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I. Introduction
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Dependence
Correlation

– The most elementary and popular indicator to measure the 
linear relation between two variables.

Correlation coefficient (aka Pearson correlation)
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Nonlinear dependence
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“Uncorrelated” does not mean “independent”

They are all uncorrelated!

Note:  
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Nonlinear statistics with kernels
– Linear methods can consider only linear relation.

– Nonlinear transform of the original variable may help.  
X (X, X2, X3, …)

But, 
• It is not clear how to make a good transform, in particular, if the 

data is high-dimensional.
• A transform may cause high-dimensionality.

e.g.) dim X = 100    XiXj # combinations = 4950

Why not use the kernelization / feature map for the transform?
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Kernel methodology for statistical inference
– Transform of the original data by “feature map”.

– Is this simply “kernelization”?  – Yes, in a big picture. 
– But, in this methodology, the methods have 

clear statistical/probabilistic meaning in the original space, 
e.g. independence, conditional independence, two-sample test etc.  

– From the side of statistics, it is a new approach using p.d. kernels. 

RKHS (functional space)

xi
Φ Hk

Ω xｊ

,
ixφ

jxφ

Space of original data

feature map

Let’s do linear statistics in the feature space!

Goal:  To understand how linear methods in RKHS solve classical 
inference problems on probabilities. 
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– In this lecture, “kernel” means “positive definite kernel”.
– In statistics, “kernel” is traditionally used in more general 

meaning, which does not impose positive definiteness. 

e.g. kernel density estimation (Parzen window approach) 

k(x1, x2) is not necessarily positive definite. 

– Statistical jargon
• “in population”:  evaluated with probability    e.g. 
• “empirical”:    evaluated with sample   e.g. 

• “asymptotic”:  when the number of data goes to infinity.
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II. Dependence with Kernels
Prologue to kernel methodology for 

inference on probabilities
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Independence of Variables
Definition
– Random vectors X on Rm and Y on Rn are independent (           )

Basic properties
– If X and Y are independent,

– If further (X,Y) has the joint p.d.f pXY(x,y), and X and Y have the 
marginal  p.d.f. pX(x) and pY(y), resp, then 

( ) ( ) ( )BYAXBYAX ∈∈=∈∈ PrPr,Pr
for any nm BA BB ∈∈ ,

def.

)]([)]([)]()([ YgEXfEYgXfE =
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Review: Covariance Matrix
Covariance matrix

: m and n dimensional random vectors

Covariance matrix VXY of X and Y is defined by 

In particular,

– VXY = 0 if and only if X and Y are uncorrelated.  

For a sample 
empirical covariance matrix
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Independence of Gaussian variables
Multivariate Gaussian (normal) distribution

Independence of Gaussian variables
– X, Y: Gaussian random vectors of dim p and q (resp.)
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Independence by Nonlinear Covariance 
Independence and nonlinear covariance
– X and Y are independent

0)](),([ =YgXfCov for all measurable functions f and g. 

)Q Take f(x) = IA(x) and g(y) = IB(y) for measurable sets A and B.
0)]([)]([)]()([ =− YIEXIEYIXIE BABA

( ) ( ) ( )BYAXBYAX ∈∈=∈∈ PrPr,Pr

1 IA(x)

A

indicator function of A
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Measuring all the nonlinear covariance

– Questions.
• How can we calculate the value?

The space of measurable functions is large, containing 
noncontinuous and weird functions

• With finite number of data, how can we estimate the value?

)](),([sup
,

YgXfCov
gf can be used for the dependence measure.
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Using Kernels: COCO
Restrict the functions in RKHS

X , Y : random variables on ΩX and ΩY , resp. 
Prepare RKHS (HX, kX) and (HX , kX) defined on ΩX and ΩY, resp

Estimation with data
: i.i.d. sample
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Solution to COCO
– The empirical COCO is reduced to an eigenproblem:

βα YX
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Derivation
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Quick Review on RKHS
Reproducing kernel Hilbert space (RKHS, review)
Ω: set. 

pos. def. kernel  

H :  reproducing kernel Hilbert space  (RKHS)
such that k is the reproducing kernel of H ,  i.e.
1)
2)                                     is dense in H. 
3)

– Feature map

R→Ω×Ω:k

Hxk ∈⋅ ),( for all .Ω∈x

)(),,( xffxk H =⋅ (reproducing property)

1∃

{ }Ω∈⋅ xxk |),(Span

),(,: xkxH ⋅→ΩΦ a

)(),( xffx =Φ (reproducing property)

),()(.. xkxei ⋅=Φ
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COCO and Independence
Characterization of independence

X and Y are independent 0
||||||||

)](),([
sup

,
=

∈∈
YXYX HHHgHf gf
YgXfCov

This equivalence holds if the RKHS are “rich enough” to express
all the dependence between X and Y.  (discussed later in Part IV.)

For the moment, Gaussian kernels are used to guarantee 
this equivalence.  
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HSIC (Gretton et al. 05)
How about using other singular values?
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Example with HSIC
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Summary of Part II
Empirical Population

Linear
(finite dim.)

Kernel )](),([sup
1||||||||

YgXfCov
YHXH gf ==

1st SV of   2/12/1
YX GG

],[max
1||||||||
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ba ==
bVa XY

T

ba 1||||||||
max

==
=

= 1st SV of   XYV
1st SV of   XYV̂

Empirical Population

Kernel
22/12/1
FYX GG

2ˆ
FXYV

2
FXYV

(Sum of SV2 of cov. matrix)

COCO

HSIC

What is the population version? 

Linear
(finite dim.)
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III. Covariance on RKHS
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Two Views on Kernel Methods
As a good class of nonlinear functions
Objective functional for a nonlinear method 

Find the solution within a RKHS.
– Reproducing property / kernel trick,  Representer theorem

c.f. COCO in the previous section.

Kernelization of linear methods
– Map the data into a RKHS, and apply a linear method

– Map the random variable into a RKHS, and do linear statistics!

))(),...,((max 1 Nf
XfXfΨ f : nonlinear function

)( ii XX Φa

)(XX Φa random variable on RKHS
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Covariance on RKHS
– Linear case (Gaussian):  

Cov[X, Y] = E[YXT] – E[Y]E[X]T : covariance matrix

– On RKHS:
X , Y : random variables on ΩX and ΩY , resp. 
Prepare RKHS (HX, kX) and (HY , kY) defined on ΩX and ΩY, resp.
Define random variables on the RKHS HX and HY by

Define the big (possibly infinite dimensional) covariance matrix ΣYX
on the RKHS.  

),()( XkX XX ⋅=Φ ),()( YkY YY ⋅=Φ

ΩX ΩY

ΦX ΦY

HX HY

X Y

ΦX(X) ΦY(Y)

YXΣ
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Cross-covariance operator
– Definition

There uniquely exists an operator from HX to HY such that 

– A bit loose expression
]),([)]([]),()([ ⋅ΦΦ−⋅ΦΦ=Σ XEYEXYE XYXYYX

)])(),([Cov()]([)]([)]()([, YgXfXfEYgEXfYgEfg YX =−=Σ

for all YX HgHf ∈∈ ,

c.f.  Euclidean case
VYX = E[YXT] – E[Y]E[X]T : covariance matrix

: Cross-covariance operatorYXΣ

( ) )],(),,[(, XaYbCovaVb YX =
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Intuition
Suppose X and Y are R-valued, and k(x,u) admits the expansion

With respect to the basis 1, u, u2, u3, …, the random variables on 
RKHS are expressed by
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21 K=Φ

TYcYcYcuYkY ),,,,1(~),()( 3
3

2
21 K=Φ

The operator ΣYX contains the information on all the 
higher-order correlation.

)exp(),( xuuxk =e.g.)



31

Addendum on “operator”
– “Operator” is often used for a linear map defined on a functional 

space, in particular, of infinite dimension. 

– ΣYX is a linear map from HX to HY, as the covariance matrix VYX is a 
linear map from Rm to Rn.  

– If you are not familiar with the word “operator”, simply replace it 
with “linear map” or “big matrix”.  

– If you are very familiar with the operator terminology, you can 
easily prove ΣYX is a bounded operator.  (Exercise) 
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Characterization of Independence
Independence and Cross-covariance operator
If the RKHS’s are “rich enough” to express all the moments,

– c.f. for Gaussian variables

OXY =Σ⇔X and Y are independent 

(      is always true.      
requires the richness 
assumption. Part IV.)

)]([)]([)]()([ XfEYgEXfYgE =

for all YX HgHf ∈∈ ,

or
0)](),([Cov =YgXf

OVXY =⇔X and Y are independent i.e. uncorrelated
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Measures for Dependence
Kernel measures for dependence/independence
Measure the “norm” of ΣYX. 

– Kernel generalized variance (KGV, Bach&Jordan 02, FBJ 04)

– COCO

– HSIC

– HSNIC

YYXX

XYXYYXKGV
ΣΣ

Σ
=

detdet
det

),( ]][[

YX HH

YX

gf
YX gf

fg
YXCOCO

||||||||
,

sup),(
0,0

Σ
=Σ=

≠≠

2),( HSYXYXHSIC Σ=

22/12/1),(
HSXXYXYYYXHSNIC −− ΣΣΣ= (explained later)
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Norms of operators

– Operator norm

c.f. the largest singular value of a matrix

– Hilbert-Schmidt norm
A is called Hilbert-Schmidt if for complete orthonormal systems 

of H1 and          of H2 if

Hilbert-Schmidt norm is defined by 

21: HHA →

AfgAfA
gff

,supsup
1||||,1||||1|||| ===

==

operator on a Hilbert space

∑ ∑ ∞<j i ij A .,
2

ϕψ

{ }iϕ { }jψ

∑ ∑= j i ijHS AA
22 , ϕψ

c.f. Frobenius norm of a matrix
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Empirical Estimation
Estimation of covariance operator
i.i.d. sample
An estimator of ΣYX is given by 

– Note
• This is again an operator.
• But, it operates essentially on the finite dimensional space 

spanned by the data ΦX(X1),…, ΦX(XN) and ΦY(Y1),…, ΦY(YN) 

)(,),( ,1,1 NN YXYX K

{ }∑
=

⋅−⋅−⋅=Σ
N

i
XiXYiY

N
YX mXkmYk

N 1

)( ,ˆ),(ˆ),(1ˆ

,),(1ˆ
1

1∑
=

⋅=
N

i
iX Xk

N
m

where
∑
=

⋅=
N

i
iY Yk

N
m

1
2 ),(1ˆ
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Empirical cross-covariance operator
Proposition (Empirical mean)

Proposition (Empirical covariance)

{ }{ }∑
=

−−=Σ
N

i
ii

N
YX XfEXfYgEYg

N
fg

1

)( )]([ˆ)()]([ˆ)(1ˆ,
),( YX HgHf ∈∀∈∀

∑ = ⋅= N
i iNX Xkm 1

1 ),(ˆ gives the empirical mean:

)]([ˆ)(1,ˆ
1

XfEXf
N

fm
N

i
iX ≡= ∑

=

)( XHf ∈∀

)(ˆ N
YXΣ gives the empirical covariance

Xm̂
)(ˆ N

YXΣ

: empirical mean element (in RKHS)

: empirical cross-covariance operator (on RKHS)
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COCO Revisited
COCO = operator norm

fgYXCOCO YX
gf

YX Σ=Σ=
==

,sup),(
1||||,1||||

fgYXCOCO N
YX

gf

N
YXemp

)(

1||||,1||||

)( ˆ,supˆ)ˆ,ˆ( Σ=Σ=
==

with data

2/12/1 of aluesingular vlargest 1
YX GG

N
×=

)]ˆ(),ˆ([sup
1||||||||

YgXfCovemp
gf ==

= previous 
definition
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HSIC Revisited
HSIC = Hilbert-Schmidt Information Criterion

[ ]YXHS
N

YXemp GG
N

YXHSIC Tr1ˆ)ˆ,ˆ( 2

2)( =Σ=

2),( HSYXYXHSIC Σ=

with data

[ ])()(2)( ˆˆTrˆ N
XY

N
YXHS

N
YX ΣΣ=Σ

{ } ⎥
⎦

⎤
⎢
⎣

⎡
⋅−⋅−⋅−⋅−⋅= ∑ ∑

= =
,ˆ),(ˆ),(,ˆ),(ˆ),(1Tr

1 1
2 YjY

N

i

N

j
XjXXiXYiY mYkmXkmXkmYk

N

YiYYjY

N

i

N

j
XjXXiX mYkmYkmXkmXk

N
ˆ),(,ˆ),(ˆ),(,ˆ),(1

1 1
2 −⋅−⋅−⋅−⋅= ∑ ∑

= =

[ ]YX GG
N

Tr1
2=

)Q



39

Application of HSIC to ICA
Independent Component Analysis (ICA)
– Assumption 

m independent source signals
m observations of linearly mixed signals

– Problem
Restore the independent signals S from observations X.  

A

s1(t)

s2(t)

s3(t)
x3(t)

x2(t)

x1(t)

A: mxm invertible
matrix

)()( tAStX =

BXS =ˆ B: mxm orthogonal matrix
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ICA with HSIC

Pairwise-independence criterion is applicable.

Objective function is non-convex.  Optimization is not easy.
Approximate Newton method has been proposed 

Fast Kernel ICA (FastKICA,  Shen et al 07)

Other methods for ICA
See, for example, Hyvärinen et al. (2001). 

∑ ∑
= >

=
m

a ab
ba YYHSICBL

1
),()( BXY =

)()1( ,..., NXX : i.i.d. observation (m-dimensional)

Minimize

(Software downloadable at Arthur Gretton’s homepage)
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Experiments (speech signal)

A

s1(t)

s2(t)

x3(t)

x2(t)

x1(t)

randomly
generateds3(t)

B

Fast KICA

Three speech 
signals
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Normalized Covariance
Correlation – normalized variance
Covariance is not normalized well: it depends on the variance of X, Y. 
Correlation is better normalized

NOrmalized Cross-Covariance Operator (FBG07)

– Operator norm is less than or equal to 1, i.e. 

2/12/1 −−
XXYXYY VVV

2/12/1 −− ΣΣΣ= XXYXYYYXW

2/12/1
XXYXYYYX W ΣΣ=Σ

Definition: there is a factorization of the ΣYX such that 

NOCCO

1|||| ≤YXW
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Empirical estimation of NOCCO
: sample

Relation to Kernel CCA
– See Bach & Jordan 02, Fukumizu Bach Gretton 07

)(,),( ,1,1 NN YXYX K

( ) ( ) 2/1)()(2/1)()( ˆˆˆˆ −−
+ΣΣ+Σ= IIW N

N
XX

N
YXN

N
YY

N
YX εε

εN: regularization coefficient

Note:           is of finite rank, thus not invertible)(ˆ N
XXΣ
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Normalized Independence Measure
HS Normalized Independence Criterion (HSNIC)
Assume                                   is Hilbert-Schmidt

Characterizing independence
Theorem

Under some “richness” assumptions on kernels (see Part IV).  

2/12/1 −− ΣΣΣ= XXYXYYYXW

22/12/12||||
HSXXYXYYHSYXWHSNIC −− ΣΣΣ==

( ) ( )[ ]112)( Trˆ −− ++== NNYYNNXXHS
N

YXemp INGGINGGWHSNIC εε

HSNIC = 0    if and only if  X and Y are independent. 

(Confirm this – exercise)
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Kernel-free Expression
Integral expression of HSNIC without kernels
Theorem (FGSS07)

Assume that                     is dense in                  , and the laws PX
and PY have p.d.f. w.r.t. the measures μ1 and μ2, resp. 

– HSNIC is defined by kernels, but it does not depend on the kernels.
Free from the choice of kernels!

– HSNICemp gives a kernel estimator for the Mean Square 
Contingency. 

2|||| HSYXWHSNIC =

)()()()(1
)()(

),(
21

2

ydxdypxp
ypxp

yxp
YX

YX

XY μμ∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

= Mean Square Contingency

R+⊗ YX HH )(2
YX PPL ⊗
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PROS

CONS

HSIC HSNIC

• Simple to compute

• Asymptotic distribution 
for independence test
is known (Part V) 

• Does not depend on the 
kernels in population

• The value depends on
the choice of kernels

• Regularization coefficient
is needed. 

• Matrix inversion is needed. 

• Asymptotic distribution 
for independence test 
is not known. 

(Some experimental comparisons are given in Part V.)
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Choice of Kernel
How to choose a kernel?
– Recall:  in supervised learning (e.g. SVM), cross-validation (CV) is 

reasonable and popular. 
– For unsupervised problems, such as independence measures, 

there are no theoretically reasonable methods. 

– Some heuristic methods which work:
• Heuristics for Gaussian kernels

• Make a related supervised problem, if possible, and use CV.

– More studies are required. 

{ }jiXX ji ≠− |σ =   median
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Relation with Other Measures
Mutual Information

MI and HSNIC

)()(1
)()(

),(),( 21 ydxd
ypxp

yxpyxpHSNIC
YX

XY
XY μμ∫∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

∫∫= )()(
)()(

),(log),(),( ydxd
ypxp

yxpyxpYXMI YX
YX

XY
XY μμ

),(),( YXMIYXHSNIC ≤

MIydxd
ypxp

yxpyxp
YX

XY
XY =≤ ∫∫ )()(

)()(
),(log),( 21 μμ

)Q

( )1log −≤ zz

fukumizu
取り消し線

fukumizu
テキストボックス
>=  (correction. June 2014)

fukumizu
テキストボックス
>=  (correction. June 2014)

fukumizu
線
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– Mutual Information:  
• Information-theoretic meaning.
• Estimation is not straightforward for continuous variables.

Explicit estimation of p.d.f. is difficult for high-dimensional data. 
– Parzen-window is sensitive to the band-width. 
– Partitioning may cause a large number of bins.

• Some advanced methods: e.g. k-NN approach (Kraskov et al.).

– Kernel method:
• Explicit estimation of p.d.f. is not required;

the dimension of data does not appear explicitly, but it is 
influential in practice. 

• Kernel / kernel parameters must be chosen. 

– Experimental comparison
See Section V (Statistical Tests)
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Summary of Part III
Cross-Covariance operator
– Covariance on RKHS: extension of covariance matrix 
– If the kernel defines a rich RKHS, 

Kernel-based dependence measures
– COCO:  operator norm of 
– HSIC: Hilbert-Schmidt norm of
– HSNIC:  Hilbert-Schmidt norm of normalized cross-covariance 

operator

HSNIC = mean square contingency  (in population)   kernel free!

– Application to ICA

OXY =Σ⇔X Y

XYΣ

XYΣ

2/12/1 −− ΣΣΣ= XXYXYYYXW
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IV. Representing a 
Probability 
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Statistics on RKHS
Linear statistics on RKHS

– Basic statistics Basic statistics
on Euclidean space on RKHS

Mean Mean element 
Covariance Cross-covariance operator
Conditional covariance Conditional-covariance operator

– Plan:  define the basic statistics on RKHS and derive nonlinear/
nonparametric statistical methods in the original space.

Ω (original space)
Φ 

feature map H (RKHS)

X
Φ (X) = k(  , X)

YXΣ

(Part VI)
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Mean on RKHS
– Empirical mean on RKHS

: i.i.d. sample  : sample on RKHS 

Empirical mean

– Mean element on RKHS
X : random variable on Ω  Φ(X) :  random variable on RKHS. 

Define 

)()1( ,..., NXX ( ) ( )NXX ΦΦ ,,1 K

∑∑
==

⋅=Φ=
N

i
i

N

i
iX Xk

N
X

N
m

11
),(1)(1ˆ

[ ])(, XfEfmX = )( Hf ∈∀

)]([ XEmX Φ=

)]([ˆ)(1,ˆ
1

XfEXf
N

fm
N

i
iX ≡= ∑

=

)( XHf ∈∀
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Representation of Probability
Moments by a kernel
Example of one-variable

• As a function of u, the mean element mX contains the information 
on all the moments – “richness” of RKHS.  

• It is natural to expect that mX “represents” or “characterizes” a 
probability under “richness” assumption on the kernel. 

L++++== 33
3

22
211)exp(),( uxcuxcxucxuuxk

[ ] [ ] [ ] [ ] L++++== 33
3

22
211),()( uXEcuXEcuXEcuXkEum XXXXX
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Characteristic Kernel
Richness assumption on kernels

P :  family of all the probabilities on a measurable space (Ω, B).
H:  RKHS on Ω with measurable kernel k. 
mP: mean element on H for the probability 

– Definition
The kernel k is called characteristic if the mapping 

is one-to-one.

– The mean element of a characteristic kernel uniquely determines 
the probability. 

P∈P

PmPH a,→P

YXYX PPmm =⇔=
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– “Richness” assumption in the previous sections should be replaced 
by “kernel is characteristic” or the following denseness assumption. 

– Sufficient condition 
Theorem
k: kernel on a measurable space (Ω, B).   H: associated RKHS. 
If H + R is dense in Lq(P) for any probability P on (Ω, B), then 
k is characteristic

– Examples of characteristic kernel
• Gaussian kernel on the entire Rm

• Laplacian kernel on the entire Rm

( )22 2exp),( σyxyxkG −−= )0( >σ

( )∑ = −−= m
i iiL yxyxk 1 ||exp),( λ )0( >λ

.1≥q
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Universal kernel (Steinwart 02)
A continuous kernel k on a compact metric space Ω is called 

universal if the associated RKHS is dense in C(Ω), the functional 
space of the continuous functions on Ω with sup norm. 

Example:  Gaussian kernel on a compact subset of Rm

Proposition
A universal kernel is characteristic.  

– Characteristic kernels are wider class, and suitable for 
discussing statistical inference of probabilities. 

– Universal kernels are defined only on compact sets. 

– Gaussian kernels are characteristic either on a compact subset 
and the entire of Euclidean space. 
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Two-Sample Problem
Two  i.i.d. samples are given;

Are they sampled from the same distribution? 

– Practically important.  
We often wish to distinguish two things:

– Are the experimental results of treatment and control 
significantly different? 

– Were the plays “Henry VI” and “Henry II” written by the 
same author? 

– Kernel solution:  
Use the difference
with a characteristic kernel such as Gaussian.

)()1( ,..., XNXX .,..., )()1( YNYYand

YX mm −
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– Example: do they have the same distribution?
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Kernel Method for Two-sample 
Problem

Maximum Mean Discrepancy (Gretton etal 07, NIPS19)
– In population

– Empirically

– With characteristic kernel,  MMD = 0  if and only if  PX = PY. 

22
HYX mmMMD −=

2
empMMD
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Experiment with MMD

0 0.2 0.4 0.6 0.8 1
0
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N(0,1)  vs N(0,1)

c
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Characteristic Function
– Definition

X: random vector on Rm with law PX

Characteristic function of X is a complex-valued function defined by 

If PX has p.d.f. pX(x), the char. function is Fourier transform of pX(x).

– Moment generating function

– Chrac. function is very popular in probability and statistics for 
characterizing a probability. 

[ ] ∫ −− =≡ )()( 11 xdPeeEu X
xuXu

X
TT

ξ )( mu R∈

[ ]r
Xr

r

r XEu
du
d

=
−
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Characterizing property

Theorem
X, Y: random vectors on Rm with prob. law PX, PY (resp.).

YXYX PP =⇔= ξξ
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Kernel and Ch. Function
Fourier kernel is positive definite

– Characteristic function is a special case of the mean element. 

Generalization of characteristic function approach
– There are many “characteristic function” methods in the statistical 

literature (independent test, homogeneity test, etc). 
– The kernel methodology discussed here is generalizing this 

approach. 
• The data may not be Euclidean, but can be structured.

( )yxyxk T
F 1exp),( −= is a (complex-valued) pos. def. kernel. 

)],([)( uXkEu FX =ξ =  mean element with kF(x,y) !!
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Re: Representation of Probability
Various ways of representing a probability
– Probability density function       p(x)

– Cumulative distribution function        FX(t) = Prob( X < t )

– All the moments                              E[X], E[X2], E[X3], …

– Characteristic function

– Mean element on RKHS         mX(u) = E[k(X, u)]

Each representation provides methods for statistical inference.

[ ] ∫ −− =≡ )()( 11 xdPeeEu X
xuXu

X
TT

ξ
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Summary of Part IV
Statistics on RKHS Inference on probabilities
– Mean element Characterization of probability 

Two-sample problem
– Covariance operator  Dependence of two variables

Independence test, Dependence measures
– Conditional covariance operator  Conditional independence 

(Section VI)

Characteristic kernel
– A characteristic kernel gives a “rich” RKHS
– A characteristic kernel characterizes a probability. 
– Kernel methodology is generalization of characteristic function 

methods
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V. Statistical Test
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Statistical Test
How should we set the threshold?
Example)  Based on a dependence measure, we wish to make a 

decision whether the variables are independent or not.

Simple-minded idea:  Set a small value like t = 0.001
I(X,Y) < t dependent
I(X,Y)      t independent 

But, the threshold should depend on the property of X and Y. 

Statistical hypothesis test
– A statistical way of deciding whether a hypothesis is true or not. 
– The decision is based on sample  We cannot be 100% certain. 

≥
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Procedure of hypothesis test
• Null hypothesis  H0 =  hypothesis assumed to be true

“X and Y are independent”

• Prepare a test statistic TN

e.g.       TN  = HSICemp

• Null distribution: Distribution of TN under the null hypothesis 
This must be computed for HSICemp

• Set significance level α      Typically α = 0.05 or 0.01

• Compute the critical region:   α  =  Prob. of  TN > tα under H0.

• Reject the null hypothesis if TN > tα,
The probability that HSICemp > tα under 

independence is very small.  

otherwise, accept the null hypothesis negatively. 
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1

p.d.f. of Null distribution

area = α  (5%,  1% etc)

threshold tα

- If the null hypothesis is the truth, the value of TN should follow 
the above distribution.  

- If the alternative is the truth, the value of TN should be very large. 
- Set the threshold with risk α.  
- The threshold depends on the distribution of the data. 

critical region

One-sided test

TN

area = p-value TN > tα ⇔ p-value < α

significance level
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Type I and Type II error
– Type I error = false positive    (e.g. dependence = positive)
– Type II error = false negative

TRUTH
Alternative

R
ej

ec
t H

0
A

cc
ep

t H
0

Type I error

Type II error
True negative

True positive
False positive

False negative

H0

TE
S

T 
R

E
S

U
LT

Significance level controls the type I error.  
Under a fixed type I error, the type II error should be 

as small as possible.
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Independence Test with HSIC
Independence Test
– Null hypothesis H0:    X and Y are independent

Alternative        H1:    X and Y are not independent (dependent) 

– Test statistics

– Null distribution

– Under alternative 

empN NT HSIC×=

∑
∞

=
⇒

1

2

a
aaN ZT λ convergence in distribution

)1,0(~ NZawhere i.i.d.
λa are the eigenvalues of an integral equation (not shown here)

( ) )( ∞→= NNOT pN

))/1(( NOHSIC pemp =
Under H0
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Example of Independent Test
Synthesized data
– Data:  two d-dimensional samples

),...,(),...,,...,( )()(
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Traditional Independence Test
P.d.f.-based
– Factorization of p.d.f. is used. 
– Parzen window approach. 
– Estimation accuracy is low for high dimensional data

Cumulative distribution-based
– Factorization of c.d.f. is used. 

Characteristic function-based
– Factorization of characteristic function is used. 

Contingency table-based
– Domain of each variable is partitioned into a finite number of parts. 
– Contingency table (number of counts) is used. 

And many others

)()(),...,( 11
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m
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m
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Power Divergence (Ku&Fine05, Read&Cressie)
– Make partition            :  Each dimension is divided into q parts so 

that each bin contains almost the same number of data. 

– Power-divergence

– Null distribution under independence

Limitations
– All the standard tests assume vector (numerical / discrete) data. 
– They are often weak for high-dimensional data.

JjjA ∈}{

∑ ∏
∈ = ⎭

⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛

+
==

Jj

N

k

k
jjjN k

pppNmXIT 1ˆˆˆ
)2(

2),(2
1

)(
λ

λ

λλ

: frequency in Aj
: marginal freq. in r-th interval 

2
1−+−

⇒ NqNqN NT χ

jp̂
)(ˆ k

rpI2 = Mean Square Conting.
I0 = MI



76

Independent Test on Text
– Data:  Official records of Canadian Parliament in English and French. 

• Dependent data:   5 line-long parts from English texts 
and their French translations. 

• Independent data: 5 line-long parts from English texts 
and random 5 line-parts from French texts. 

– Kernel:  Bag-of-words and spectral kernel

Topic Match BOW(N=10)     Spec(N=10)     BOW(N=50) Spec(N=50) 
HSICg HSICp HSICg HSICp HSICg HSICp HSICg HSICp

Agri- Random 1.00     0.94      1.00     0.95      1.00     0.93      1.00 0.95
culture Same 0.99     0.18      1.00     0.00      0.00 0.00 0.00 0.00

Fishery  Random 1.00     0.94      1.00     0.94      1.00     0.93      1.00 0.95
Same 1.00     0.20      1.00     0.00      0.00 0.00 0.00 0.00

Immig- Random 1.00     0.96      1.00     0.91      0.99     0.94      1.00 0.95
ration Same 1.00     0.09      1.00     0.00      0.00 0.00 0.00 0.00

(Gretton et al. 07)Acceptance rate (α = 5%)
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Permutation Test
– The theoretical derivation of the null distribution is often difficult 

even asymptotically. 
– The convergence to the asymptotic distribution may be very slow.

– Permutation test – Simulation of the null distribution
• Make many samples consistent with the null hypothesis by 

random permutations of the original sample. 
• Compute the values of test statistics for the samples. 

Independence test

Two-sample test

• It can be computationally expensive. 

X1 X2 X3 X4 X5 X6 X7 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y5 Y1 Y7 Y4 Y2 Y6 Y3

X1 X2 X3 X4 X5 Y6 Y7 Y8 Y9 Y10 X4 Y8 X2 Y9 Y6 X1 X3 Y7 Y10 X5

independent

homogeneous
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Independence test for 2 x 2 contingency table 
– Contingency table

– Test statistic

– Example

Histogram by 1000 random 
permutations and true χ2. 

Y

175 93
71 161

X

∑
=

−
=

1,0, ,,

2
,,

ˆˆ
)ˆˆˆ(

ji jYiX

jYiXij
N pp

ppp
NT

0

1

0 1

2χ⇒ )Hunder ,( 0∞→N

120102
134144

Y

X
0

1

0 1
P-value by true χ2 = 0.193
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Independence test with various measures
– Data 1: dependent and uncorrelated by rotation (Part I) 

X and Y: one-dimensional,  N = 200

Angle 0.0    4.5   9.0  13.5 18.0 22.5
HSIC (Median) 93 92    63     5     0     0
HSIC (Asymp. Var.) 93 44      1     0     0     0
HSNIC (ε = 104, Median) 94 23      0     0     0     0
HSNIC (ε = 106, Median) 92 20      1     0     0 0
HSNIC (ε = 108, Median) 93 15      0     0     0     0
HSNIC (Asymp. Var.) 94 11      0     0     0     0
MI (#NN = 1) 93 62    11     0     0     0
MI (#NN = 3) 96 43      0     0     0     0
MI (#NN = 5) 97 49      0     0     0     0
Conting. Table (#Bins=3)       100 96    46     9     1     0
Conting. Table (#Bins=4)         98 29      0     0     0     0
Conting. Table (#Bins=5)         98 82      5     0     0     0

indep. more dependent

# acceptance of independence out of 100 tests (α = 5%)
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– Data 2: Two coupled chaotic time series (coupled Hénon map)
X and Y: 4-dimensional,  N = 100

Coupling: 0.0   0.1   0.2   0.3   0.4   0.5   0.6
HSIC 75 70    58    52    13      1      0
HSNIC 97 66    21      1      0      1      0
MI (#NN=3) 87 91    83    73    23      6      0
MI (#NN=5) 87 88    75    67    23      5      0
MI (#NN=7) 87 86    75    64    21      5      0

indep. more dependent

# acceptance of independence out of 100 tests (α = 5%)
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Two sample test
Problem
Two i.i.d. samples 

Null hypothesis H0:
Alternative H1:

Homogeneity test with MMD (Gretton et al NIPS20)

Null distribution 
– Similar to independence test with HSIC (not shown here)

YX PP =
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Experiment
– Data integration

We wish to integrate two datasets into one.  
The homogeneity should be tested!

(Gretton et al. NIPS20, 2007)

Dataset Attribut.   MMD2 t-test   FR-WW   FR-KS 
Neural I (w/wo spike) Same 96.5 100.0 97.0 95.0
(N=4000,dim=63) Diff. 0.0 42.0 0.0 10.0
Neural II (w/wo spike) Same 95.2 100.0 95.0 94.5
(N=1000,dim=100) Diff. 3.4 100.0 0.8 31.8
Microarray (health/tumor) Same 94.4 100.0 94.7 96.1
(N=25,dim=12000) Diff. 0.8 100.0 2.8 44.0
Microarray (subtype) Same 96.4 100.0 94.6 97.3
(N=25,dim=2118) Diff. 0.0 100.0 0.0 28.4

A B C+

% acceptance of homogeneity
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Traditional Nonparametric Tests
Kolmogorov-Smirnov (K-S) test for two samples
One-dimensional variables
– Empirical distribution function

– KS test statistics

– Asymptotic null distribution 
is known (not shown here). 
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Wald-Wolfowitz run test
One-dimensional samples
– Combine the samples and plot the points in ascending order. 
– Label the points based on the original two groups.
– Count the number of “runs”, i.e. consecutive sequences of the same 

label. 
– Test statistics

– In one-dimensional case, less powerful than KS test 

Multidimensional extension of KS and WW test
– Minimum spanning tree is used (Friedman Rafsky 1979)

R = Number of runs

)1,0(
][
][ N

RVar
RERTN ⇒

−
=

R = 10



85

Summary of Part V
Statistical Test 
– Statistical method of judging significance of a value. 
– It determines a “threshold” with some risk. 

Statistical Test with kernels
– Independence test with HSIC
– Two-sample test with MMD2

– Competitive with the state-of-art methods of nonparametric tests.
– Kernel-based statistical tests work for structured data, to which 

conventional methods cannot be directly applied.

Permutation test
– It works well, if applicable.
– Computationally expensive. 
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VI. Conditional Independence
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Re: Statistics on RKHS
Linear statistics on RKHS

– Basic statistics Basic statistics
on Euclidean space on RKHS

Mean Mean element 
Covariance Cross-covariance operator
Conditional covariance Cond. cross-covariance operator

– Plan:  define the basic statistics on RKHS and derive nonlinear/
nonparametric statistical methods in the original space.

Ω (original space)
Φ 

feature map H (RKHS)

X
Φ (X) = k(  , X)

YXΣ



88

Conditional Independence
Definition
X, Y, Z:  random variables with joint p.d.f. 
X and Y are conditionally independent given Z, if 

)|(),|( || zypxzyp ZYZXY =

)|()|()|,( ||| zypzxpzyxp ZYZXZXY =
or

),,( zyxpXYZ

YX Z

With Z known, the information of X
is unnecessary for the inference on Y

(A)

(B)

YX

Z
(B)

(A)
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Review: Conditional Covariance 
Conditional covariance of Gaussian variables
– Jointly Gaussian variable

: m ( = p + q) dimensional Gaussian variable

– Conditional probability of Y given X is again Gaussian

),,(),,,( 11 qp YYYXXX KK ==
),( YXZ =

),(~ VNZ μ ⎟
⎠

⎞
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

YYYX

XYXX

Y

X

VV
VV

V,
μ
μ

μ

)(]|[ 1
| XXXYXYXY xVVxXYE μμμ −+==≡ −

XYXXYXYYXYY VVVVxXYCovV 1
| ]|[ −−==≡

),(~ || XYYXY VN μ

Cond. mean

Cond. covariance

Note: VYY|X does not depend on x

Schur complement of VXX in V
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Conditional Independence for 
Gaussian Variables

Two characterizations
X,Y,Z are Gaussian.

– Conditional covariance

– Comparison of conditional variance

X Y | Z OV ZXY =⇔ | i.e. OVVVV ZXZZYZYX =− −1

X Y | Z ZYYZXYY VV |],[| =⇔

YXZZXZXZXYYY VVVV ],[
1

],][,[],[
−− ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−=

−

ZY

XY

ZZZX

XZXX
YZYXYY V

V
VV
VV

VVV
1

,

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−

−=
−

−

−

−
ZY

XYZZXZ

ZZ

ZXX

ZXZZ
YZYXYY V

V
IO
VVI

VO
OV

IVV
OI

VVV
1

1

1
|

1,

ZXYZXXZYXZYY VVVV |
1

|||
−−=

)Q
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Linear Regression and Conditional 
Covariance

Review: linear regression
– X, Y: random vector (not necessarily Gaussian) of dim p and q (resp.)

– Linear regression:  predict Y using the linear combination of X.
Minimize the mean square error: 

– The residual error is given by the conditional covariance matrix.

][~],[~ YEYYXEXX −=−=

2

matrix:

~~min XAYE
pqA

−
×

[ ] [ ]]|[TrTr~~min |
2

matrix:
XYCovVXAYE XYYpqA

==−
×
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– Derivation

– For Gaussian variables, 

[ ]TTTTTT AXXAEAXYEYXAEYYEXAYE ]~~[]~~[]~~[]~~[Tr~~ 2
+−−=−

[ ]T
XX

T
YXXYYY AAVAVAVV +−−= Tr

[ ]T
XXYXXXXXYX VVAVVVA )()(Tr 11 −− −−= [ ]XYXXYXYY VVVV 1Tr −−+

1−= XXYXopt VVA
and 

[ ]XYXXYXYYopt VVVVXAYE 12
Tr~~ −−=−

ZYYZXYY VV |],[| =

“If Z is known, X is not necessary for linear prediction of Y.”
can be interpreted as 

(                        )X Y | Z⇔
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Conditional Covariance on RKHS
Conditional Cross-covariance operator
X, Y, Z : random variables on ΩX, ΩY, ΩZ (resp.).
(HX, kX), (HY , kY),  (HZ , kZ) : RKHS defined on ΩX, ΩY, ΩZ (resp.).

– Conditional cross-covariance operator

Note:          may not exist.  But, we have the decomposition 

Rigorously, define

– Conditional covariance operator

ZXZZYZYXZYX ΣΣΣ−Σ≡Σ −1
|

2/12/1
XXYXYYYX W ΣΣ=Σ

2/12/1
| XXZXYZYYYXZYX WW ΣΣ−Σ≡Σ

1−ΣZZ

YX HH →

ZYZZYZYYZYY ΣΣΣ−Σ≡Σ −1
|



94

Two Characterizations of Conditional 
Independence with Kernels

(1) Conditional covariance operator (FBJ04, 06)
Under some “richness” assumptions on RKHS (e.g Gaussian)
– Conditional variance

– Conditional independence

– c.f. Gaussian variables

ZYYXZYY |][| Σ=ΣX Y | Z ⇔

X Y | Z ZYYZXYY VV |],[| =⇔

2
|

~~min]|[ ZaYbZYbVarbVb TT

a

T
ZYY

T −==

[ ] 2
| )(~)(~inf]|)([, ZfYgEZYgVarEgg

ZHfZYY −==Σ
∈

X is not necessary for predicting g(Y)
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(2) Cond. cross-covariance operator (FBJ04, Sun et al. 07)
Under some “richness” assumptions on RKHS (e.g. Gaussian),
– Conditional Covariance

– Conditional independence

– c.f. Gaussian variables

OZXY =Σ |&& ( )OZXY =Σ⇔ |&&⇔

),,( ZXX =&& ),( ZYY =&&where

X Y | Z

X Y | Z OV ZXY =⇔ |

]|,[| ZYbXaCovbVa TT
ZXY

T =

[ ]]|)(),([, | ZXfYgCovEfg ZYX =Σ
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– Why is “extended variable” needed?

The l.h.s is not a funciton of z.  c.f. Gaussian case

However, if X is replaced by [X, Z]

]|)(),([, | zZXfYgCovfg ZYX =≠Σ

[ ]]|)(),([, | ZXfYgCovEfg ZYX =Σ

dzzpzypzxpyxpOZYX )()|()|(),(| ∫=⇒=Σ

)|()|()|,(| zypzxpzyxpOZYX =⇒=Σ

dzzpzypzzxpzyxpOZZXY )()|()|',()',,(|],[ ∫=⇒=Σ

)'()|()|',( zzzxpzzxp −= δ

)'()'|()'|()',,( zpzypzxpzyxp =

where

i.e. )'|()'|()'|,( zypzxpzyxp =
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Application to Dimension Reduction 
for Regression

Dimension reduction
Input:  X = (X1, ... , Xm), Output:  Y (either continuous or discrete)
Goal:  find an effective subspace spanned by an m x d matrix B s.t. 

No further assumptions on cond. p.d.f. p.  

Conditional independence

| |( | ) ( | )T
T

Y X Y B Xp Y X p Y B X= BTX = (b1
TX, ..., bd

TX)
linear feature vector

X
U V

Y

B spans effective subspace

X Y | BTX

where
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Kernel Dimension Reduction
(Fukumizu, Bach, Jordan 2004, 2006)

Use d-dimensional Gaussian kernel kd(z1,z2) for BTX, and a 
characteristic kernel for Y. 

|| T YY XYY B XΣ = Σ ⇔

|| T YY XYY B XΣ ≥ Σ

X Y | BTX

|:
min Tr TT

d
YY B XB B B I=

⎡ ⎤Σ⎣ ⎦

See FBJ 04, 06 for further details. 
(Extension: Nilsson et al. ICML07) 

Very general method for dimension reduction:
No model for regression, no strong assumption on the distributions.

Optimization is not easy.  

(    : the partial order of 
self-adjoint operators)
≥
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Experiments with KDR
Wine data
Data 

13 dim. 178 data.
3 classes
2 dim. projection
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Measure of Cond. Independence
HS norm of cond. cross-covariance operator
– Measure for conditional dependence

– Conditional independence
Under some “richness” assumptions (e.g. Gaussian), 

– Empirical measure

2
| HSZYXHSCIC &&&&Σ=

( )[ YZNNZXYXemp GGINGGGGHSCIC 12Tr −+−= ε
( ) ( ) ]YZNNZXNNZZ GGINGGINGG 11 −− +++ εε

2
| HSZYXHSCIC &&&&Σ= is zero if and only if X Y | Z

),(),,( ZYYZXX == &&&&
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Normalized Cond. Covariance
Normalized conditional cross-covariance operator

– Conditional independence 
Under some “richness” assumptions (e.g. Gaussian),

– HS Normalized Conditional Independence Criteria

ZXYZYXZYX WWWW −≡| Recall: 2/12/1
XXYXYYYX W ΣΣ=Σ

( ) 2/112/12/1
|

2/1
|

−−−−− ΣΣΣΣ−ΣΣ=ΣΣΣ= XXZXZZYZYXYYXXZYXYYZYXW

OW ZXY =|&& X Y | Z⇔

2
| HSZYXWHSNCIC &&&&=

X Y | Z⇔= 0HSNCIC
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– Kernel-free expression.  Under some “richness” assumptions, 

– Empirical estimator of HSNCIC

[ ]ZYZXZYXYXemp RRRRRRRRRHSNCIC &&&&&&&&&&&& +−= 2Tr

( ) 1−+≡ NNXXX INGGR ε&&&&&& etc. 

2
| |||| HSZXYW &&&&

dxdydzzypzxp
zypzxp

zpzypzxpzyxp
YZXZ

YZXZ

ZZYZXXYZ ),(),(
),(),(

)()|()|(),,( 2
||∫∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

(“Conditional” mean square contingency) 
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Permutation test with the kernel measure

– If Z takes values in a finite set {1, …, L},
set 

otherwise, partition the values of Z into 
L subsets C1, …, CL, and set  

– Repeat the following process B times: (b = 1, …, B)
1. Generate pseudo cond. independent 

data D(b) by permuting  X data within each 
2. Compute TN

(b) for the data D(b) .

– Set the threshold by the (1-α)-percentile of 
the empirical distributions of TN

(b).

2)(
|

ˆ
HS

N
ZYXNT Σ=

2)(
|

ˆ
HS

N
ZYXN WT =or 

),,...,1(}|{ LZiA i === lll

).,...,1(}|{ LCZiA i =∈= lll

.lA

11 ,1,1 ii YX

22 ,1,1 ii YX

33 ,1,1 ii YX

44 ,2,2 ii YX
22 ,2,2 ii YX

66 ,2,2 ii YX

77 ,, iLiL YX

88 ,, iLiL YX

99 ,, iLiL YX

…

1C

2C

LC

pe
rm

ut
e

pe
rm

ut
e

pe
rm

ut
e

{
{
{

Conditional Independence Test

Approximate null distribution 
under cond. indep. assumption
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Application to Graphical Modeling
– Three continuous variables of medical measurements. N = 35. 

(Edwards 2000, Sec.3.1.4)
Creatinine clearance (C),  Digoxin clearance (D),  Urine flow (U)

– Suggested undirected graphical model by kernel method

Kernel mehod (permut. test) Linear method
HSN(C)IC P-val. (partial) cor. P-val.

1.458 0.924 Parcor(D,U|C) 0.4847 0.0037
0.0000
0.0707
0.0010

0.776 <0.001 Cor(C,D) 0.7754
0.194 0.117 Cor(C,U) 0.3092
0.343 0.023 Cor(D,U) 0.5309

D U | C
C D
C U
D U

C

D U
The conditional independence
coincides with the medical knowledge.

D U | C
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Statistical Consistency
Consistency on conditional covariance operator

Theorem (FBJ06, Sun et al. 07)
Assume                and

In particular,  

)(0ˆ
|

)(
| ∞→→Σ−Σ N

HSZYX
N

ZYX

0→Nε ∞→NNε

)(ˆ
|

)(
| ∞→Σ→Σ N

HSZYXHS
N

ZYX

i.e. HSCICemp converges to the population value HSCIC.
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Consistency of normalized conditional covariance 
operator
Theorem (FGSS07)

Assume that             is Hilbert-Schmidt, and the regularization 
coefficient satisfies                and                        Then, 

In particular,  

– Note:  Convergence in HS-norm is stronger than convergence 
in operator norm.  

)(0ˆ
|

)(
| ∞→→− NWW

HSZYX
N

ZYX

0→Nε .3/1 ∞→NN ε

)(ˆ
|

)(
| ∞→→ NWW

HSZYXHS
N

ZYX

i.e. HSNCICemp converges to the population value HSNCIC.

ZYXW |
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Summary of Part V
Conditional independence by kernels
– Conditional independence is characterized in two ways;

• Conditional covariance operator

• Conditional cross-covariance operator

Kernel Dimensional Reduction
A very general method for dimension reduction for regression

Measures for conditional independence 
– HS norm of conditional cross-covariance operator
– HS norm of normalized conditional cross-covariance operator

Kernel free in population. 

OZXY =Σ |&& OZXY =Σ |&&X Y | Z ⇔ or

ZYYXZYY |][| Σ=ΣX Y | Z ⇔



108

VII. Causal Inference
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Causal Inference
With manipulation – intervention

No manipulation / with temporal information

No manipulation / no temporal information

manipulate observation

X is a cause of Y?

)(tX )(tY : observed time series

X(1), …, X(t) are a cause of Y(t+1)?

Easier.  (do-calculus, Pearl 1995)

Causal inference is harder.
X

Y

X
Y
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Difficulty of causal inference from non-experimental 
data 
– Widely accepted view till 80’s

Causal inference is impossible without manipulating some 
variables.

e.g.)   “No causation without manipulation” (Holland 1986, JASA)

– Temporal information is very helpful, but not decisive.
e.g.)  The barometer falls before it rains, but it does not cause 

the rain. 

– Many philosophical discussions, but not discussed here. 
See Pearl (2000) and the references therein.
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Correlation (dependence) and causality
Do not confuse causality with dependence (or correlation)!

Example)
A study shows: 

Young children who sleep with the light on are much more likely 
to develop myopia in later life. (Nature 1999)

light on short-sight

light on short-sight

Parental myopia

(Nature 2000)

Hidden common cause
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Causality of Time Series
Granger causality (Granger 1969)
X(t), Y(t): two time series     t = 1, 2, 3, …
– Problem:

Is {X(1), …, X(t)} a cause of Y(t+1)?

– Granger causality 
Model: AR 

Test

X is called a Granger cause of Y if H0 is rejected. 

(No inverse causal relation)

t

p

j
j

p

i
i UjtXbitYactY +−+−+= ∑∑

== 11
)()()(

H0:  b1 = b2 = … = bp = 0
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– F-test
• Linear estimation

• Test statistics

– Software
• Matlab:  Econometrics toolbox (www.spatial-econometrics.com)
• R: lmtest package

t
p
j j

p
i i UjtXbitYactY +−+−+= ∑∑ == 11 )()()( ji bac ˆ,ˆ,ˆ

iac ˆ̂,ˆ̂

( )∑ += −= N
pt tYtYERR 11 )()(ˆ ( )210 )()(ˆ̂∑ += −= N

pt tYtYERR

t
p
i i WitYactY +−+= ∑ =1 )()(

( )
12,

1

10

)12( +−⇒
+−

−
≡ pNpN F

pNERR
pERRERRT

p.d.f of 
21,ddF xdxd

xd
dxd

xd
ddB

dd
11

)2/,2/(
1 21

21

1

21

1

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

)( ∞→N

H0:

under H0
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– Granger causality is widely used and influential in econometrics.
Clive Granger received Nobel Prize in 2003. 

– Limitations
• Linearity: linear AR model is used.

No nonlinear dependence is considered.
• Stationarity:  stationary time series are assumed.
• Hidden cause:  hidden common causes (other time series) 

cannot be considered. 

“Granger causality” is not necessarily “causality” in general sense. 

– There are many extensions. 

– With kernel dependence measures, it is easily extended to 
incorporate nonlinear dependence. 
Remark:  There are few good conditional independence tests 

for continuous variables. 
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Kernel Method for Causality of 
Time Series

Causality by conditional independence
– Extended notion of Granger causality

X is NOT a cause of Y if 

– Kernel measures for causality

),...,|(),...,,,...,|( 111 ptttpttpttt YYYpXXYYYp −−−−−− =

ptt XX −− ,...,1 ptt YY −− ,...,| 1tY

2
)1(ˆ

HS

pN
YHSCIC +−Σ=

pp Y|X&&

2
)1(ˆ

HS

pN
YWHSNCIC +−=

pp Y|X&&

},...,1|),,{( 2,1p NptXXX p
pttt +=∈= −−− RX L

},...,1|),,{( 2,1p NptYYY p
pttt +=∈= −−− RY L
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Example
Coupled Hénon map
– X, Y:

{ }

2
1 1 2

2 1

2
1 1 1 1 2

2 1

( 1) 1.4 ( ) 0.3 ( )
( 1) ( )

( 1) 1.4 ( ) ( ) (1 ) ( ) 0.1 ( )

( 1) ( )

x t x t x t
x t x t

y t x t y t y t y t

y t y t

γ γ

⎧ + = − +
⎨

+ =⎩
⎧ + = − + − +⎪
⎨

+ =⎪⎩

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x1-y1

γ = 0 γ = 0.25 γ = 0.8

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x2
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Causality of coupled Hénon map
– X is a cause of Y if γ > 0. 

– Y is not a cause of X for all γ. 

– Permutation tests for non-causality with

ptt XX −− ,...,1 ptt YY −− ,...,| 1tY

ptt YY −− ,...,1 ptt XX −− ,...,| 1tX

x1 – y1 H0: Yt is not a cause of Xt+1 H0: Xt is not a cause of Yt+1

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6

0 0

32

0

13

0

45

0

85

0

92

62

93

77

94

86

90

63

90

81

95

88

96

0.0

HSNCIC 94 97

Granger 92 96

2
)1(ˆ

HS

pN
YWHSNCIC +−=

pp Y|X&&

Number of times accepting H0 among 100 datasets (α = 5%)

N = 100

000000756881859396 9697HSNCIC
1-dimensional independent noise is added to X(t) and Y(t).
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Causal Inference from 
Non-experimental Data

Why is it possible?
– DAG of chain  X – Z – Y 

– This is the only detectable directed graph of three variables. 
– The following structures cannot be distinguished from the probability.

X Y
and 

| ZX Y

V-structure

p(x,y,z)  =  p(x|z)p(y|z)p(z)  =  p(x|z)p(z|y)p(y)   =    p(x|z)p(z|y)p(x)

X Y

| ZX Z
YX ZYX Z

Y

X Y

Z
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Causal Learning Methods
Constraint-based method (discussed in this lecture)
– Determine the (cond.) independence of the underlying probability. 
– Relatively efficient for hidden variables.

Score-based method
– Structure learning of Bayesian network  (Ghahramani’s lecture)
– Able to use informative prior. 
– Optimization in huge search space.
– Many methods assume discrete variables (discretization) or 

parametric model. 

Common hidden causes
– For simplicity, algorithms assuming no hidden variables are 

explained in this lecture. 
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Fundamental Assumptions
Markov assumption on a DAG
– Causal relation is expressed by a DAG, and the probability 

generating data is consistent with the graph. 

Faithfulness (stability)
– The inferred DAG (causal structure) must express all the 

independence relations. 

This includes the true probability 
as a special case, but the structure
does not express 

c

d

ba

c

d

ba

c

d

ba

a b

unfaithfultrue

)|(),|()()()( cdbacba XXpXXXpXpXpXp =
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Inductive Causation
IC algorithm (Verma&Pearl 90)

Input  – V: set of variables,     D: dataset of the variables. 
Output – DAG (specifies an equivalence class, directed partially)

1. For each                                    ,  search for 
such that 

Construct an undirected graph (skeleton) by connecting a and b
if and only if no set Sab can be found.  

2. For each nonadjacent pair (a,b) with a – c – b,  direct the edges 
by                     if

3. Orient as many of undirected edges as possible on condition 
that neither new v-structures nor directed cycles are created. 
(See the next slide for the precise implementation) 

)(),( baVVba ≠×∈ },{\ baVSab ⊂

| SabXa Xb

bca ←→ abSc ∉
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Step 3 of IC algorithm
– The following 4 rules are necessary and sufficient to direct all the 

possible inferred causal direction (Verma & Pearl 92, Meek 95)
1. If there is a triplet a b – c with a and c nonadjacent, 

orient b – c into b c. 

2. If for a – b there is a chain a c b, orient a – b into a b. 

3. If for a – b there are two chains a – c b and a – d b such 
that c and d are nonadjacent, orient a – b into a b. 

d

c
a b

d

c
a b

c
a b

c
a b

ca b ca b
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Example

True structure
a

d

e

cb

a

d

e

cb

a

d

e

cb

a

d

e

cb

The output from each step of IC algorithm 

},{ cbSad =
}{dSae =
}{aSbc =

}{dSS cebe ==

For other pairs,
S does not exist.

For (b,c),

1) 2) 3)

bcSd ∉

Direction of some edges 
may be left undetermined.
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PC Algorithm
(Peter Sprites & Clark Glymour 91)

– Linear method:  partial correlation with χ2 test is used in Step 1.
– Efficient computation for Step 1.   

Start with complete graph, check Xa Xb | S only for             ,    
and connect the edge a—b if there is no such S. 

i = 0.  G = Complete graph. 
repeat 

for each a in V
for each b in Na

Check Xa Xb | S for                      with |S| = i
If such S exists, 

set Sab = S,  and delete the edge a—b from G.
i = i + 1

until | Na | < i for all a

– Implemented in TETRAD 
(http://www.phil.cmu.edu/projects/tetrad/)

aNS ⊂

}{\ bNS a⊂
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Kernel-based Causal Leaning
Limitations of the previous implementations of IC
– Linear / discrete assumptions in Step 1.

Difficulty in testing conditional independence for continuous 
variables. 

kernel method!

– Errors of the skeleton in Step 1 cannot be recovered in the later 
steps.

voting method
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KCL algorithm (Sun et al. ICML07, Sun et al. 2007)

– Dependence measure: 

– Conditional dependence measure: 

where the operator                             is defined by  

Motivation:  make               and                 comparable 

Theorem

2)()( ˆˆ
HS

N
YX

N
YX HSIC Σ==H

2

2)(
|)(

|

ˆ
ˆ

HSZZ

HS
N

ZXYN
ZYX C

&&&&Σ
≡H

[ ])()(, ZgZfEgCf ZZ =
ZZZZ HHC →:

2)(ˆ
HS

N
YXΣ

2)(
|

ˆ
HS

N
ZXY &&&&Σ

(X, Y) Z, 2)(22)(
|

ˆˆ
HS

N
YXHSZZHS

N
ZXY C Σ=Σ &&&&If
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Outline of the KCL algorithm:   IC algorithm is modified as follows:

KCL-1:  Skeleton by statistical tests
(1) Permutation tests of conditional independence 

for all (X, Y, SXY) (                         ) with the measure
(2) Connect X and Y if no such SXY exists. 

KCL-2:  Majority votes for directing edges
For all triplets X – Z – Y (X and Y may be adjacent),  give a vote

to the direction X Z and Y Z if 

Repeat this for   (a)                                      (rigorous v-structure)
and      (b)                                      (relative v-structure)

Make an arrow to each edge if a vote is given ( “ ” is allowed).

KCL-3:  Same as IC-3

)(
|

ˆ N
ZYXH},{\ YXVSXY ⊂

| SXYX Y

λ>≡ )(

)(
|

| ˆ
ˆ

N
YX

N
ZYX

ZXYM
H

H

1>>λ
{ }YXZXYZ MM || ,max=λ
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Illustration of KCL

true KCL-1 KCL-2 (a) KCL-2 (b) KCL-3

Heuristic assumption: M MM> ,

Conditioning common effect strengthens the dependence 
between the causes. 
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Hidden common cause

– FCI (Fast Causal Inference, Spirtes et al. 93) extends PC to allow 
hidden variables. 

– A bi-directional arrow ( ) given by KCL may be interpreted as a  
hidden common cause.  Empirically confirmed, but no theoretical 
justification (Sun et al. 2007). 
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Experiments with KCL
Smoking and Cancer
– Data (N = 44)

CIGARET: Cigarettes sales in 43 states in US and District of 
Columbia

BLADDER, LUNG, KIDNEY, LEUKEMIA:  death rates from 
various cancers

– Results

BLADDER

LUNGCIGARET

KIDNEY

LEUKEMIA

BLADDER

LUNGCIGARET

KIDNEY

LEUKEMIA

FCI KCL
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Montana Economic Outlook Poll (1992)
– Data:  7 discrete variables, N = 209

AGE (3),  SEX (2),  INCOME (3),  POLITICAL (3),  AREA (3), 
FINANCIAL status (3, better/same/worse than a year ago),
OUTLOOK (2)

SEX

INCOME

AGE

FINANCIAL

OUTLOOK POLITICAL

AREA

SEX

INCOME

AGE

FINANCIAL

OUTLOOK POLITICAL

AREA

SEX

INCOME

AGE

FINANCIAL

OUTLOOK POLITICAL

AREA

FCI

BN-PC

KCL

BN-PC is a constraint-based method using MI (Chen et al. 2002)
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Summary of Part VI
Causality of time series
– Kernel-based measures Nonlinear extension of Granger 

causality

Causal inference from non-experimental data
– Kernel-based Causal Learning (KCL) algorithm 

• Constraint-based method:  A variant of Inductive Causation
– Conditional independence test with kernel measures
– Voting method for directions

• More reasonable results are obtained than existing methods. 
See Sun et al. (2007) for more detailed comparisons. 
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