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|. Introduction



Dependence

B Correlation

The most elementary and popular indicator to measure the
linear relation between two variables.

Correlation coefficient (aka Pearson correlation)
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B Nonlinear dependence

-:Corr(X,Y)

=0.17

Corr( X, Y ) =-0.06
Corr( X2,Y) = 0.09
Corr( X3,Y ) =-0.38

Corr( sin(nX), Y) = 0.93

Corr( X2,Y)

=0.96



B “Uncorrelated” does not mean “independent”
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Nonlinear statistics with kernels

— Linear methods can consider only linear relation.

— Nonlinear transform of the original variable may help.
X 2> (X, X%, X3, ..)
But,

* |Itis not clear how to make a good transform, in particular, if the
data is high-dimensional.

» A transform may cause high-dimensionality.
e.g.)dmX =100 - XX; # combinations = 4950

Why not use the kernelization / feature map for the transform?



B Kernel methodology for statistical inference
— Transform of the original data by “feature map”.

o L4 HUo)

feature map%ﬁxj . o .

Space of original data RKHS (functional space)

Let’s do linear statistics in the feature space!

— Is this simply “kernelization™? — Yes, in a big picture.

— But, in this methodology, the methods have
clear statistical/probabilistic meaning in the original space,
e.g. independence, conditional independence, two-sample test etc.

— From the side of statistics, it Is a new approach using p.d. kernels.

Goal: To understand how linear methods in RKHS solve classical
inference problems on probabilities. 9



Remarks on Terminology

— In this lecture, “kernel” means “positive definite kernel”.

— In statistics, “kernel” is traditionally used in more general
meaning, which does not impose positive definiteness.

e.g. kernel density estimation (Parzen window approach)

mm=§gux&)

K(Xy, X,) IS not necessarily positive definite.

— Statistical jargon
 “in population”: evaluated with probability e.g. E[X]= jde(x)

 “empirical”. evaluated with sample e.g. l%x
NiZ

 “asymptotic”: when the number of data goes to infinity.
“>°N X;/N asymptotically converges to E[X].”
10



Il. Dependence with Kernels

Prologue to kernel methodology for
Inference on probabilities

11



Independence of Variables

B Definition

— Random vectors X on R™and Y on R" are independent ( X 1L Y)

def.
<~

Pr(X e AY eB)=Pr(X € A)Pr(Y € B)
forany Ae® ,Be®,

B Basic properties
— If Xand Y are independent,

E[T(X)a(Y)]=E[T(X)IE[g(Y)]

— If further (X,Y) has the joint p.d.f p,,(X,y), and X and Y have the
marginal p.d.f. p,(x) and p,(y), resp, then

XY < Py (XYy)=px (X)py(Y)

12



Review: Covariance Matrix

B Covariance matrix
X =Xy X)), Y =(Y,,...,Y,)": m and n dimensional random vectors

Covariance matrix Vy, of X and Y is defined by

Vyy = E[(X —E[XT)(Y —E[Y])' 1= E[XY"]-E[X]E[Y]
(m X n matrix)

In particular, V,, =E[XX']-E[X]E[X]

- V,y =0 ifand only if X and Y are uncorrelated.

Forasample (X® y®) (X Ny M)y
empirical covariance matrix

N

.
Vyy Z X Oy T _ ( Z X (')j( L ZY(')j (m x n matrix)
N i=1 N i=1 =

13



Independence of Gaussian variables

B Multivariate Gaussian (normal) distribution

X =(X;,..., X))~ N(&V) : m-dimensional Gaussian random variable
with mean x and covariance matrix V.

Probability density function (p.d.f.)
1 _
Bx ) - oxp| 5 (- )'V (- )

1
(272')m/2 |V |1/2

B Independence of Gaussian variables
— X, Y: Gaussian random vectors of dim p and g (resp.)

“independent” <  “uncorrelated”
XLY < V=0 < E[XYT]=E[X]EIYT

") 1f Vyy = O, T
Py (¥,%) = : (—;(X_”Xj (Vx_i o j(”ﬂ} Px (0P (¥) ,

exp g
(272')m/2 [Vyx |1/2|VYY |1/2 Y~y O Vy \y—sy




Independence by Nonlinear Covariance

B Independence and nonlinear covariance
— Xand Y are independent

& Cov[f(X),g(Y)]=0 for all measurable functions f and g.

V) Take f(x) = 1,(x) and g(y) = I5(y) for measurable sets A and B.
E[IA(X)IB(Y)]_ E['A(X)]E[ls(Y)]:O
= Pr(X eAY eB)=Pr(X e A)Pr(Y e B)

A
Ll . . 1a¥) indicator function of A

~
>

15



B Measuring all the nonlinear covariance

sup/Cov[ f (X),g(Y)]
f9 can be used for the dependence measure.

— Questions.
* How can we calculate the value?

The space of measurable functions is large, containing
noncontinuous and weird functions

* With finite number of data, how can we estimate the value?

16



Using Kernels: COCO

B Restrict the functions iIn RKHS
X, Y : random variables on Q, and Q, , resp.

Prepare RKHS (H,, k,) and (H,, k) defined on Q, and Q,, resp

Cov| f (X),q(Y
Sup ‘ LF(X). 8 )]‘ .- COnstrained COvariance

feHy geHy || f ||HX 19 “Hv (COCQO, Gretton et al. 05)

B Estimation with data
(X Y1), (X Yy) :iid. sample

CoVp, [ (X), (V)]
sup

ferygety || T lln, 19 1l

Oy (%), 00V = 1 3 10630~ 12 1(X,) -2 0(%)

17



B Solution to COCO

— The empirical COCO is reduced to an eigenproblem:

Lmaxa'G,G, B  subj.to o Gya=1 pB'G,A=1

COCO,, = sup ‘COVemp[f(X),g(Y)]‘_ largest singular value of G}, °Gy'?

terger, I Ellw 191, N

G, and G, are the centered Gram matrices defined by

Gy =Q,KxQy (N x N matrix)
where K, i =Ky (X;,X;) Q,=I,-%1y1y (projectoron 1y )
1, =(,...2)

For a symmetric positive semidefinite matrix A,

AY2 is a symmetric positive semidefinite matrix such that (AY?)?2 = A.
18




Derivation
1 N

COVemp[f(X),g(V)]zNz{uxi)—;if(xj)}{g(m—;ig(vj)}
j=1 =1

i=1

:;%< Fok (0 X0 =R 2k (X)) ky YD) = ke (Y9, 9)
my my

It is sufficient to consider (representer theorem)
f= le\l=1aj {kx (" Xj) - rﬁx }’ g= Z?zlﬂﬁ{kY ("Yz) - rﬁ\( }

Covemp[f(XA)ig(YA)]:[%]Zi[ilzglzlzlj\lzlajﬂ€<kY("Yf)_mY1kY(°1Yi)_mY>
) <k (0 X0) =t Ky (0 X ) =i
:ﬁa G, Gy S
Maximize it under the constraints
I flf, =a'Gya=1 |lgll=8G/B=1

Byusing y=GY%, v=GY?p

Fmaxu'Gy°Gy"™v subj.to  Jul=1, |lv]=1 19



Quick Review on RKHS

B Reproducing kernel Hilbert space (RKHS, review)

Q2 set.
k:QxQ — R pos. def. kernel

—
d1 H: reproducing kernel Hilbert space (RKHS)

such that k is the reproducing kernel of H , I.e.
1) k(-,x)eH forall xeQ.

2) Span{k(-,x)|xeQ} is dense in H.

3) (k(-,x),f), ="f(x) (reproducing property)

— Feature map
O:Q—>H, x> k(-Xx) lLe. ®(x)=k(-,x)

(@(x), f)=f(x) (reproducing property)
20



Example with COCO

Jndependenp

‘Dependent

;
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COCO and Independence

B Characterization of independence

Cov[f (X),q(Y
X and Y are independent — sup Covlf (X). 9 )]‘=O
fery.geHy || T llu 191,

This equivalence holds if the RKHS are “rich enough” to express
all the dependence between X and Y. (discussed later in Part IV.)

For the moment, Gaussian kernels are used to guarantee

this equivalence. x— sz

20°
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HSIC (Gretton et al. 05)

B How a

0.12

0.1

pout using other singular values?

| — 1st SV of G °Gy'?
| — 2nd SV of G} °Gy'?

0 rotation angle 2

HSIC

1
= N2

N 5 1
Z 2HG§<IZG$/2HF = WTF[GXGY]
(7: the i-th singular values of G} *G{'?)

|- Frobenius norm || M ||z = Zi'\"jleiJ? =TrIM"M]

/\ Smaller singular values
’ * also represent dependence.

23



Example with HSIC

independent _ dependent _independent
DA Ry o2
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011 +10.014

10012 HSIC
J0.01 COCO ——

+0.008

01f
009}
008}
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0.06} 10.004

0.05 +0.002

0.04
0

1 1 1 1 1 1 1 0
0.2 04 0.6 0.8 1 1.2 14 1.6

Rotation angle (6)
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Summary of Part Il

COCO Empirical Population
Kernel | 1st SV of Gi’szz Il SEJ”E” _1COV[f (X),9(Y)]
Hx — Hy —

Linear . max Cov[a'X,b'Y]= max a'V..b

(finite dim.) IstSVof V., |lal=lbi= [ ] R
' = 1st SV of V,,
HSIC Empirical Population
1/2~1/2]2 : . .
Kernel HGX Gy HF =mamp \Vhat is the population version?
Linear 72 v HZ
XY

(finite dim.) Vxr HF F

(Sum of SV? of cov. matrix)
25



lIl. Covariance on RKHS



Two Views on Kernel Methods

B As a good class of nonlinear functions
Obijective functional for a nonlinear method

mgx\P(f (X1)en F(XY)) f : nonlinear function

Find the solution within a RKHS.
— Reproducing property / kernel trick, Representer theorem
c.f. COCO in the previous section.

B Kernelization of linear methods
— Map the data into a RKHS, and apply a linear method
Xi > ©(X;)

— Map the random variable into a RKHS, and do linear statistics!
X > ®(X) random variable on RKHS

27



Covariance on RKHS

— Linear case (Gaussian):
Cov[X, Y] = E[YXT] - E[Y]E[X]" : covariance matrix

— On RKHS:
X, Y :random variables on Q, and Q, , resp.
Prepare RKHS (H,, k,) and (H,, k,) defined on Q, and Q,, resp.
Define random variables on the RKHS H, and H, by

q)x(x):kx("x) (DY(Y):kY("Y)

Define the big (possibly infinite dimensional) covariance matrix Z,
x(x) Dy(Y) /I\
-

on the RKHS.
QY
@ e 5 < (=
YX O,
Y
/ H H, | .

28



B Cross-covariance operator
— Definition

There uniquely exists an operator from H, to H, such that

(9.2 f)=E[g(Y) f (X)]-E[g(V)IELf (X)] (= Cov[ f(X),g(Y)])
forall feH,,geH,

Y,y - Cross-covariance operator

— A bit loose expression
Zyx = E[@y (Y )( @y (X), - )]-E[@y (Y)IE[ Dy (X), - )]
c.f. Euclidean case
Vi = E[YXT] - E[Y]E[X]" : covariance matrix
(b,V,xa)=Cov[(b,Y),(a, X)]

29



B [ntuition
Suppose X and Y are R-valued, and k(x,u) admits the expansion

K(x,u) =1+cxu+c,x’u? +c,x%u®+---  e.g.) k(x,u) =exp(xu)

With respect to the basis 1, u, u?, u3, ..., the random variables on
RKHS are expressed by

D(X)=k(X,u) ~ (L, ¢, X, c, X% ¢ X3, ..)
D(Y)=k(Y,u) ~ (L cY,c,Y% ey ..)

0 0 0 0
0 ¢’CovlY,X] ¢C,Cov[Y,X?] c¢cCovY?® X]
Sy ~ |0 6 CovY? XT  c;Cov[Y?, X*]  c,cyCovlY?, X7]
0 c,c,Cov[Y®, X] c4c,Cov[Y®, X?] ciCov[Y?, X°]

The operator %, contains the information on all the
higher-order correlation. 30



B Addendum on “operator”

— “Operator” is often used for a linear map defined on a functional
space, in particular, of infinite dimension.

— X,y Is alinear map from H, to H,, as the covariance matrix V,, Iis a
linear map from R™ to R".

— If you are not familiar with the word “operator”, simply replace it
with “linear map” or “big matrix”.

— If you are very familiar with the operator terminology, you can
easily prove X, Is a bounded operator. (Exercise)

31



Characterization of Independence

B Independence and Cross-covariance operator
If the RKHS’s are “rich enough” to express all the moments,

XandY are independent < X,, =0

L
Cov[ 1(X),9(Y)]=0
(= is always true. or
< requires the richness E[g(Y) f (X)]=E[g(Y)IE[f (X)]

assumption. Part 1V.)
forall feH,,geH,

— c.f. for Gaussian variables
XandY are independent <« V,, =0 Ii.e.uncorrelated

32



Measures for Dependence

B Kernel measures for dependence/independence
Measure the “norm” of %,.

— Kernel generalized variance (KGV, Bach&Jordan 02, FBJ 04)

detX,, detX,,

KGV (X,Y) =

- COCO
COCO(X,Y)=[Zy|= sup (9.2 f)
20,00 Tl 1 9 ll,

— HSIC ,
HSIC(X,Y) =[Zyx5,s

— HSNIC

HSNIC(X,Y) = Hz;\l(’zzYXz;}inls (explained Iater)?,3



B Norms of operators

A:H,—> H, operator on a Hilbert space

— Operator norm

A[=sup|Af|= sup (g.Af)
Il 111, gl-1

c.f. the largest singular value of a matrix

— Hilbert-Schmidt norm

A is called Hilbert-Schmidt if for complete orthonormal systems
@} of Hyand {y; | of H, if

2
ZjZi<Wj’A¢i> < .
Hilbert-Schmidt norm is defined by

AL =32 v Ag )

c.f. Frobenius norm of a matrix 34



Empirical Estimation

B Estimation of covariance operator
ii.d. sample (X Y),....,(Xy Yy)
An estimator of Z,, is given by
1 N

iw() :Né{kY(WYi)_mY }<kx (" Xi)_mx ">
where . 1N . 1N
My :_Zkl("xi)’ my :_Zkz(HYi)
N i=1 N i=1
— Note

* This is again an operator.

* But, it operates essentially on the finite dimensional space
spanned by the data ®(X,),..., ®4(X) and @ (Y,),..., D,(Y,)

35



B Empirical cross-covariance operator

Proposition (Empirical mean)

I\

X =ﬁZiN:1k(-, X.) gives the empirical mean:

M fl= XA =ELFOO] (9 eHy)

Proposition (Empirical covariance)

Z@'() gives the empirical covariance

(.50 )= z{ (V) - E[g (VIR (X)) - ELf (X)]]

(Vf eHy,VgeH,)

My : empirical mean element (in RKHS)

i@'() . empirical cross-covariance operator (on RKHS)

36




COCO Reuvisited

B COCO = operator norm
COCO(X,Y)=[Zyx|= sup [[9.Zyx )

I TlI=Lllgll=1
with data
—>
COCO,,, (X, V) =[2R = sup (g, 2(0f)
| F1I=L,/lgll=2

previous

= sup ‘Covemp[f(x),g(\?)]‘ S definition

IflI=llgll=L

1 .
= largest singular value of G}, °Gy'?

37



HSIC Revisited

B HSIC = Hilbert-Schmidt Information Criterion
HSIC(X,Y) =[Sy |2

with data

:> N A
HSIC, (X V) = [200 " = 2Tr[GXGY]

{ii%{k ("Yi)_mY }<kx(',xi)_mx ’kx("xj)_mx ><kY("Yj)_mY’.>}

Mz 2
N Mz

<kx ("Xi)_mx ’kx ("Xj)_mx ><kY(°'Yj)_mY'kY('1Yi)_mY >

38



Application of HSIC to ICA

B Independent Component Analysis (ICA)

— Assumption
m independent source signals
m observations of linearly mixed signals

R, 1'[
/@1)3 X,(t)

A ——>8& x© XO=ASQ)

\ ;3 A: mxm invertible
.\'{3 Xs(1) matrix

— Problem
Restore the independent signals S from observations X.

S — BX B: mxm orthogonal matrix
39



B |CA with HSIC

X® . XM +ijd. observation (m-dimensional)

Pairwise-independence criterion is applicable.

Minimize L(B)=> > HSIC(Y,,Y,) Y = BX

a=lb>a

Obijective function is non-convex. Optimization is not easy.
- Approximate Newton method has been proposed
Fast Kernel ICA (FastKICA, Shen et al 07)

(Software downloadable at Arthur Gretton’s homepage)

B Other methods for ICA

See, for example, Hyvarinen et al. (2001).

40



B Experiments (speech signal)

>
\

{ sy(t)

P A ~ /4’}:
¢ Szﬁ)% A s ‘3‘)‘3@&2(0 3 B )
b /randomly\\ & = / \\

8 |
{ 53(t) generated 1l Fast KICA v

Three speech
signals

41



Normalized Covariance

B Correlation — normalized variance

Covariance is not normalized well: it depends on the variance of X, Y.
Correlation is better normalized

Vi VoV
B NOrmalized Cross-Covariance Operator (FBGO7)
NOCCO Wiy = Z\_(\l(/ZZYXZ;(l)éz

Definition: there is a factorization of the X, such that
1/ 1/2
Zyy = ZYYZWYXZXX

— Operator norm is less than or equal to 1, i.e. ||Wyy |[<1

42



B Empirical estimation of NOCCO
(X Y1), (X Yy) - sample

—1/2

Wi :(i$§)+gN|) i\((l;l()(i(xlgl()_l_gl\ll)—llz

&y regularization coefficient

Note: f)(x';'() IS of finite rank, thus not invertible

B Relation to Kernel CCA
— See Bach & Jordan 02, Fukumizu Bach Gretton 07

43



Normalized Independence Measure

B HS Normalized Independence Criterion (HSNIC)

Assume W,y =2/ °Z, 2 0% is Hilbert-Schmidt

HSNIC =Wy s =[5 2037

HSNIC,y = MA[° = Tr[G, (G + Ney 1 )Gy (Gy + Ner )7

(Confirm this — exercise)

B Characterizing independence

Theorem
Under some “richness” assumptions on kernels (see Part V).

HSNIC =0 ifandonlyif Xand Y are independent.

44



Kernel-free Expression

B Integral expression of HSNIC without kernels

Theorem (FGSS07)

Assume that H, ® H, +R is dense in L*(P, ® R,), and the laws P,
and P, have p.d.f. w.r.t. the measures g, and z,, resp.

HSNIC =||Woy [l

- Pxy (X, Y) _1j2 q ’
H( 0. ()py(y) ) X (X) Py (y)dza (X)du ()

= Mean Square Contingency

— HSNIC is defined by kernels, but it does not depend on the kernels.
Free from the choice of kernels!

— HSNIC,,,, gives a kernel estimator for the Mean Square
Contingency.
45



HSIC

HSNIC

« Simple to compute

* Does not depend on the

PROS | *Asymptotic distribution kernels in population
for independence test
Is known (Part V)
» Regularization coefficient
» The value depends on IS needed.
CONS the choice of kernels

e Matrix inversion is needed.

» Asymptotic distribution
for independence test
IS not known.

(Some experimental comparisons are given in Part V.)

46




Choice of Kernel

B How to choose a kernel?

— Recall: in supervised learning (e.g. SVM), cross-validation (CV) is
reasonable and popular.

— For unsupervised problems, such as independence measures,
there are no theoretically reasonable methods.

— Some heuristic methods which work:
» Heuristics for Gaussian kernels

o = medianmxi _XJH LE: j}
» Make a related supervised problem, if possible, and use CV.

— More studies are required.

a7



Relation with Other Measures

B Mutual Information

MIECXY) = [ [ oy (o) Tog - P Y) g yd
(Y = [ P (o) tog 0 d (00t ()

B M| and HSNIC

HSNIC(X,Y) < MI(X,Y)

>= (correction. June 2014)

) .
Pyy (X, )
HSNIC = || pyy (X, —1 {d g, (X)d s,
|| (X y)( 0. (D, () j 4 (X)d e, (y)
< ([ “ ’ I pXY(X’y) d d , — MI
=< || Pxy (X, y)log 0. (D, (y) 4 (X)d i, (Y)

>= (corre::ti.on. June 2014) (IOg 7<7 _1) 48
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— Mutual Information:
 Information-theoretic meaning.

« Estimation is not straightforward for continuous variables.
Explicit estimation of p.d.f. is difficult for high-dimensional data.

— Parzen-window is sensitive to the band-width.
— Partitioning may cause a large number of bins.
« Some advanced methods: e.g. k-NN approach (Kraskov et al.).

— Kernel method:
» Explicit estimation of p.d.f. is not required,;

the dimension of data does not appear explicitly, but it is
Influential in practice.

« Kernel / kernel parameters must be chosen.

— Experimental comparison
See Section V (Statistical Tests)

49



Summary of Part Il

B Cross-Covariance operator

— Covariance on RKHS: extension of covariance matrix
— If the kernel defines a rich RKHS,

XJ.LY <~ ZXY :O

B Kernel-based dependence measures

— COCO: operator norm of 2,
— HSIC: Hilbert-Schmidt norm of X,

— HSNIC: Hilbert-Schmidt norm of normalized cross-covariance
operator W,, =X V2%, 52

HSNIC = mean square contingency (in population) kernel free!

— Application to ICA
50



V. Representing a
Probabillity



Statistics on RKHS

B Linear statistics on RKHS T @ (X) = k( , X)
X .

v - A

Q (original space) ~ feature map v " H (RKHS)

— Basic statistics Basic statistics
on Euclidean space on RKHS
Mean —> Mean element
Covariance —> Cross-covariance operator 2yy
Conditional covariance —>  Conditional-covariance operator

(Part VI)

— Plan: define the basic statistics on RKHS and derive nonlinear/

nonparametric statistical methods in the original space. -



Mean on RKHS

— Empirical mean on RKHS
XW,., XM iid. sample > ®(X,),...,®(X, ) : sample on RKHS

N N
Empirical mean 1M, :%Z‘D(Xi)Z%Zk(',Xi)
=1 iI=1

E[f(X)] (Vi eHy)

" _lN |
<mx’f>—Ni§f(X.)

— Mean element on RKHS
X :random variable on Q - ®(X) : random variable on RKHS.

Define m, =E[D(X)]

(my, f)=E[f(X)] (Vf e H)

53



Representation of Probabllity

B Moments by a kernel

Example of one-variable

K(x,u) =exp(xu) =1+CXU+C, XU +Cx°u° +---
l }JJFCB [B}J3+“°

« As a function of u, the mean element m, contains the information
on all the moments — “richness” of RKHS.

=

my (u) = Ex [k(X,u)]=1+c¢,Ex [X

Ju+c,E

 [tis natural to expect that m, “represents” or “characterizes” a
probability under “richness” assumption on the kernel.

0
7777777777777
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E
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Characteristic Kernel

B Richness assumption on kernels
®: family of all the probabilities on a measurable space (Q2, B).

H: RKHS on Q with measurable kernel k.

m,: mean element on H for the probability P e®
— Definition

The kernel k is called characteristic if the mapping

P —H, P m,
IS one-to-one.

— The mean element of a characteristic kernel uniquely determines

the probability. Mo =m, < P, =P
x — My X~ Ty
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— “Richness” assumption in the previous sections should be replaced
by “kernel is characteristic” or the following denseness assumption.

— Sufficient condition
Theorem
k: kernel on a measurable space (2, ). H: associated RKHS. q =1.

If H+ R is dense in L9(P) for any probability P on (€2, ®), then
k is characteristic

— Examples of characteristic kernel
e Gaussian kernel on the entire R™

ks (X, y) = eXp(— Ix— y2/202) (o >0)
» Laplacian kernel on the entire R™
K (X,y) = exp(— A% =Y |) (41>0)
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B Universal kernel (Steinwart 02)

A continuous kernel k on a compact metric space Q is called
universal if the associated RKHS is dense in C(Q), the functional
space of the continuous functions on Q with sup norm.

Example: Gaussian kernel on a compact subset of R™

Proposition

A universal kernel is characteristic.

— Characteristic kernels are wider class, and suitable for
discussing statistical inference of probabillities.

— Universal kernels are defined only on compact sets.

— Gaussian kernels are characteristic either on a compact subset
and the entire of Euclidean space.
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Two-Sample Problem

Two 1.i.d. samples are given;
XW XN gng ¥y ® Yy

Are they sampled from the same distribution?

— Practically important.
We often wish to distinguish two things:

— Are the experimental results of treatment and control
significantly different?

— Were the plays “Henry VI” and “Henry II” written by the
same author?

— Kernel solution:

Use the difference My — My
with a characteristic kernel such as Gaussian.
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— Example: do they have the same distribution? N =

N(.1)

N(O.1)

°
il ° .o.o ..’
®
1 .' ..:'8* 0;;‘ .
or o % ° %
[ )
1 '.0:.. ‘.o .° ..'
P
Sl °

0.5N(0,1) 0.5Unif



Kernel Method for Two-sample

Problem

B Maximum Mean Discrepancy (Gretton etal 07, NIPS19)
— In population
2
MMD? = |m, —m, [,

— Empirically
A o 12
IVIIVIDeZmp:HmX _mYHH
1 Ny 2 Ny Ny 1 Ny
=7 Zk(xiixj)_ 2. 2 KXY )+ D k(YY)
x 1,j=1 x Ny i=la=l y a,b=l

— With characteristic kernel, MMD =0 if and only if P, =P,.
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Means of MMD over 100 samples

Experiment with MMD

Ny =Ny = 100

|
|

0 0.2 04 0.6

C

— N(0,1) vs

——— N(0,1) vs N(0,1)

c Unif + (1-c) N(0,1)
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0.012¢
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0.006+
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Characteristic Function

— Definition
X: random vector on R™ with law Py
Characteristic function of X is a complex-valued function defined by

£ U)=Efe ™ |= (e ™R, (x)  (ueR™)
If Py has p.d.f. p,(x), the char. function is Fourier transform of p,(x).

— Moment generating function

1 df r
ﬁr du" é:X (U)= E[X ]

— Chrac. function is very popular in probability and statistics for
characterizing a probability.
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B Characterizing property

Theorem
X, Y: random vectors on R™ with prob. law Py, P, (resp.).

cx =¢y & Py =R




Kernel and Ch. Function

B Fourier kernel Is positive definite
Ke (X, y) = exp(x/Tl X' y) IS a (complex-valued) pos. def. kernel.
&y (U) = E[ke (X,u)] = mean element with k.(x,y) !
— Characteristic function is a special case of the mean element.

B Generalization of characteristic function approach

— There are many “characteristic function” methods in the statistical
literature (independent test, homogeneity test, etc).

— The kernel methodology discussed here is generalizing this
approach.

 The data may not be Euclidean, but can be structured.
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Re: Representation of Probability

B Various ways of representing a probability
— Probability density function p(X)

— Cumulative distribution function F.(t) = Prob( X <t)
— All the moments E[X], E[X?], E[X?], ...
— Characteristic function &y (u) = E[eﬂ“TX J= [e™dP, (x)
— Mean element on RKHS m,(u) = E[K(X, u)]

Each representation provides methods for statistical inference.
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Summary of Part IV

B Statistics on RKHS - Inference on probabillities

— Mean element - Characterization of probability
Two-sample problem

— Covariance operator - Dependence of two variables
Independence test, Dependence measures

— Conditional covariance operator - Conditional independence
(Section VI)

B Characteristic kernel
— A characteristic kernel gives a “rich” RKHS
— A characteristic kernel characterizes a probability.

— Kernel methodology is generalization of characteristic function
methods
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V. Statistical Test



Statistical Test

B How should we set the threshold?

Example) Based on a dependence measure, we wish to make a
decision whether the variables are independent or not.

Simple-minded idea: Set a small value like t = 0.001
I(X,Y) <t = dependent
I(X,)Y) >t => independent

But, the threshold should depend on the property of X and Y.

B Statistical hypothesis test

— A statistical way of deciding whether a hypothesis is true or not.
— The decision is based on sample - We cannot be 100% certain.
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B Procedure of hypothesis test

* Null hypothesis H, = hypothesis assumed to be true
“X and Y are independent”

Prepare a test statistic T
e.g. Ty = HSIC

Null distribution: Distribution of T,, under the null hypothesis

This must be computed for HSICemp

Set significance level ¢  Typically « =0.05 or 0.01

Compute the critical region: « = Prob. of T, >t under H,.

Reject the null hypothesis if T >t

The probability that HSIC,,,, > t, under
Independence is very small.

otherwise, accept the null hypothesis negatively. 69



One-sided test

1

p.d.f. of Null distribution

09

08
0.7

06|

area = p-value , Ty>t, < p-value< o

(24

05|

area = a (5%, 1% etc)
significance level

03[

02F e

venenanananfipatny

EETTTTTTTTTY PO i

| | | | | | Faais e .
0 05 1 15 25 3 35 4 45 5
T >

threshold t, critical region

- If the null hypothesis is the truth, the value of T, should follow
the above distribution.

- If the alternative is the truth, the value of Ty, should be very large.

- Set the threshold with risk «.

- The threshold depends on the distribution of the data.
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B Type | and Type Il error

— Type | error = false positive (e.g. dependence = positive)
— Type Il error = false negative

TRUTH
H, Alternative
Type Il error

True negative
False negative

Type | error True positive

TEST RESULT
Reject H,| Accept H,

False positive

Significance level controls the type | error.

Under a fixed type | error, the type Il error should be

as small as possible. -



Independence Test with HSIC

B Independence Test

— Null hypothesis H,: Xand Y are independent
Alternative H,: XandY are not independent (dependent)

— Test statistics
Ty =N xHSIC,,,

— Null distribution

UnderH, Ty = 2/1 22 convergence in distribution
(HSIC,, =0, (L/N))

where Z ~N(01) iid.
A, are the eigenvalues of an integral equation (not shown here)

— Under alternative

Ty :Op(\/ﬁ) (N — o0)
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B Synthesized data

0

% acceptance of H

Example of Independent Test

— Data: two d-dimensional samples
(X XY (X)X V)

Samp:128, Dim:1

1

0

0.8}

0.6}

0.4}

0.2}

% acceptance of H

0

0 05 1
Angle (xm/4)
strength of dependence

0.2}

Samp:128, Dim:2

— — =

(Yl(l)v--’Yd(l))’-"’(Yl(N)’---’Yd(N))

0

% acceptance of H

0 0.5

Angle (xm/4)

Samp:1024, Dim:4

05 1
Angle (xm/4)
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Traditional Independence Test

H P.d.f.-based

— Factorization of p.d.f. isused.  P(Xy-.es Xpn) = P(X) -+ P(X)
— Parzen window approach.
— Estimation accuracy is low for high dimensional data

B Cumulative distribution-based
— Factorization of c.d.f. isused. F*(t,,...,t )=F*(t)---F*"(t )

B Characteristic function-based
— Factorization of characteristic function is used.

B Contingency table-based

— Domain of each variable is partitioned into a finite number of parts.
— Contingency table (number of counts) is used.

B And many others
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B Power Divergence (Ku&Fine05, Read&Cressie)

— Make partition {A;},_,: Each dimension is divided into q parts so
that each bin contains almost the same number of data.

— Power-divergence .,
Ty =21*(X,m)=N “’j —

1= M| 0; : frequency in A
12= Mean Square Conting. p™): marginal freq. in r-th interval

— Null distribution under independence
2
v = ZqN—qN+N—l
B Limitations
— All the standard tests assume vector (numerical / discrete) data.

— They are often weak for high-dimensional data.
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Independent Test on Text

— Data: Official records of Canadian Parliament in English and French.

 Dependent data: 5 line-long parts from English texts
and their French translations.

* Independent data: 5 line-long parts from English texts
and random 5 line-parts from French texts.

— Kernel: Bag-of-words and spectral kernel

Topic Match BOW(N=10) Spec(N=10) BOW(N=50) Spec(N=50)
HSIC, HSIC, HSIC,HSIC, HSIC, HSIC, HSIC, HSIC,

Agri- Random 1.00 094 100 095 100 0.93 1.00 0.95
culture Same 099 0.18 100 0.00 0.00 0.00 0.00 0.00

Fishery Random 1.00 094 100 094 100 0.93 1.00 0.95
Same 100 020 100 0.00 0.00 0.00 0.00 0.00

Immig- Random 1.00 096 1.00 091 099 094 1.00 0.95
raton Same 1.00 0.09 100 0.00 0.00 0.00 0.00 0.00

Acceptance rate (a = 5%) (Gretton et al. 07) 76



Permutation Test

— The theoretical derivation of the null distribution is often difficult
even asymptotically.

— The convergence to the asymptotic distribution may be very slow.

— Permutation test — Simulation of the null distribution

 Make many samples consistent with the null hypothesis by
random permutations of the original sample.

« Compute the values of test statistics for the samples.

Independence test
X Xy Xg Xy Xe Xg X, = Xy Xy Xg Xy X Xg X, independent
Y,Y, Y Y, Y Y Y, YeY Y2 Y, Y, Y Y,

Two -sample test

............................................................................................................................................................................

................................................................................................................................................................................

homogeneous
* It can be computationally expensive. 7



B Independence test for 2 x 2 contingency table

— Contingency table =~ Histogram by 1000 random
permutations and true #2.

Y many random
0 1 permutations
v O 175 93 |:>
11 71 161
— Test statistic ~
Y - A Y
TN - N Z (plj _ pX,:I pY,j) — Zz (N >0 under HO)
i,j=01 pX I pY ]
— Example
Y P-value by true y< = 0.193
0 124 154 P-value by permutation = 0.175
X 1| 102 | 120 Independence is accepted with a = 5%
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B Independence test with various measures

— Data 1: dependent and uncorrelated by rotation (Part I)
X and Y: one-dimensional, N =200

indep. more dependent
Angle 0.0 45 9.0 13.518.022.5
HSIC (Median) 93 92 63 5 0 O
HSIC (Asymp. Var.) 93 44 1 O 0 O
HSNIC (¢= 104 Median) 94 23 0 O 0 O
HSNIC (&= 108, Median) 92 20 1 O O O
HSNIC (&= 108, Median) 93 15 O O 0 O
HSNIC (Asymp. Var.) 94 11 0 O 0 O
MI (#NN = 1) 93 62 11 O O O
MI (#NN = 3) %6 43 0 O 0 O
MI (#NN = 5) 97 49 0 O 0 O
Conting. Table (#Bins=3) 100 96 46 9 1 O
Conting. Table (#Bins=4) 98 29 0 O O O
Conting. Table (#Bins=5) 98 82 5 0 0 O

# acceptance of independence out of 100 tests (o = 5%) 79



— Data 2: Two coupled chaotic time series (coupled HéEnon map)
X and Y: 4-dimensional, N =100

indep. more dependent

Coupling:] 0.0 0.1 0.2 0.3 04 05 0.6
HSIC /5 70 58 52 13 1 O
HSNIC 97 66 21 1 O 1 O
MI (#NN=3) 87 91 83 /3 23 o6 O
MI (#NN=5) g7 88 /5 67 23 5 0
MI (#FNN=7) 87 8 /5 64 21 5 O

# acceptance of independence out of 100 tests (a = 5%)
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Two sample test

B Problem
Two i.i.d. samples X,,..., X Y1 Yy

Null hypothesis H,: P, =R,
Alternative H,: P, #R

B Homogeneity test with MMD (Gretton et al NIPS20)
T, = N xMMD?

emp

-~ S KX X )= 2K(X Y) +K (YY)

i j=1

B Null distribution
— Similar to independence test with HSIC (not shown here)
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N
B Experiment —
— Data integration
We wish to integrate two datasets into one. —
The homogeneity should be tested!
% acceptance of homogeneity
Dataset Attribut. MMD?2  t-test FR-WW FR-KS
Neural | (w/wo spike) Same 96.5 100.0 97.0 95.0
(N=4000,dim=63) Diff. 0.0 42.0 0.0 10.0
Neural Il (w/wo spike) Same 95.2 100.0 95.0 94.5
(N=1000,dim=100) Diff. 3.4 100.0 0.8 31.8
Microarray (health/tumor) Same 94.4 100.0 94.7 96.1
(N=25,dim=12000) Diff. 0.8 100.0 2.8 44.0
Microarray (subtype) Same 964 100.0 94.6 97.3
(N=25,dim=2118) Diff. 0.0 1000 00 284

(Gretton et al. NIPS20, 2007)
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Traditional Nonparametric Tests

B Kolmogorov-Smirnov (K-S) test for two samples

One-dimensional variables
— Empirical distribution function

1 N
Fy(t) =—2 1(X; <t)
N ia
— KS test statistics

2
Dy, = suF?‘FNl (t)- R (1) (0
t

€ A
VDN Pyt (D)
— Asymptotic null distribution |
Is known (not shown here).

—
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B \Wald-Wolfowitz run test

One-dimensional samples

— Combine the samples and plot the points in ascending order.

— Label the points based on the original two groups.

— Count the number of “runs”, i.e. consecutive sequences of the same

label. R = Number of runs
— Test StatiStiCS ........................

r _R-ERl _ NOD) e

" VarlR] R=10

— In one-dimensional case, less powerful than KS test

B Multidimensional extension of KS and WW test
— Minimum spanning tree is used (Friedman Rafsky 1979)
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Summary of Part V

B Statistical Test

— Statistical method of judging significance of a value.
— It determines a “threshold” with some risk.

B Statistical Test with kernels

— Independence test with HSIC
— Two-sample test with MMD?

— Competitive with the state-of-art methods of nonparametric tests.

— Kernel-based statistical tests work for structured data, to which
conventional methods cannot be directly applied.

B Permutation test

— It works well, if applicable.
— Computationally expensive.
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VI. Conditional Independence



Re: Statistics on RKHS

B Linear statistics on RKHS T @ (X) = k( , X)
X .

v -

/

Q (original space) ~ feature map v " H (RKHS)

— Basic statistics Basic statistics
on Euclidean space on RKHS
Mean —> Mean element
Covariance —> Cross-covariance operator 2y

Conditional covariance —s  Cond. cross-covariance operator

— Plan: define the basic statistics on RKHS and derive nonlinear/

nonparametric statistical methods in the original space. g7



Conditional Independence

B Definition

X, Y, Z: random variables with joint p.d.f. Pxyz (X, Y,2)
X and Y are conditionally independent given Z, if

Pyizx (Y12,%) = pyz (Y| 2) (A)
or
Pxviz (X, Y 12) = Pxz (X]Z) Py (Y 2) (B)
(A)
X Z Y (B) 7
O—0O—0
With Z known, the information of X X O O Y

IS unnecessary for the inference on Y
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Review: Conditional Covariance

B Conditional covariance of Gaussian variables

— Jointly Gaussian variable
X =(Xpo 0 Xp), Y =(Y1,...,Yy)
Z =(X,Y) :m(=p+q) dimensional Gaussian variable

V V
Z~N(uV) y:(“X} vz( S
Hy Vi Wiy

— Conditional probability of Y given X is again Gaussian
~N (,Uv|x ’VYY|X )
Cond. mean Hox = E[Y [ X =X]= 1 ViV (X = a2 )

Cond. covariance Viyx =CoV[Y | X = X]=Vyy —Voy Vi Vey

Schur complement of V,, in V

Note: Vyyx does not depend on x 89



Conditional Independence for

Gaussian Variables

B Two characterizations
X,Y,Z are Gaussian.

— Conditional covariance
— Comparison of conditional variance

XUY|Z < Vyixzi =Wz

.. -1 V
) Viyy VY[X Z]V[X Z1[X, Z]V[Z X1y = Vyy _(VYX V2 [ XX *

ZX VZZ

—V. _(V V ) | O VX_)%|Z O I VXZ ZZ V
" e _VZ_Z]\/ZX I O VZ_Z1 O I VZY

-1
:VYY|Z _VYX|ZVXX|ZVXY|Z 90



Linear Regression and Conditional

Covariance

B Review: linear regression
— X, Y: random vector (not necessarily Gaussian) of dim p and g (resp.)

X =X —E[X], Y=Y-E[Y]

— Linear regression: predict Y using the linear combination of X.
Minimize the mean square error:

min EW—AﬂF

Agx p matrix
— The residual error is given by the conditional covariance matrix.

min E|Y - A)?H2 = Tty |= Tr[CovlY | X 1]

A.gx p matrix
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— Derivation
EV — AX[ = Tr[E[VY T 1- AE[XYT]- E[YX 1A + AE[XX 1A |
= TrVyy — AV, —Viy AT + AV, AT |
= Tr[(A_VYxVx_>1< Wox (A=Vyx Vi)' J T Trb/w _VYXVX_)l(VXY J

Aopt :VYxVx_i
and ~ »
EJY - AOth = Tr[Vyy _VYXVX_)%VXY

— For Gaussian variables,
Vivix 21 = Vviz (<& XWLY|Z)

can be interpreted as
“If Z s known, X is not necessary for linear prediction of Y.”
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Conditional Covariance on RKHS

B Conditional Cross-covariance operator
X, Y, Z : random variables on Q,, Q,, Q, (resp.).
(Hy, ky), (Hy, k), (H;, k;) : RKHS defined on Q,, Q,, Q, (resp.).
— Conditional cross-covariance operator H, — H,

ZYX|z =2yx — szzilzzzx

Note: X5, may not exist. But, we have the decomposition
1/2 1/2
Zyy = Zyy Wyy 2y

Rigorously, define U2 1/2
Zyxjz = Zyx — Zyy Wy, Woy Zyy

— Conditional covariance operator
_ 1
Zyyjz =2y —2yzZzz 27y
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Two Characterizations of Conditional
Independence with Kernels

(1) Conditional covariance operator (FBJo4, 06)

Under some “richness” assumptions on RKHS (e.g Gaussian)
— Conditional variance

(9,2y29) = ENar[g(Y)| Z]]= inf E[§(Y)-T(2)

feH,
— Conditional independence
XAY |[Z S Zyyxz] = 2vviz
X is not necessary for predicting g(Y)

— c.f. Gaussian variables
b'Vyyzb=Varfb'Y |Z]=minb'Y ~a'Z|’
a

XUY|[Z < Viyxz; =Yy
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(2) Cond. cross-covariance operator (FBJo4, Sun et al. 07)

Under some “richness” assumptions on RKHS (e.g. Gaussian),
— Conditional Covariance

19Ty ) = E[Cov[g(Y), F(X)|Z]]
— Conditional independence
XWUY|Z & E4,=0 = Zyz =0)
where X =(X,Z2),Y=(Y,2)

— c.f. Gaussian variables

a'Vyy b =Cov[a'X,b"'Y |Z]

XJ.LY|Z = VXY|Z:O
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— Why is “extended variable” needed?
9.2y T) = E[Covg(Y), T (X)|Z]]
(9, Tz f )= Cov[g(Y), f(X)|Z =1]
The l.h.s is not a funciton of z. c.f. Gaussian case

Sz =0 = p(xy)=]p(x]2)p(ylz)p(z)dz
Iz =0 7 p(x,y[z)=p(x|z)p(y]|2)
However, if X is replaced by [X, Z]
Svixz12 =0 = p(x,y,2')=[p(x,zz)p(y|2)p(z)dz
where  P(X,Z'2) = p(x|2)d(z'-2)
= p(x,y,2') = p(x[Z')p(y|Z) p(Z')
Le.  p(xyl|z)=pKx|z)p(y|Z)
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Application to Dimension Reduction

for Regression

B Dimension reduction

Input: X =(X,, ..., X)), Output: Y (either continuous or discrete)
Goal: find an effective subspace spanned by an m x d matrix B s.t.

Py (Y [ X) =Py gry (Y IB'X)  where BTX = (b,7X, ..., by'X)

linear feature vector
No further assumptions on cond. p.d.f. p.

B Conditional independence

B spans effective subspace

&>  XILY |BTX
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Kernel Dimension Reduction

(Fukumizu, Bach, Jordan 2004, 2006)

Use d-dimensional Gaussian kernel k4(z,,z,) for B'X, and a
characteristic kernel for Y.

(> : the partial order of

2 > 2 M
Yy['x — TYYIX self-adjoint operators)

B: |r3rT]:3rl|d Tr[szTx }

Very general method for dimension reduction:

No model for regression, no strong assumption on the distributions.
Optimization is not easy.

See FBJ 04, 06 for further details.

(Extension: Nilsson et al. ICMLO7) 98



Experiments with KDR

B Wine data KDR  Partial Least Square
Data 15| *

13 dim. 178 data ;%. o
3 classes | L 0 Sl f, e ?t‘;'

2 dim. projection . ﬂ . % - 1_-.-‘93-.

ol -10
151 ™
k(zl’ 22) -20t ‘ ‘ ‘ ‘ il ‘ ‘ ‘ ‘ ‘
-20 -10 0 10 20 -20 -10 0 10 20
2/ 2
—exp(-Iz -2 [o?)
- 30 CCA o Sliced Inverse Regression
O — 15 15 o
10r 10r .. o
5 5¢ t A G
of or A
sl -5 ‘ h S,
-10} -10¢ @ o g
151 -15
20 -20
—2‘0 -1 ‘O O 1 ‘0 2‘0 -26 -1 ‘0 0 1 0 2‘0
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Measure of Cond. Independence

B HS norm of cond. cross-covariance operator
— Measure for conditional dependence

HSCIC =[Sy, | X =(X,2).Y =(Y,2)

— Conditional independence
Under some “richness” assumptions (e.g. Gaussian),

HSCIC = HEX-Y--lz HZHS is zeroifand only if X1LY |Z

— Empirical measure
HSCIC,y, = Tr|G4 Gy —2G, (G, + Ney 1, )G, G,
+G,(G, +Neyly )Gy (G, + Neyly ) *G,Gy |
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Normalized Cond. Covariance

B Normalized conditional cross-covariance operator
WYx|z =Wy — Wy, Woy Recall: X, = 2\1(/YZWYX21>&

w12 “1/2  w-1/2 -1 ~1/2
WYX|Z = Lyy ZYX|ZZXX = Lyy (ZYX —Zyz L7727 Exx

— Conditional independence
Under some “richness” assumptions (e.g. Gaussian),

— HS Normalized Conditional Independence Criteria
2
HSNCIC =Wy,
HSNCIC =0 - XY |Z
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— Kernel-free expression. Under some “richness” assumptions,

2
Wiz [liss

_ J‘J‘( Pxvz (X, Y,2) = Pxjz (X[ 2) Py (V] 2) P (2)
Pxz (X,2) Pyz (Y, 2)

(“Conditional” mean square contingency)

2
j Pxz (X, Z) Pyz (Y, z)dxdydz

— Empirical estimator of HSNCIC
HSNCIC :Tr[RX- Ry —2RyRyR; + Ry R; Rv'Rz]

emp

Ry =Gy (G>‘<‘ T NgNlN)_jL etc.
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Conditional Independence Test

B Permutation test with the kernel measure

Ty = 2% Hsz o T = M His

— If Z takes values in a finite set {1, ..., L},

set A ={i|Z =0} (/=1,.,L), £ {|]%ai] Yaa
otherwise, partition the values of Z into % i Yai, | Gy
L subsets C,, ..., C,, and set S (|| Kail Y,
A ={i|Z, eC} (¢=1,..,L). o (|Xai Yai,
— Repeat the following process B times: (b=1, ...,B) E | Xai| Yai, | Co
1. Generate pseudo cond. independent S \|[Xaid Y2y
data D® by permuting X data within each A o v
2. Compute T,® for the data D® . *g XL’i.Y YL’P o
—> Approximate null distribution o Lig| "L
under cond. indep. assumption S {1[ A i Y
— Set the threshold by the (1-a)-percentile of Lo

the empirical distributions of T,®).



Application to Graphical Modeling

— Three continuous variables of medical measurements. N = 35.
(Edwards 2000, Sec.3.1.4)

Creatinine clearance (C), Digoxin clearance (D), Urine flow (U)

Kernel mehod (permut. test) Linear method
HSN(C)IC P-val. (partial) cor. P-val.
DILU | C 1.458 0.924 Parcor(D,U|C) 0.4847 0.0037
ClD 0.776 <0.001 Cor(C,D) 0.7754 0.0000
Cl U 0.194 0.117 Cor(C,U) 0.3092 0.0707
DI U 0.343 0.023 Cor(D,U) 0.5309 0.0010

— Suggested undirected graphical model by kernel method

D U
The conditional independence D1LU|C

coincides with the medical knowledge.
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Statistical Consistency

B Consistency on conditional covariance operator

Theorem (FBJO6, Sun et al. 07)
Assume &y >0 and VNgy —

Zx(fl;lq)z _ZYX|ZHHS —0 (N — o)

In particular,

i\((l;lq)z HHS - HZYXV HHS (N =)

l.e. HSCIC,,,, converges to the population value HSCIC.
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B Consistency of normalized conditional covariance

operator
Theorem (FGSSO07)

Assume that Wyy; is Hilbert-Schmidt, and the regularization
coefficient satisfies &y —0 and N'3¢ — o0, Then,

(N
Y(X|% ~Wxz HHS —0 (N — o)

In particular,

\/ (N)
YX|2 HHS - ‘MYXVHHS (N = o)

l.e. HSNCIC,,,,, converges to the population value HSNCIC.

— Note: Convergence in HS-norm is stronger than convergence

in operator norm.
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Summary of Part V

B Conditional independence by kernels

— Conditional independence is characterized in two ways;
» Conditional covariance operator
XY |[Z 2YY|[XZ] = 2W|z
« Conditional cross-covariance operator

XAY |Z S Iy =0 or Xy =0

B Kernel Dimensional Reduction
A very general method for dimension reduction for regression

B Measures for conditional independence

— HS norm of conditional cross-covariance operator

— HS norm of normalized conditional cross-covariance operator
Kernel free in population.
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VIl. Causal Inference
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Causal Inference

B \Vith manipulation — intervention

QD\ X'Is a cause of Y?
x ’

O" ;OY Easier. (do-calculus, Pearl 1995)

manipulate observation

B No manipulation / with temporal information
X(t) Y(t) :observed time series
X(1), ..., X(t) are a cause of Y(t+1)?

B No manipulation / no temporal information

X
/C>\ Causal inference is harder.
O Y
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B Difficulty of causal inference from non-experimental

data

— Widely accepted view till 80’s

Causal inference is impossible without manipulating some
variables.

e.g.) “No causation without manipulation” (Holland 1986, JASA)

— Temporal information is very helpful, but not decisive.

e.g.) The barometer falls before it rains, but it does not cause
the rain.

— Many philosophical discussions, but not discussed here.
See Pearl (2000) and the references therein.
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B Correlation (dependence) and causality
Do not confuse causality with dependence (or correlation)!

Example)
A study shows:
Young children who sleep with the light on are much more likely
to develop myopia in later life. (Nature 1999)

Parental myopia

/C\

© O

light on  short-sight
(Nature 2000)

Hidden common cause
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Causality of Time Series

B Granger causality (Granger 1969)
X(1), Y(t): two time series t=1,2,3, ...

— Problem:
Is {X(1), ..., X(t)} a cause of Y(t+1)?

(No inverse causal relation)

— Granger causality
Model: AR ) )
Y (t) :C+ZaiY(t—i)+ijX(t— ])+U,
i=1 j=1

Test

X is called a Granger cause of Y If H, Is rejected.
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— F-test
e Linear estimation

Y(t)=c+D,aY(t- |)+ZJ1 Xt-j)+U, — C,a,,bJ
He YO =c+TPaY(t—i)+W, —> &4

ERR, =30, 000 -Y®)  ERR,=3" Fo-vof
 Test statistics

- der H
o (ERR, —ERR,)/p under H, F vson (N —>c0)
ERR, /(N -2p+1) |

d d
1 dx ) dx )1
- 1- 1 =
p-d.fof Fy 4, B(d1/2,d2/2)(dlx+d2j ( d1x+d2j X
— Software

« Matlab: Econometrics toolbox (www.spatial-econometrics.com)
* R:Imtest package
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— Granger causality is widely used and influential in econometrics.
Clive Granger received Nobel Prize in 2003.

— Limitations
» Linearity: linear AR model is used.
No nonlinear dependence is considered.
o Stationarity: stationary time series are assumed.

 Hidden cause: hidden common causes (other time series)
cannot be considered.

“Granger causality” is not necessarily “causality” in general sense.

— There are many extensions.

— With kernel dependence measures, it is easily extended to
Incorporate nonlinear dependence.

Remark: There are few good conditional independence tests

for continuous variables. 114



Kernel Method for Causality of

Time Series

B Causality by conditional independence

— Extended notion of Granger causality
X1s NOT a cause of Y if

POV Yeasees Yeops Koo X p) = PO [ Yegsns Vi)
—

Yo b X Xep | Yoz Yoy

— Kernel measures for causality

2
_ IS (N=p+1)
HSCIC =[S0 8
A 2
HSNCICz‘ (N=p+1)
1A

Xp ={(Xi1 Xizv X ip) €RP [t= p+1..,N}

Y, :{(Yt—l,Yt—Zl""Yt—p) eR"[t=p+1.., N} 115



Example

B Coupled HEnon map
- X, Y: X2 ©

<”x1(t +1) =1.4—x,(t)% +0.3%, (t) b

[ X (T+1) = % (t) R
Vit +1) =14-{x )y, (1) + A=)y, ()7} + 0.1y, (t)
LYo (t+1) =y, (t)

2 2 25
X = STMvyes Iy g o ]
Y1 R PI S LERTTR LT BT
. e * . O % .o P RCA Y
D B T L. Oy > ‘
il e ) M ,‘igr.l"'l. ..§. ‘. DS Y )
c‘ PRSI t“?& . ..'.'-... R 1
® Ui Y, T 4 5 Ve ey ]
05 fad el ., . . o Wmr et 0
. DPAJRSaE S - ‘: < LR L.
LRX IR AP Sedagpst,
R, A :
0 MR ¢ 2 W) ‘c.:&
M A T oo o %0 g0 M
......‘: e € e ::" :“’."\"’3" 5
L. . i ]
B g
PRCROEN A F PR A& 23
1 : 1 -15
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B Causality of coupled Hénon map

— XisacauseofYif y>0.

— Y is not a cause of X for all y.

Yo o X Xicp | Yog oo Yeo
X AL Y g Y | Xigren X

P

’ t_p
. . . (N 1 2
— Permutation tests for non-causality with HSNCIC :‘ Y(X I_\;H)
Plp lIHs
N =100
X, — Y, H,: Y, is not a cause of X, H,: X, Is not a cause of Y,
y 00 01 02 03 04 05 06100 01 02 03 04 05 0.6
HSNCIC| 94 88 81 63 86 77 62|97/ O 0 0 0 0 o)
Granger | 92 96 95 90 90 94 93|96 92 85 45 13 2 3

1-dimensional independent noise is added to X(t) and Y(t).

HSNCIC

97 96 93 85 81 68 75

% O 0 0 0 0 0

Number of times accepting H, among 100 datasets (a = 5%)
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Causal Inference from

Non-experimental Data

B \Why Is it possible?
— DAGofchain X-Z-Y
V-structure

X Y
X1y
v <:> and
Z XYLY|Z

— This is the only detectable directed graph of three variables.
— The following structures cannot be distinguished from the probability.

X1UyY|z z
Ny bbb b-bd

p(x.y,2) = p(X|2)p(yl2)p(z) = p(X[2)p(zly)p(y) = PXIZ)P(zly)P(X) 116



Causal Learning Methods

B Constraint-based method (discussed in this lecture)

— Determine the (cond.) independence of the underlying probability.
— Relatively efficient for hidden variables.

B Score-based method

— Structure learning of Bayesian network (Ghahramani’s lecture)
— Able to use informative prior.

— Optimization in huge search space.

— Many methods assume discrete variables (discretization) or
parametric model.

B Common hidden causes

— For simplicity, algorithms assuming no hidden variables are
explained in this lecture.
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Fundamental Assumptions

B Markov assumption on a DAG

— Causal relation is expressed by a DAG, and the probability
generating data is consistent with the graph.
o O\ /O b

P(X) = p(X,) P(Xp) (X, | X, X)) p(Xg | X,) ic

B Faithfulness (stability) Od

— The inferred DAG (causal structure) must express all the
Independence relations.

a a ( v
O\ /O b /O This includes the true probability

C as a special case, but the structure
does not express a Il b

Od Od

. 120
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Inductive Causation

B |C algorithm (Verma&Pearl 90)

Input — V: set of variables, D: dataset of the variables.
Output — DAG (specifies an equivalence class, directed partially)

1. Foreach (a,b)eV xV (a=hb), searchfor S, <V \{a,b}
such that X, 1L Xp | S,

Construct an undirected graph (skeleton) by connecting a and b
If and only if no set S_, can be found.

2. For each nonadjacent pair (a,b) with a— ¢ — b, direct the edges
by a—>Cc«DbifceS,

3. Orient as many of undirected edges as possible on condition
that neither new v-structures nor directed cycles are created.
(See the next slide for the precise implementation)
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B Step 3 of IC algorithm

— The following 4 rules are necessary and sufficient to direct all the
possible inferred causal direction (Verma & Pearl 92, Meek 95)

1. If there is a triplet a - b — ¢ with a and ¢ nonadjacent,
orientb—cinto b - c.

a b C a b C
O—->0—0O o O0=>0->0
2. Iffora—bthereisachaina—-> c—=> b, orienta—bintoa—> b.

0P o2 0°

3. If for a— b there are two chainsa—-c > banda—-d - bsuch
that ¢ and d are nonadjacent, orienta— b into a -2 b.

C C
a b a b
d d 122



B Example

True structure

/O\

1) a

i

€ e

Sad Z{b,C}
Sae ={d}
Sbc ={a}

Sbe = Sce :{d}

For other pairs,
S does not exist.

a
bO\H/OC b c
d

The output from each step of IC algorithm

2) a 3) a

A A
d fd

O

e e

For (b,c), d ¢ S,

Direction of some edges
may be left undetermined.
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PC Algorithm

(Peter Sprites & Clark Glymour 91)

— Linear method: partial correlation with 2 test is used in Step 1.
— Efficient computation for Step 1.

Start with complete graph, check X, ]| X, |SonlyforSc N_,
and connect the edge a—»b if there is no such S.

I =0. G = Complete graph.
repeat
foreachainV
for each bin N,
Check X, 1L X, | S for S < N, \{b} with |S| =1
If such S exists,
set S, =S, and delete the edge a—b from G.
I=i1+1
until | N, | <1 for all a

— Implemented in TETRAD

(http://www.phil.cmu.edu/projects/tetrad/) 124



Kernel-based Causal Leaning

B Limitations of the previous implementations of IC

— Linear / discrete assumptions in Step 1.

Difficulty in testing conditional independence for continuous
variables.

- kernel method!

— Errors of the skeleton in Step 1 cannot be recovered in the later
steps.

-> voting method
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B KCL algorithm (sun et al. ICML07, Sun et al. 2007)

— Dependence measure: H®Y = HSIC = HZ(N)H

YX|Z HS

Cazlig

where the operator C,, : H, — H, is defined by
<f,szg>: E[f (Z)g(Z)]

W

— Conditional dependence measure: HQ;!?Z =

$1(N)
2%z HS

comparable

Theorem
iF (X, Y) 1l Z,

YX

YX|Z HS ICz HHS

HS
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Outline of the KCL algorithm: IC algorithm is modified as follows:

KCL-1: Skeleton by statistical tests

(1) Permutation tests of conditional independence X J_LYJ Syy
for all (X, Y, Sy) (Sy, <V \{X,Y}) with the measure H)

YX|Z
(2) Connect X and Y if no such S,, exists.

KCL-2: Majority votes for directing edges

For all triplets X —Z - Y (X and Y may be adjacent), give a vote
tothe direction X > ZandY 2> Z if

H(N)
My = "]
z = N
H
Repeat this for (a) A>>1 (rigorous v-structure)

and  (b) A=max{My,x, M,y | (relative v-structure)
Make an arrow to each edge if a vote is given ( “«<=" is allowed).

KCL-3: Same as IC-3 127



B ||lustration of KCL

YV TV Y

true KCL-1 KCL-2 (a) KCL-2 (b) KCL-3
Heuristic assumption: I\/I[C{,C_))pJ S M[C%)pJ,M[C%)p]

Conditioning common effect strengthens the dependence
between the causes.
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B Hidden common cause

— FCI (Fast Causal Inference, Spirtes et al. 93) extends PC to allow
hidden variables.

— A bi-directional arrow (<) given by KCL may be interpreted as a
hidden common cause. Empirically confirmed, but no theoretical
justification (Sun et al. 2007).
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Experiments with KCL

B Smoking and Cancer
— Data (N = 44)

CIGARET: Cigarettes sales in 43 states in US and District of
Columbia

BLADDER, LUNG, KIDNEY, LEUKEMIA: death rates from
various cancers

— Results
FCI KCL

carnonR KNED
DT> G
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B Montana Economic Outlook Poll (1992)

— Data: 7 discrete variables, N = 209
AGE (3), SEX (2), INCOME (3), POLITICAL (3), AREA (3),
FINANCIAL status (3, better/same/worse than a year ago),
OUTLOOK (2)

(AGE)
P @ ol e

BN-PC
BN-PC is a constraint-based method using Ml (Chen et al. 2002)
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Summary of Part Vi

B Causality of time series

— Kernel-based measures - Nonlinear extension of Granger
causality

B Causal inference from non-experimental data

— Kernel-based Causal Learning (KCL) algorithm
» Constraint-based method: A variant of Inductive Causation
— Conditional independence test with kernel measures
— Voting method for directions

* More reasonable results are obtained than existing methods.
See Sun et al. (2007) for more detailed comparisons.
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