronoi diagram ℝ𝑵𝑵 can be expressed with Voronoi cells 𝑽𝑽𝒊𝒊
for points 𝒙𝒙𝒊𝒊.

𝚽𝚽 = 𝑽𝑽𝒊𝒊|𝒊𝒊 = 𝒊𝒊, … ,𝒎𝒎

𝓓𝓓 𝑷𝑷 = 𝓝𝓝 𝚽𝚽

Then, Delauney complex 𝓓𝓓 𝑷𝑷 can be
given as the nerve 𝓝𝓝 𝚽𝚽 of the
Voronoi diagram where 𝚽𝚽 is a convex
closed set.
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𝑷𝑷 = 𝒙𝒙𝒊𝒊 ∈ ℝ𝑵𝑵 |𝒊𝒊 = 𝟏𝟏, … ,𝒏𝒏

𝑽𝑽𝒊𝒊 = 𝒙𝒙 ∈ ℝ𝑵𝑵 | 𝒙𝒙 − 𝒙𝒙𝒊𝒊 ≤ 𝒙𝒙 − 𝒙𝒙𝒋𝒋 , 𝒋𝒋 ≠ 𝒊𝒊 Voronoi cell

ℝ𝑵𝑵 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝑽𝑽𝒊𝒊 Voronoi decomposition

For a set 𝑷𝑷 of the center of spheres,

a Voronoi diagram ℝ𝑵𝑵 can be expressed with Voronoi cells 𝑽𝑽𝒊𝒊
for points 𝒙𝒙𝒊𝒊.

𝚽𝚽 = 𝑽𝑽𝒊𝒊|𝒊𝒊 = 𝒊𝒊, … ,𝒎𝒎

𝓓𝓓 𝑷𝑷 = 𝓝𝓝 𝚽𝚽

Then, Delauney complex 𝓓𝓓 𝑷𝑷 can be
given as the nerve 𝓝𝓝 𝚽𝚽 of the
Voronoi diagram where 𝚽𝚽 is a convex
closed set.

Voronoi diagrams and Delaunay complex
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𝑽𝑽𝒊𝒊 Voronoi decomposition

For a set 𝑷𝑷 of the center of spheres,

a Voronoi diagram ℝ𝑵𝑵 can be expressed with Voronoi cells 𝑽𝑽𝒊𝒊
for points 𝒙𝒙𝒊𝒊.

𝚽𝚽 = 𝑽𝑽𝒊𝒊|𝒊𝒊 = 𝒊𝒊, … ,𝒎𝒎

𝓓𝓓 𝑷𝑷 = 𝓝𝓝 𝚽𝚽

Then, Delauney complex 𝓓𝓓 𝑷𝑷 can be
given as the nerve 𝓝𝓝 𝚽𝚽 of the
Voronoi diagram where 𝚽𝚽 is a convex
closed set.

Voronoi diagrams and Delaunay complex



𝑾𝑾𝒊𝒊 = 𝑩𝑩𝒓𝒓 𝒙𝒙𝒊𝒊 ⋂𝑽𝑽𝒊𝒊

𝑿𝑿𝒓𝒓 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝑾𝑾𝒊𝒊

We further define a intersection of 𝑩𝑩𝒓𝒓 𝒙𝒙𝒊𝒊 and 𝑽𝑽𝒊𝒊 as 𝑾𝑾𝒊𝒊.

An alpha complex 𝜶𝜶 𝑷𝑷, 𝒓𝒓 for a set
of the center of spheres can be
defined as below.

・

・

・
・・

・
𝚿𝚿 = 𝑾𝑾𝒊𝒊|𝒊𝒊 = 𝟏𝟏, … ,𝒎𝒎

𝜶𝜶 𝑷𝑷, 𝒓𝒓 = 𝓝𝓝 𝚿𝚿

Alpha complex
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Delaunay complex Alpha complex
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・
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Data points

・

・
・・

・

Summary of introduced quantities



Čech complex

Delaunay complex Alpha complex

・

・
・・

・

𝑩𝑩𝒓𝒓 𝒙𝒙𝒊𝒊

・

・
・・

・

𝑽𝑽𝒊𝒊

𝑾𝑾𝒊𝒊 = 𝑩𝑩𝒓𝒓 𝒙𝒙𝒊𝒊 ⋂𝑽𝑽𝒊𝒊

・

・
・・

・

Data points

・

・
・・

・

Summary of introduced quantities



Alpha complex is a subcomplex of Čech and 
Delaunay complex because 𝑾𝑾𝒊𝒊 ⊂ 𝑩𝑩𝒓𝒓 𝒙𝒙𝒊𝒊 ,𝑽𝑽𝒊𝒊.

Since we can reduce the number of simplexes, alpha 
complex is preferred.

∵ Although the Čech complex and the alpha complex is
homotopically equivalent (HE), the dimension of simplicial
complex which is HE to the Čech complex can be higher than
N.

The good points of alpha complex
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