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0. Background
0.1 What are galaxies?

A galaxy is a huge agglomeration of stars, interstellar medium
(ISM: gas+dust), and dark matter (DM), a complex system with
a complicated interaction between each component.
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0.2 Galaxies to the Large-Scale Structures

If we observe the Milky Way from outside, it would appear as
a disk with spiral structure which consists of gas and stars.

-
, #
T P
.‘_._.- e,

_~"VERA, NAOJ




From galaxies to groups and clusters of galaxies

Local Galactic Group




From galaxies to groups and clusters of galaxies

Virgo Supercluster




From groups and clusters to the Large-Scale Structure

Local Superclusters




From groups and clusters to the Large-Scale Structure

Local Superclusters

The distribution of galaxies is globally homogeneous, but
strongly inhomogeneous even at scales larger than clusters.
This is called the Large-Scale Structure in the Universe.




From the Large-Scale Structure to the Hubble horizon

Observable Universe




1. Introduction
1.1 Structure formation in the Universe

All the structures in the Universe have emerged from a tiny
fluctuation at very early epoch (380,000 yr).



1.2 Galaxy formation from the cosmic initial condition

Galaxies are supposed to have formed from a tiny (order of
~ 10-°) fluctuation of matter (mainly dark matter: DM) in
the early Universe.

The initial condition is imprinted on the Cosmic Microwave
Background (CMB) observed at radio wavelengths.

http://www.rssd.esa.int/index.php?project=Planck



Gaussian random field: initial condition of matter fluctuation

Gaussian random field i1s a stochastic field whose distribution
IS described by Gaussian and its Fourier phases have no
correlation.
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All the stochastic properties of a field is uniguely characterized
by the power spectrum P(k) for Gaussian random fields.




Gaussian random field: initial condition of matter fluctuation

Gaussian random field i1s a stochastic field whose distribution
IS described by Gaussian and its Fourier phases have no
correlation.
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All the stochastic properties of a field is uniguely characterized
by the power spectrum P(k) for Gaussian random fields.

Observationally, the initial density fluctuation In the
Universe can be regarded as (almost) Gaussian.




Formation of dark halos: statistical description
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Peacock (1998)
First step

A random Gaussian density field of DM evolves through
gravity. When the density of a patch of the field exceeds a
certain threshold, the patch starts to be gravitationally bound

to form a dark halo.



Formation of dark halos: statistical description
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Kerscher (1999)
Second step

In the dark haloes, baryons (normal gas) start to contract to
form stars and galaxies. Halos and galaxies are not one-to-one
corresponding. From a density field to galaxies, the
mathematical treatment changes from a continuous field to a
point field.



Formation of dark halos: statistical description

Lacey &Cole (1993)
Third step

Dark halos merge with time, and galaxies in them also merge,
but not In the same way, because baryons evolve also through
electromagnetic interaction. If we want to incorporate galaxy
properties with environment etc., a proper treatment is needed.



1.3 Formation and evolution of galaxies

The hierarchical structure formation

The mass in the Universe is known to be dominated by DM.
The Initial Gaussian fluctuations of DM start to grow by
gravitational interactions. Resulting virialized structures are
called dark halos.

Dark halo
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The hierarchical structure formation

The dark halos approach each other and finally merge to
form larger halos. The formation proceeds from smaller to
larger structures. This Is the so-called hierarchical structure
formation, currently the most reliable scenario of the
structure formation in the Universe.

Dark halo




The hierarchical structure formation

During the merging of dark halos, the baryonic gas falls into
the gravitational potential wells of DM and is compressed
there. First stars are formed in dark halos. When they
explode as supernovae, first heavy elements are provided to
the Universe.

Dark halo
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The hierarchical structure formation

The supply of heavy elements makes the condition of star
formation much easier. Then, the gas turns into stars
collectively, and galaxies form as large agglomerations of stars
and remaining gas in dark halos.

Dark halo Galaxy




The hierarchical structure formation

Dark halos continue merging and form larger and larger
halos. Consequently, galaxies in these halos start to cohabit In
the same newly formed halos. Baryonic structures cannot
merge as easily as dark halos because of gas pressure.

Dark halo Galaxy

-
—_— /
QQ@



The hierarchical structure formation

Then, sometimes dark halos are occupied by one or more
galaxies and sometimes no galaxies. The occupation number
IS stochastic (but loosely a function of the halo mass). Merging
goes on with the cosmic time.

Dark halo Galaxy Q




The hierarchical structure formation

Finally, some galaxies merge and form larger galaxies.
Present-day large galaxies (up to My, ~ 10 M) are
thought to have formed in the merger process. Strong merging
process Is often accompanied by an effective compression of

gas, inducing burst of star formation.

Dark halo Galaxy
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Evolution of DM distribution (numerical simulation)
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1.4 Internal galaxy evolution
Star formation in galaxies

Galaxies have formed at various epochs in the Universe,
merged, and grown. In parallel, gas has transformed into stars.
Stars die and return back their gas into the ISM, and next
generation of star formation proceeds.




Chemical evolution of galaxies: metal and dust

Star formation
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Chemical evolution of galaxies: metal and dust
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2. Matter Distribution via Persistent Homology
2.1 Spatial distribution of matter and galaxies

As we have already seen, galaxies have formed from a
Gaussian random field of matter (DM and normal matter
(baryon)).



2. Matter Distribution via Persistent Homology
2.1 Spatial distribution of matter and galaxies

As we have already seen, galaxies have formed from a
Gaussian random field of matter (DM and normal matter
(baryon)).

= Cosmological matter distribution at any epoch should be
characterized by a statistical way.
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Traditional characterization of matter distribution

Density fluctuation:

Dispersion:
Fourier component:

Power spectrum:

5= PL) —p
)
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Higher-order power spectra (bispectrum < 3-point
correlation function; trispectrum < 4-point correlation

function) are also defined.

In general, a set of infinite number of moments (or their
Fourier counterparts) are needed to specify the properties

of a stochastic field.



Traditional characterization of matter distribution

Density fluctuation: 6 = p(w)p_ & (3)
Dispersion: o® = (§%) (4)
Fourier component:  §; = [0;|e’%F = /6(f)efﬁ‘fd3a; (5)
Power spectrum: P(k) = (|6:1*) (6)

Higher-order power spectra (bispectrum < 3-point
correlation function; trispectrum < 4-point correlation

function) are also defined.

Thanks to the near-Gaussian property of the matter
distribution, the power spectrum still can play a central
role for describing the matter distribution.



2-point correlation function

The correlation function of the density field is defined
through the ensemble average

E(X, X,) = {5(X,)S(X,)) (7)
This can be expressed through the Fourier transform
1 i (KyXg—K X5 *
£, ) = o5 s ik, €% (50057 () (@)
Using the translational invariance in Fourier space, we get
£ %) = =z [ d K, d%, €559 (1, —k,)P(K,) ()
(27)

Since the correlation function only depends on the distance,

(X, %,) = [ d°Kk e C7IP(K) = £(x, —X,) (10)



2-point correlation function

* First measured by Totsuji & Kihara (1969), then Peebles et al.
o A power law Is a fairly good approximation (but no strong

physical reason)

E(r) = [rij (11)

 Correlation length ry=5.4 h" Mpc *
e Exponent is aroundy = 1.8

* From the latest measurement, h = 0.7.
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2-point correlation function

* First measured by Totsuji & Kihara (1969), then Peebles et al.
A power law iIs a fairly good approximation (but no strong

physical reason)
&(r)= [H (11)

0

o Correlation length ry= 5.4 h- Mpc
e Exponent is aroundy = 1.8

Limitation
To evaluate the statistical properties beyond the Gaussian

approximation, we have to introduce a series of infinitely
high correlation functions, which is not realistic.

= More flexible method is desired!



2.2 Baryon acoustic oscillation (BAO)

Baryons evolve in a very complicated way via electromagnetic
Interactions (with radiative heating/cooling, gas pressure, fluid
dynamical processes, etc.)

A typical example of such a nontrivial phenomenon is the
baryon acoustic oscillation (BAO) generated Iin the matter-
radiation fluid in the early Universe (Peebles & Yu 1970;
Sunyaev & Zel’dovich 1970).



State of matter in the early Universe

Matter and radiation were tightly coupled by Thomson
scattering

= hot dense matter-photon plasma (two fluid)
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Microscopically, photons are scattered by free electrons
and cannot go straight.




Acoustic peak

Consider a point-like initial perturbation in the primordial
matter-photon plasma. In the plasma, the matter and photons
are locked into a single fluid.

Since the photons are so hot and numerous, the combined
fluid has an tremendous pressure with respect to its density.

Gravity
® @

http://background.uchicago.edu/~whu/physics/physics.html



Acoustic peak

Consider a point-like initial perturbation in the primordial
matter-photon plasma. In the plasma, the matter and photons
are locked into a single fluid.

Since the photons are so hot and numerous, the combined
fluid has an tremendous pressure with respect to its density.

The pressure tries to equalize itself with the surroundings,
which results in an expanding spherical sound wave. The

sound speed at this early epoch is evaluated by
C

\/3 (1 ] 3pbar) (12)
4prad

which is ~ 57 % of the light speed at early epoch.

Cq =




Acoustic peak

©Harvard University
Sound horizon (final radius) r, is obtained by

Tdec 00
o= | (1+2cdt = f o dz
0 tee Ho //Qro(1 +2)* + Qmo(1 +2)° + Qao
(13)

where dec stands for the decoupling.



Acoustic peak
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BAO

© ULA ©Harvard University

What we observe is the superposition of many acoustic
waves Imprinted on the large-scale structure emerged
from the primordial fluctuations.



BAO on the correlation function

The BAO length scale is constant in comoving coordinates.

= In principle, we can detect the signal on the galaxy 2-point
correlation function.

SDSS-III CNIB
1.0% to z=00.57 =00

Galaxy map 3.8 billion years ago Cy' ma ars ago CMB 13.7 billion years ago

© E.M. Huff, the SDSS-I111 team, and the South Pole Telescope team



BAO on the correlation function

BAQ scale

Cia2 First 8 Slices
A5 = 4« 426

< my < 16E
Copyright. SRD 1956

CfA2 redshift survey (Geller & Huchra 1989)

However... the BAO scale is very large compared with the
typical scale of the large-scale structure.



BAO on the correlation function

BAQ scale

Cfa2 Mirst 8 Slices
A5 = 4« 426

< my < 16E
Copyright. SRD 1956

CfA2 redshift survey (Geller & Huchra 1989)

However... the BAO scale is very large compared with the
typical scale of the large-scale structure.

= We need a very large galaxy sample with dense sampling,
since we must measure the signal at such a large scale.



Sloan Digital Sky Survey (SDSS)

The SDSS is the largest optical photometric and spectroscopic
surveys ever existed. It covers one-third of the sky.

The advent of the SDSS finally made it realistic to detect the
BAO signal on the 2-point correlation function.



First detection of the BAO signal on the correlation function

Eisenstein et al. (2005) first detected the signal around 150
Mpc on the 2-point correlation function.
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only possible with SDSS
data.

0.02 |-\

B N
0.01

0.04 -
0.02 |-

0.00 -

_002 i I 1 1 | 1 1 I 1 I Il i I 1 | 1 1
50 100 150

Comoving Separation (h~! Mpc)

Eisenstein et al. (2005)




First detection of the BAO signal on the correlation function

Eisenstein et al. (2005) first detected the signal around 150
Mpc on the 2-point correlation function.

Currently this analysis Is
only possible with SDSS
data.

\V

More flexible method is
desired!

= Persistent homology!

3

0.04

0.02

0.00

-0.02

0.04

0.03 [
0.02 |-\

0.01 |

50 100 150
Comoving Separation (h~! Mpc)

Eisenstein et al. (2005)



2.3 Persistent homology

The topological information is characterized with holes
constructed from n-dimensional sphere with radius r from
discrete data points.

v
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Death of a hole: rgeath
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Persistent diagram: finding loops from data

Data with three loops

= From persistent diagram, we can find three significant

structures.
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Preceding work: void finding (Xu et al. 2019)

Xu et al. (2019) applied the persistent homology for a large
galaxy data set generated from N-body simulation
(Libeskind et al. 2018) and found 23 voids (A-W) In the

simulation data.
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Local galaxy data (z ~ 0)

SDSS DR12 (Alam et al. 2015) Band: u, g, 1, 1, Z
Sky coverage area: 14555 deg?

Luminous red galaxies (LRG)

Relatively massive (~ 1012 M) elliptical galaxies. In this
study, we followed selection criteria suggested by Eisenstein
et al. (2001). We further randomly sampled 2000 galaxies.

N.B. We do not use the full dataset but a sparsely drawn
subsample of the SDSS.



Resultatz~0
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There are 10 loops above the 90% confidence band whose rgeatn
IS ~ 150 Mpc. This exactly corresponds to the BAO signal.

= Much more efficient than the correlation function method!



Quasar data at z ~ 0-3: explore the evolution

SDSS DR14 quasar catalog (Bautista et al. 2018)

Quasars are though to form in very high density peaks of
the fluctuation field. Again we construct a subsample of size
2000 extracted from the parent sample.
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Bautista et al. (2018)
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Again we see clear signatures of BAO.
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Resultat2<z<3
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However, it Is not easy to evaluate the evolution, I.e.,
compare the difference between different redshifts. We plan
to introduce Wasserstein metric to quantify it.



3. Galaxy Evolution through Manifold Learning
3.1 Galaxy evolution from a modern point of view

Galaxies evolve in various aspects:



3.1 Galaxy evolution from a modern point of view

Galaxies evolve in various aspects:

SFR(?) = fi(SFR, M., M 01, Mu1, Maust, Mhatos Ogals - - -
M, (t) = [o(SFR, M., M o1, Mux, Mausts Mhalos Ogats - - -
Mmo(t) = f3(SFR, M, Mmot, Mut, M austs Mhalos Ogals - - -
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3.1 Galaxy evolution from a modern point of view

Galaxies evolve in various aspects:

SFR(?) = fi(SFR, M., M o1, M1, Mausts Mhalos Ogals - - -
M. (t) = f[r,(SFR, M, M o1, Mur, Maust, Mhatos Ogals - - -
Mmo(t) = f3(SFR, M, Mmot, Mut, M austs Mhalos Ogals - - -
Mui(t) = f4(SFR, M., M o1, Mur, Maust Mhatos Ogals - - -
M gust(t) = f5(SFR, M., M o1, Mur, Maust, Mhatos Ogals - - -
Mya10(t) = f6(SFR, M, M1, Mur, Maust, Mhatos Ogals - - -
0gal(?) = f7(SFR, M., M yi01, M1, Maust, Mhato, Ogats - - -

S N S S S N

This is the formal and ultimate goal of the studies on
galaxy evolution, but clearly it is a substantially
complicated problem. It is time to define the evolution of
galaxies with more objective point of view.



3.2 Galaxy evolution in multiband luminosity space

Flux (normalized)
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Bruzual & Charlot (1993)



3.2 Galaxy evolution in multiband luminosity space

Flux (normalized)
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SFH will be well represented in
the multiwavelength (band)
luminosity space.




3.3 Traditional methods and its limitation
Color-magnitude relation
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Potential problem in the traditional color-based methods

Colors are basically ratios of two luminosities.
= Selection effect is always too entangled and messy.

= Completeness test is almost impossible in a simple way.



Potential problem in the traditional color-based methods

Colors are basically ratios of two luminosities.
= Selection effect is always too entangled and messy.

= Completeness test is almost impossible in a simple way.

Y

Suggestion: forget about colors!

Instead, we can simply use the distribution of galaxies in
a multidimensional luminosity (absolute magnitude)
space.



Potential problem in the traditional color-based methods

Since we have a bimodality in color-color space, we
must have an equivalent peaks in the multidimensional
luminosity space. Color-color plots only show reduced
Information.

Luminosity
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Potential problem in the traditional color-based methods

Since we have a bimodality in color-color space, we
must have an equivalent peaks in the multidimensional
luminosity space. Color-color plots only show reduced
Information.

The boundary can be automatically defined by the
machine-learning type method.



3.4 Data: RCSED

« Reference Catalog of galaxy Spectral Energy
Distributions (RCSED) (Chilingarian et al. 2016)

« Catalog of galaxies produced as join between GALEX,
SDSS, and UKIDSS catalogs, and processed with state-of-
the-art spectral analysis methods

o Covers approximately 25% of the sky and contains k-
corrected ultraviolet-to-near-infrared photometry (11
bands of FUV, NUV, u, g, r, 1, 2, Y, J, H, K) of some 1
million galaxies, as well as some of their physical
properties

RCS ED http://rcsed.sai.msu.ru


http://rcsed.sai.msu.ru/

3.5 Classification in multiwavelength luminosity space

Generate a subsample with all 11 rest-frame magnitudes
(FUV,NUV, u, g, 1, 1,2, J, H K) ~800,000 galaxies

= Construct a volume limited sample that is representative
of the whole galaxy sample of ~ 30,000 galaxies.

Perhaps impossible to classify by intuition.




Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

1. Assign initial cluster (class) centers by k-means++



Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

2. EXxecute FEM
I. E-step: calculate the complete log-likelihood
under the current value of the Gaussian
mixture model
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Fisher Expectation-Maximization (FEM) algorithm
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2. Execute FEM

Il. F-step: boundary iIs chosen to maximize the
distances between groups, and to minimize the
Internal scatters



Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

2. Execute FEM

1. M-step: parameters of Gaussian functions are
optimized by maximizing the conditional
expectations of the complete log-likelihood



Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

2. Execute FEM

V.

E-step: calculate the complete log-likelihood
under the current value of the Gaussian
mixture model

F-step: boundary iIs chosen to maximize the
distances between groups, and to minimize the
Internal scatters

M-step: parameters of Gaussian functions are
optimized by maximizing the conditional
expectations of the complete log-likelihood

Back to 2.1 (E-step) until the result converges.



3.6 Classification result
Classification from machine learning

We classified the whole galaxy sample into 11 classes (based
on Siudek et al. 2018).
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Classification to manifold learning

We classified the whole galaxy sample into 11 classes (based
on Siudek et al. 2018).

However, the groups do not
seem to be sharply separated
on this projection.
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Classification to manifold learning

We classified the whole galaxy sample into 11 classes (based
on Siudek et al. 2018).

However, the groups do not
seem to be sharply separated
on this projection.
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3.7 Galaxy evolution from a galaxy manifold
Galaxy manifold

Historically, in 80’s, astronomers introduced a method of
classical multivariate analysis such as PCA to find and unify
various scaling relations (e.g., Djorgovski 1992).

Galaxy Parameter Space

However, since classical PCA-
type analysis could only find
linear structure in the feature
space, the idea worked only to a
limited problems, and have
been once forgotten. p
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Djorgovski (1992)



Galaxy manifold

Some preceding studies have suggested the existence of a
smooth relation of galaxies in the 3D color—color—-magnitude
space smoothly continuing from the blue cloud to the red
sequence (e.g. Chilingarian et al. 2012).

Chilingarian et al. (2012)

= general idea of a low dimensional submanifold existing
In a higher dimensional feature space: revival of the galaxy
manifold!



Galaxy manifold
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A strongly nonlinear structure was discovered on the SFR-M.

plane. This is also regarded as one of the projections of the
galaxy manifold.



Quest for the optimal representation of the manifold

Can we use a machine learning technique to identify what
parameters represent the manifold the best?
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= Yes, If we ask a right question to the machine learning.




Quest for the optimal representation of the manifold

Can we use a machine learning technique to identify what
parameters represent the manifold the best?

= Yes, If we ask a right question to the machine learning.

Since most of the astronomers are interested in luminosities
(colors), we focus on the search for the best-representing
photometric bands in this work.



Random forests for feature selection

Random Forests or random decision Single Decision Tree
forests are clustering algorithms that
generates random decision trees based O
on the given features.
) ® ®
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https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-b9523be65147



Random forests for feature selection

Random Forests or random decision Single Decision Tree
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Random forests for feature selection

Random Forests or random decision Single Decision Tree
forests are clustering algorithms that
generates random decision trees based O
on the given features.
) ® ®

Many of such trees produce a random ©O © © © O

forest.
® Random Forest
Class 2
O Class 1 O
Class 1

o0 00©0

N
-y

By providing the answer (class £ Qe

membership), the random forest will '); b/?
learn the important features. 9(‘ 3

https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-b9523be65147



Feature Importance

Random forests for feature selection

Input all the
magnitudes and
colors with class
Information.
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Two-dimensional galaxy manifold
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Two-dimensional galaxy manifold
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Two dimensional galaxy manifold: M.-SFR plane revisited
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Now it is clear that the M.-SFR relation is a projection of the 2-
dim manifold. The blue galaxy populations are strongly
degenerated (seen from edge-on): galaxy main sequence.



Three-dimensional galaxy manifold
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Important implications

The distribution in Mnuv-My can be explained intuitively by
the evolution of a single-population stellar spectrum.
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Important implications

The distribution in Mnuv-My can be explained intuitively by
the evolution of a single-population stellar spectrum.
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Monochromatic luminosity

It Is a good time to rethink how to parametrize galaxies. We
should characterize the evolution by a continuous parameter.




4. Conclusions

We applied two different methods of the TDA, the persistent
homology and manifold learning to the galaxy survey data.

1. Persistent homology in cosmology
e In the local Universe, we found ~ 10 loops above the
90% confidence band, whose average radius IS r ~
150 Mpc from the 2000 galaxy subsample extracted
from SDSS DR12 data.

e To explore the effect of evolution, we applied the
persistent homology to SDSS DR14 QSO data. We
discovered the BAO signal at all the cosmic age. We
plan to introduce Wasserstein metric to quantify it.

e This demonstrates the power of the TDA method for
the studies on cosmology and galaxy evolution.



4. Conclusions

2. Manifold learning for galaxy evolution
e \We demonstrated how machine learning methods can
aid our understanding of galaxy evolution.

e We found highly nonlinear continuous structure iIn
the multidimensional luminosity space: the galaxy
manifold. This Is a revived, improved version of the
concept discussed in 80’s.

e All the known empirical relations are projection of
the manifold.

e The galaxy manifold represents the evolutionary
seguence of galaxies. Possibly we can parametrize the
galaxy evolution by a few parameters.



4. Conclusions

Take-home message

Machine learning can serve as a powerful
and revolutionary method to develop
fundamental part of astrophysics!
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Simplicial complex

A simplex is a generalization of the notion of a triangle or
tetrahedron to arbitrary dimensions.

Po Po Po
Po

P1 D1 Do P1

0-, 1-, 2- and 3-simplexes | )

A simplicial complex is a set
composed of points, line segments,

triangles and their n -dimensional
counterparts.



Cech complex

For a set P, the center of spheres,
P={x;eRN|i=1,..,n}

B,.(x;) ={y e RV||y —x;] <r} Sphere with radius r.

) B;(x)

~"

( m
C(P,T) = { |xi, - x| ﬂBr (xii) #0
\ j=0 )

The Cech complex C(P, r) is the nerve of
b = {Br(xi)| Xi (S P} C(P; 1")

C(P,r) =N(P)



Voronoi diagrams and Delaunay complex
For a set P of the center of spheres,
P={x;eRN|i=1,..,n)}
a Voronoi diagram R can be expressed with Voronoi cells V
for points x;.
Vi={xeR"||x—x;| < |x—x;|,j =i}  Voronoi cell

U Vi \Voronoi decomposition

Then, Delauney complex D(P) can be
given as the nerve N (&) of the
Voronoi diagram where & is a convex

closed set. o
o ={V;li=1i,..,m}

D(P) = V()



Voronoi diagrams and Delaunay complex

For a set P of the center of spheres,

P={x;eRN|i=1,..,n)}

a Voronoi diagram RM can be expressed with Voronoi cells
for points x;.

V-={xEIRN||x—in < |x—x;|,j # i}

Voronoi cell
U Vi \Voronoi decomposition l‘.
\ 1
Then, Delauney complex PD(P) can be
given as the nerve N(®) of the ;
Voronoi diagram where & is a convex-. N R
closed set. o v’
o ={V;i=i..,m} R !

D(P) = N(®)



Voronol diagrams and Delaunay complex
For a set P of the center of spheres,

P={x;eRN|i=1,..,n)}

a Voronoi diagram R can be expressed with Voronoi cells
for points x;.

V-={xEIRN||x—x,-I < |x—x;|,j # i}

Voronoi cell
U Vi \Voronoi decomposition ‘.l
Then, Delauney complex PD(P) can be
given as the nerve N(®P) of the N

Voronoi diagram where @ is a convex-.
closed set. o
d={V;li=1..m}

D(P) = N(®) i



Alpha complex

We further define a intersection of B,.(x;) and V; as W;.

W; =B,.(x;)NV;

m
Xr:UWi

=1

An alpha complex a(P, r) for a set
of the center of spheres can be
defined as below.

P = {Wlli = 1, ,m}

a(P,r) = N(¥P)



Summary of introduced quantities
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Summary of introduced quantities

Data points Cech complex

Delaunay complex
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The good points of alpha complex

Alpha complex is a subcomplex of Cech and
Delaunay complex because W; c B,.(x;),V;.

Since we can reduce the number of simplexes, alpha
complex is preferred.

+ Although the Cech complex and the alpha complex is
homotopically equivalent (HE), the dimension of simplicial
complex which is HE to the Cech complex can be higher than
N.



	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26
	スライド番号 27
	スライド番号 28
	スライド番号 29
	スライド番号 30
	スライド番号 31
	スライド番号 32
	スライド番号 33
	スライド番号 34
	スライド番号 35
	スライド番号 36
	スライド番号 37
	スライド番号 38
	スライド番号 39
	スライド番号 40
	スライド番号 41
	スライド番号 42
	スライド番号 43
	スライド番号 44
	スライド番号 45
	スライド番号 46
	スライド番号 47
	スライド番号 48
	スライド番号 49
	スライド番号 50
	スライド番号 51
	スライド番号 52
	スライド番号 53
	スライド番号 54
	スライド番号 55
	スライド番号 56
	スライド番号 57
	スライド番号 58
	スライド番号 59
	スライド番号 60
	スライド番号 61
	スライド番号 62
	スライド番号 63
	スライド番号 64
	スライド番号 65
	スライド番号 66
	スライド番号 67
	スライド番号 68
	スライド番号 69
	スライド番号 70
	スライド番号 71
	スライド番号 72
	スライド番号 73
	スライド番号 74
	スライド番号 75
	スライド番号 76
	スライド番号 77
	スライド番号 78
	スライド番号 79
	スライド番号 80
	スライド番号 81
	スライド番号 82
	スライド番号 83
	スライド番号 84
	スライド番号 85
	スライド番号 86
	スライド番号 87
	スライド番号 88
	スライド番号 89
	スライド番号 90
	スライド番号 91
	スライド番号 92
	スライド番号 93
	スライド番号 94
	スライド番号 95
	スライド番号 96
	スライド番号 97
	スライド番号 98
	スライド番号 99
	スライド番号 100
	スライド番号 101
	スライド番号 102
	スライド番号 103
	スライド番号 104
	スライド番号 105
	スライド番号 106
	スライド番号 107
	スライド番号 108

