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Abstract

Recent advances of kernel methods have yielded a
framework for representing probabilities using a repro-
ducing kernel Hilbert space, called kernel embedding
of distributions. In this paper, we propose a Monte
Carlo filtering algorithm based on kernel embeddings.
The proposed method is applied to state-space models
where sampling from the transition model is possible,
while the observation model is to be learned from train-
ing samples without assuming a parametric model. As
a theoretical basis of the proposed method, we prove
consistency of the Monte Carlo method combined with
kernel embeddings. Experimental results on synthetic
models and real vision-based robot localization confirm
the effectiveness of the proposed approach.

1 Introduction
Kernel methods traditionally have been used for construct-
ing nonlinear learning machines from linear learning ap-
proaches (Schölkopf and Smola 2002). Recent advances of
kernel methods have yielded a framework for nonparametric
statistical inference called kernel embedding of distributions
(Smola et al. 2007; Sriperumbudur et al. 2010; Song, Fuku-
mizu, and Gretton 2013). This approach represents proba-
bility distributions by embedding into a reproducing kernel
Hilbert space (RKHS), on which we conduct statistical infer-
ence. Kernel embedding has been successfully applied to a
wide variety of applications such as statistical testing (Gret-
ton et al. 2012; 2008), time series analysis (Song et al. 2009;
2010; Fukumizu, Song, and Gretton 2011), belief propaga-
tion (Song, Gretton, and Guestrin 2010; Song et al. 2011),
and reinforcement learning (Grünewälder et al. 2012b;
Nishiyama et al. 2012). By virtue of kernel methods, this ap-
proach enables us to design nonparametric inference meth-
ods effective for high-dimensional and structured data with
strong nonlinear dependence structures.

This paper proposes a Monte Carlo filtering algorithm for
state-space models based on kernel embeddings, which we
call Kernel Monte Carlo filter. Our method generates sam-
ples from the transition model, as in particle filters (Doucet,
Freitas, and Gordon 2001). Our contribution to the kernel
method is that we introduce a Monte Carlo method based
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on kernel embeddings. Importantly, this enables us to com-
bine parametric models (e.g. transition models of state-space
models) with nonparametric models learned with kernel em-
beddings (e.g. observation models). As a basis for the pro-
posed algorithm, we provide a theoretical analysis for the
sampling method combined with kernel embeddings.

Our filtering method is aimed at the setting where (1)
sampling from the transition model p(xt|xt−1) is possible,
while (2) the observation model p(zt|xt) is unknown, even
in a parametric form (Figure 1). Here, xt and zt denote the
state and observation at time t, respectively. We assume that
training samples (X1, Z1), . . . (Xn, Zn) for the observation
model are available in a training phase. Our method learns
the unknown observation model nonparametrically from the
data using Kernel Bayes’ rule (Fukumizu, Song, and Gret-
ton 2011; 2014), which is a general kernel embedding ap-
proach for Bayesian inference. The proposed method can be
applied to any domains for which kernels are defined, such
as images, texts, graphs, etc. Moreover, by virtue of kernel
embeddings, it is effective for problems that involve strong
nonlinear dependency structures between the state and ob-
servation.

Applications of the proposed method can be found in
robotics. For example, consider localization of a mobile
robot from its vision images (Dellaert et al. 1999; Se, Lowe,
and Little 2001). In this task, the state xt corresponds to
the robot’s position, and the observation zt its vision image.
The localization problem is then reduced to a filtering prob-
lem, namely estimation of the posterior distribution over
the position p(xt|z1:t) given a sequence of images z1:t :=
(z1, . . . , zt) for each time t. The transition model p(xt|xt−1)
in this case corresponds to the robot’s motion model. On
the other hand, the observation model p(zt|xt) is a con-
ditional probability on the vision image given the robot’s
position. Since the vision strongly depends on the environ-
ment around the robot such as the structure of the rooms
and building, it is basically challenging to define an appro-
priate parametric model for the observation model. Thus it
can be considered unknown. However, we can obtain train-
ing samples of position-vision pairs {(Xi, Zi)}ni=1 by using
more expensive sensors before the test run (Quigley et al.
2010). The same situation can be found in signal-strength-
based location estimation problems (Haeberlen et al. 2004;
Ladd et al. 2002; Bahl and Padmanabhan 2000), for exam-
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Figure 1: The setup of the paper.

ple.
This paper is organized as follows. We first review re-

lated works in Section 2. We review the kernel embedding
approach in Section 3, and then propose the kernel Monte
Carlo filter in Section 4. We theoretically analyze the Monte
Carlo method in Section 5. We show experimental results on
synthetic data and a real robot localization task in Section 6.

2 Related Work
As stated, this paper deals with the setup such that (1) sam-
pling from the transition model p(xt|xt−1) is possible, while
(2) the observation model p(zt|xt) is to be learned from
training samples {(Xi, Zi)}ni=1 nonparametrically. Note that
standard filtering methods such as particle filters (Doucet,
Freitas, and Gordon 2001) cannot be applied to this situation
directly, since they assume that the density of the observa-
tion model can be computed.

There are methods based on particle filters for dealing
with this setup. These methods learn the unknown observa-
tion model with the k-nearest neighbors approach (Vlassis,
Terwijn, and Kröse 2002) or Gaussian process regression
(Ferris, Hähnel, and Fox 2006) from the training samples.
Then, they combine the learned observation model with the
transition model to perform particle filtering.

There also exists a related but different setting such that
the transition model is also to be learned from transition ex-
amples of the state. For this setting, nonparametric filters us-
ing kernel embeddings (Song et al. 2009; Fukumizu, Song,
and Gretton 2011) or Gaussian processes (Ko and Fox 2009;
Deisenroth, Huber, and Hanebeck 2009) were proposed.

Note that while there are particle filters designed for “in-
tractable” observation models (Rossi and Vila 2009; Jasra et
al. 2012), the setting considered in these works are different
from the one in this paper: they assume that the observation
model is known and sampling is possible while its density
function is not available.

3 Kernel Embedding of Distributions
Here, we briefly review the kernel embedding approach. For
general introduction to the field, we refer to the tutorial pa-
pers (Smola et al. 2007; Song, Fukumizu, and Gretton 2013).

Let X be a space and k : X × X → R be a positive def-
inite kernel such that

∑n
i=1

∑n
j=1 cicjk(Xi, Xj) ≥ 0 holds

for any n ∈ N, c1, . . . , cn ∈ R andX1, . . . , Xn ∈ X . Exam-
ples of positive definite kernels include the Gaussian kernel
k(x, x′) = exp(−‖x− x′‖2/2σ2) and the Laplacian kernel
k(x, x′) = exp(−|x− x′|/σ) on X = Rd, where σ > 0.

For any positive definite kernel k, there exists a Hilbert
space H uniquely associated with the kernel, called the re-
producing kernel Hilbert space (RKHS), which consists of
functions on X (Schölkopf and Smola 2002). It is known
that the reproducing property holds for H: for any x ∈ X
and f ∈ H, we have 〈k(·, x), f〉H = f(x), where 〈·, ·〉H
denotes the inner-product ofH. Here, k(·, x) =: φ(x) is the
(possibly infinite-dimensional) feature vector of x. Then we
can compute the inner product between feature vectors by
〈φ(x), φ(x′)〉H = k(x, x′) using the reproducing property.

LetP be the set of all probability distributions onX . Then
we represent any probability distribution P ∈ P as an em-
bedding intoH defined by (Smola et al. 2007)

mP := EX∼P [φ(X)] =

∫
φ(x)dP (x) ∈ H. (1)

Namely, we represent the distribution P by the expectation
of the feature vector φ(x). We refer tomP ∈ H as the kernel
embedding of distribution P . We have a reproducing prop-
erty formP in terms of expectation: for any f ∈ H, we have
〈f,mP 〉H = EX∼P [f(X)] (Smola et al. 2007).

If the mapP → H : P → mP is injective, i.e.mP = mQ

implies P = Q, then the kernel k used for embedding is
called characteristic (Fukumizu et al. 2008). In other words,
if we use a characteristic kernel, mP uniquely identifies the
distribution P . Thus, if our objective is to estimate distri-
bution P from data, it suffices to estimate the correspond-
ing embedding mP . Examples of characteristic kernels in-
clude the Gaussian and Laplacian kernels. Other examples
of characteristic kernels can be found in (Sriperumbudur et
al. 2010). In the following, we assume that kernels are char-
acteristic.

Let {X1, . . . , Xn} ⊂ X be data points. In general, the
embedding mP is estimated in the form of a weighted sum
of feature vectors φ(Xi) of the data

m̂P =

n∑
i=1

wiφ(Xi), (2)

where the (possibly negative) weights wi ∈ R are computed
by an estimator ofmP (Song, Fukumizu, and Gretton 2013).
For example, if Xi are i.i.d drawn from P , then wi = 1/n
gives a consistent estimator with the rate ‖mP − m̂P ‖H =
Op(n−1/2), where ‖·‖H denotes the norm of the RKHSHX
(Smola et al. 2007).

On the other hand, the data {X1, . . . , Xn} may come
from joint samples {(X1, Z1), . . . , (Xn, Zn)} generated
from some joint distribution, where Zi belongs to another
space Z . Then, the objective may be to estimate the em-
bedding of a conditional probability p(x|z), for example. In
such cases, algorithms such as the conditional kernel em-
bedding (Song et al. 2009; Grünewälder et al. 2012a) and
Kernel Bayes’ rule (Fukumizu, Song, and Gretton 2011;
2014), which we will use in the proposed method, can be
used for computing the weights wi in (2). These algorithms
compute the weights with simple linear algebraic operations.

4 Kernel Monte Carlo Filter
First, we define the notation and review the setup (also see
Figure 1 and the third and fourth paragraphs in Section 1).

1898



Let X and Z be the spaces of state and observation, respec-
tively. Let xt ∈ X and zt ∈ Z be the state and observation
at time t, respectively.

Let p(xt|xt−1, ut) be the transition model, where ut de-
notes the control at time t. Here, we include ut to explicitly
describe the sampling procedure. We assume that we can
generate samples from the transition model. Let p(zt|xt) be
the unknown observation model.

We assume that training samples {(Xi, Zi)}ni=1 ⊂ X ×
Z for the observation model are available. Let z1:t :=
(z1, . . . , zt) be the sequence of test observations. Then the
task of filtering is to estimate the posterior distribution over
the state p(xt|z1:t) for each time t = 1, . . . , T , where
T ∈ N, by exploiting the training samples and the transi-
tion model. Note that we cannot observe the ground-truth
state xt.

Let kX : X ×X → R be a kernel on X , φ(x) := kX (·, x)
be the feature vector of point x ∈ X , and HX be the RKHS
associated with kX . Let kZ : Z ×Z → R be a kernel on Z .
Then, our filtering problem is to estimate the kernel embed-
ding of the posterior distribution for each time t:

mxt|z1:t :=

∫
φ(xt)p(xt|z1:t)dxt ∈ HX .

We omit the controls ut from the notation of the posterior
distributions and the kernel embeddings for simplicity.

Proposed Algorithm
As in general filtering methods, the proposed method iterates
prediction and correction steps. The procedure is summa-
rized in Algorithm 1, where pinit denotes an initial distribu-
tion over the state. Figure 2 describes the proposed method
at one time step.

Prediction Step Suppose that we have already estimated
the embedding of the posterior distribution mxt−1|z1:t−1

:=∫
φ(xt−1)p(xt−1|z1:t−1)dxt−1. Let

m̂xt−1|z1:t−1
:=

n∑
i=1

wt−1,iφ(Xi) (3)

be the estimate, where wt−1,i ∈ R. Note that Xi are the
points in the training data {(Xi, Zi)}ni=1. This is because
m̂xt−1|z1:t−1

is estimated using Kernel Bayes’ rule in the
correction step, as will be seen later.

Let p(xt|z1:t−1) be the prior distribution over the state
at time t. In this step, we estimate its kernel embedding
mxt|z1:t−1

:=
∫
φ(xt)p(xt|z1:t−1)dxt. Given a control ut,

first we draw samples from the transition model for each Xi

Xt,i ∼ p(xt|Xi, ut), i = 1, . . . , n.

Then we estimate the embedding as the sum of feature vec-
tors for the sampled points with the same weights as (3):

m̂xt|z1:t−1
:=

n∑
i=1

wt−1,iφ(Xt,i). (4)

Note that while this sampling procedure is similar to the
one in particle methods (Doucet, Freitas, and Gordon 2001),

Figure 2: Proposed method at one time step. The pairs
of blue and yellow circles indicate training samples
{(Xi, Zi)}ni=1. 1. Prediction step: we generate samples
from each state in the training samples using the transition
model. Combined with the propagated weights (indicated by
the size of circles), the prior embedding is estimated. 2. Cor-
rection step: we estimate the posterior embedding by apply-
ing Kernel Bayes’ rule (KBR) to the new observation, train-
ing samples, and the prior embedding estimate. The estimate
is again given as a weighted sample expression for the train-
ing samples.

there exists a crucial difference: we are estimating the kernel
embedding of the prior distribution, which is an element in
the RKHS HX . Thus we need a new convergence analysis
for the estimate, which we will provide in the next section.

Correction Step Let zt be a new observation. In this
step, we estimate the embedding of the posterior distribu-
tion mxt|z1:t :=

∫
φ(xt)p(xt|z1:t)dxt. To this end, we can

use the estimated prior embedding (4) and the training sam-
ples {(Xi, Zi)}ni=1 for the unknown observation model.

We employ Kernel Bayes’ rule (Fukumizu, Song, and
Gretton 2011; 2014), which is a consistent estimator of pos-
terior embeddings in general Bayesian inference and appli-
cable to our setting. Let GX := (KX (Xi, Xj)) ∈ Rn×n

and GZ := (kZ(Zi, Zj)) ∈ Rn×n be the kernel matrices
computed with the training data {(Xi, Zi)}ni=1. Compute

mxt|z1:t−1
:= (

〈
m̂xt|z1:t−1

, φ(Xj)
〉
HX

)nj=1

=

(
n∑

i=1

wt−1,ikX (Xj , Xt−1,i)

)n

j=1

∈ Rn, (5)

kZ(zt) := (kZ(zt, Zj))
n
j=1 ∈ Rn. (6)

Then Kernel Bayes’ rule estimates the posterior embedding
mxt|z1:t by the following formulas:

m̂xt|z1:t :=
n∑

i=1

wt,iφ(Xi), (7)

wt := ΛGZ((ΛGZ)2 + δnIn)−1ΛkZ(zt) ∈ Rn, (8)

Λ := diag((GX + nεnIn)−1mxt|z1:t−1
) ∈ Rn×n,(9)

1899



where diag(v) denotes the diagonal matrix with diagonal en-
tries v ∈ Rn and εn, δn > 0 the regularization coefficients.

Roughly, Kernel Bayes’ rule can be interpreted as two-
step nonparametric regression: the first step (9) encodes the
prior embedding estimate (4) as matrix Λ. Then the second
step (7)(8) estimates a regression function from z to HX ,
which corresponds to the embedding of the posterior distri-
bution mxt|z1:t .

As shown in (7), for each time, the posterior embed-
ding is represented using the training samples X1, . . . , Xn.
Thus, samples will not be spread over time. Therefore we do
not need a resampling step, as opposed to particle methods
(Doucet, Freitas, and Gordon 2001).

Point Estimation of the State Note that the output of the
proposed algorithm is an estimate of the kernel embedding
m̂xt|z1:t =

∑n
i=1 wt,iφ(Xi), which is an element in the

RKHS HX . Here, we explain how to give a point estimate
of the state from the estimate.

The posterior mean
∫
xtp(xt|z1:t)dxt can be estimated

by the empirical average1 ∑n
i=1 wt,iXi. We can also use the

heuristic to estimate the state by computing the pre-image
arg minx∈X ‖φ(x) − m̂xt|z1:t‖HX (Song et al. 2009). Note
that if the posterior distribution p(xt|z1:t) is highly multi-
modal, these methods may not work. For such situations, we
can employ another heuristic to use a point with the maxi-
mum weight Ximax , where imax := arg maxi wi.

Hyperparameters There exist hyperparameters in the
proposed method: parameters in kernels kX , kZ (such as the
bandwidth parameter in a Gaussian kernel ) and regulariza-
tion coefficients εn, δn of Kernel Bayes’ rule. We can select
these parameters, for example, by dividing the training data
into two-sequences and then applying two-fold cross vali-
dation. We can use the root mean squared errors (RMSE)
between estimated and ground-truth states as evaluation cri-
teria for validation.

Time Complexity Dominant parts are the matrix inver-
sions in the correction step (8)(9), each of which costsO(n3)
if naively computed. However, we can reduce them by ap-
plying low rank approximation to the involved matrices us-
ing methods such as incomplete Cholesky decomposition
(Fine and Scheinberg 2001). Then the cost is reduced to
O(nr2), where r � n is the approximation rank. Note that
the inversion (GX + nεnIn)−1 in (9) can be computed be-
fore the test run since it only involves the training data.

5 Theoretical Analysis
This section provides a convergence analysis for the predic-
tion step. Note that the consistency of the correction step
is guaranteed by the convergence theorem of Kernel Bayes’
rule (Fukumizu, Song, and Gretton 2011; 2014).

We consider a general setting; let X and Y be measurable
spaces, pX(x) be a probability distribution on X , p(y|x) be
a conditional probability on Y given x ∈ X , and pY (y) be a

1This is theoretically justified if the projection function fk :
Rd → R, x→ xk, where k = 1, . . . , d, satisfies fk ∈ HX (Smola
et al. 2007). Otherwise we can use it as a heuristic.

Algorithm 1 Kernel Monte Carlo Filter
1: Input: Training data {(Xi, Zi)}ni=1, test observations
{zj}Tj=1, control inputs {uj}Tj=1.

2: Set w0,i = 1/n, i = 1, . . . , n.
3: for t = 1 to T do
4: if t = 1 then
5: Generate X1,i ∼ pinit, i = 1, . . . , n.
6: else
7: Generate Xt,i ∼ p(·|Xi, ut), i = 1, . . . , n.
8: end if
9: Calculate mxt|z1:t−1

(Eq. (5))
10: Observe zt and calculate kZ(zt) (Eq. (6))
11: Calculate wt ∈ Rn (Eqs. (8)(9)).
12: end for
13: Output: Estimates of the posterior embeddings

m̂xt|z1:t =
∑n

i=1 wt,iφ(Xi), t = 1, . . . , T .

distribution on Y defined by pY (y) :=
∫
p(y|x)pX(x)dx. In

the filtering setting, X and Y correspond to the state-spaces
at time t−1 and t, respectively. Distributions pX(x), p(y|x),
and pY (y) correspond to p(xt−1|z1:t−1), p(xt|xt−1, ut),
and p(xt|z1:t−1), respectively.

Let kX and kY be kernels on X and Y , and HX and HY
be their associated RKHSs, respectively. Denote by φ(x) :=
kX (·, x) ∈ HX and ψ(y) := kY(·, y) ∈ HY the feature
vectors. Assume that we are given an estimate of the kernel
embedding mX :=

∫
φ(x)pX(x)dx ∈ HX by

m̂X :=
n∑

i=1

wiφ(Xi), (10)

where wi ∈ R are weights and Xi ∈ X are data points. In
the filtering setting, this corresponds to m̂xt−1|z1:t−1

. Then
we generate samples from the conditional distribution

Yi ∼ p(dy|Xi), i = 1, . . . , n,

and estimate mY :=
∫
ψ(y)dpY (y) ∈ HY by

m̂Y :=
n∑

i=1

wiψ(Yi). (11)

Theorem 1 below shows that (11) is a consistent estimator
of mY . Note that mY corresponds to the embedding of the
prior distribution mxt|z1:t−1

in the filtering setting. Thus the
theorem shows the consistency of the prediction step. The
proof is given in the supplementary materials.

Theorem 1. Let kX and kY be bounded characteris-
tic kernels. Assume that m̂X (10) satisfies E[‖m̂X −
mX‖2HX ] = O(n−b) and E[wTw] = O(n−c) for some
b, c > 0 as n → ∞. Assume that the function θ(x, x̃) :=

EY∼p(dy|x)EỸ∼p(dỹ|x̃)[kY(Y, Ỹ )] satisfies θ ∈ HX ⊗ HX ,
where HX ⊗ HX denotes the RKHS of the product kernel
kX ⊗ kX on X × X . Then for m̂Y (11) we have

E[‖m̂Y −mY ‖2HY ] = O(n−min(b,c)) (n→∞).
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Here we explain the theorem. First, we assume that m̂X =∑n
i=1 wiφ(Xi) converges to mX with the rate O(n−b/2)

in expectation, as sample size n goes to infinity. Another
assumption on m̂X is that the squared sum of the weights
wTw =

∑n
i=1 w

2
i converges to zero with the rate O(n−c).

Theorem 1 states that under these assumptions, m̂Y con-
verges to mY with the rate O(n−min(b,c)/2). Note that as-
sumption θ ∈ HX ⊗ HX is a technical one to simplify the
assertion and the involved proof, and can be weakened by
using approximation arguments of statistical learning the-
ory, e.g., (Eberts and Steinwart 2013).

For instance, if Xi are i.i.d. drawn from pX and m̂X is
given as 1

n

∑n
i=1 φ(Xi), we have b = 1, c = 1 (Smola

et al. 2007). Therefore m̂Y converges to mY with the rate
O(n−1/2) in this case. We can also show that if m̂X is
given by the conditional kernel embedding (Song et al. 2009;
Grünewälder et al. 2012a), which is a basis for Kernel
Bayes’ rule, a general upper-bound is given as b = 1/4, c =
3/4 (see the supplementary materials). Therefore, in this
case m̂Y converges to mY with the rate O(n−1/8) at worst.

Note that Theorem 1 can be applied not only to the filter-
ing setting, but also to other kernel embedding algorithms
that may incorporate the sampling procedure. For exam-
ple, we can naturally extend the kernel POMDP algorithm
(Nishiyama et al. 2012) to the one with the sampling proce-
dure. Theorem 1 can also provide a theoretical basis for such
an extension.

6 Experiments
We compare the proposed method with existing algorithms
applicable to the setting of the paper. Comparisons are done
with (1) the particle filter with k-nearest approach (PF-NN)
(Vlassis, Terwijn, and Kröse 2002), (2) the particle filter
with Gaussian process regression (PF-GP) (Ferris, Hähnel,
and Fox 2006), and (3) Kernel Bayes’ rule filter (KBRF)
(Fukumizu, Song, and Gretton 2011).

As mentioned in Section 2, PF-NN and PF-GP learn the
observation model from training samples using the k-NN
approach and GP-regression, respectively. We use an open-
source code for GP-regression2, and therefore omit com-
parison in computational time with PF-GP. KBRF is based
on kernel embeddings, and applies Kernel Bayes’ rule in
the correction step. This method is designed for settings
where the transition model is also to be learned from state-
transition examples, and uses the kernel sum rule (Song et al.
2009) in the prediction step. Thus, we use KBRF as a base-
line for the proposed method. Note that KBRF was shown to
outperform the nonlinear Kalman filters (Fukumizu, Song,
and Gretton 2011), and thus we do not compare the proposed
method with them.

We fix the number of particles in PF-NN and PF-GP to
5000, since we did not observe any improvement with a
larger number of particles in a preliminary experiment. We
additionally generate state-transition examples for KBRF
and fix the size to 1000.

We evaluate the performance of each algorithm by the

2http://www.gaussianprocess.org/gpml/code/matlab/doc/

root mean squared errors (RMSE) between estimated and
ground-truth states. We also use RMSE in cross-validation
to select hyperparameters of each method.

Synthetic Data Experiments
To generate synthetic data, we used the following state-space
models, which are defined on X = Z = R. Here N(µ, σ2)
denotes the normal distribution with mean µ and variance
σ2. Recall that xt, zt, and ut denote the state, observation,
and control at time t, respectively.

Synthetic Model 1.

x1 = v1, v1 ∼ N(0, 1/(1− 0.92)).

xt = 0.9xt−1 + 0.5ut + 0.5vt, vt ∼ N(0, 1).

zt = xt + wt, wt ∼ N(0, 1).

Synthetic Model 2.

x1 = v1, v1 ∼ N(0, 1/(1− 0.92)).

xt = 0.9xt−1 + 0.5ut + 0.5vt, vt ∼ N(0, 1).

zt = 0.5 exp(xt/2)wt, wt ∼ N(0, 1).

Synthetic Model 3.

x1 = v1, v1 ∼ uniform([−3, 3]),

at = xt−1 + ut + 0.3vt, vt ∼ N(0, 1),

if |at| ≤ 3 : xt = at, else : xt = −3.

bt = xt + 0.5wt, wt ∼ N(0, 1),

if |bt| ≤ 3 : zt = bt, else : zt = bt − 6bt/|bt|.

The model 1 is a linear Gaussian model. The transition
model of the model 2 is same as that of the model 1, but
the observation model is highly nonlinear with multiplica-
tive noise. The model 3 is also highly nonlinear in the tran-
sition and observation models: states and observations near
the interval [−3, 3] may abruptly move to distant points.

Controls ut in each model were randomly generated from
the normal distribution ut

i.i.d.∼ N(0, 1). We generated train-
ing samples {(Xi, Zi)}ni=1 by sequentially running each
model. Test observations (z1, . . . , zT ) (and the correspond-
ing ground truth states xt, which cannot be observed by the
filters) are also generated from the models. We set the length
of the test sequence as T = 100.

The proposed method used Gaussian kernels for each of
X and Z . We also used Gaussian kernels for KBRF. We
chose the hyperparameters in each filter by two-fold cross-
validation by dividing the training data into two sequences.
The hyperparameters in the GP-regressor of PF-GP are opti-
mized by maximizing the marginal likelihood on the training
data. We ran the experiment 10 times for each of different
training sample size. Each method gives a point estimate of
the ground-truth state by estimating the posterior mean.

The results are shown in Figure 3, in which GP, NN, KBR,
and KMC correspond to PF-GP, PF-NN, KBRF, and the pro-
posed method, respectively. For the model 1, PF-GP per-
formed the best, since the model is additive Gaussian. Our
method outperformed the competitors for the model 2 and 3,
in which nonlinearity or non-Gaussianity of the observation
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models is higher than that of the model 1. This shows that
our method is promising in the situations where the observa-
tion model cannot be easily modeled, which is the setting of
the paper. Note that the large deviations in the results are due
to the test data. We also conducted sign tests for the results,
and the proposed method indeed significantly outperformed
the competitors (see the supplementary materials). Compu-
tational time of the proposed method was competitive to that
of KBRF, but slower than that of PF-NN due to the matrix in-
version in the correction step. Results on computational time
for the model 1 and 3 are omitted since they were almost the
same as the model 2.
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Figure 3: Results of the synthetic experiments. GP, NN,
KBR, and KMC in the figures correspond to PF-GP, PF-NN,
KBRF, and the proposed method, respectively.
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Figure 4: Results of robot localization. NAI, NN, KBR, and
KMC in the figures correspond to the naive method, PF-NN,
KBRF, and the proposed method, respectively.

Real Vision-Based Mobile Robot Localization
We conducted experiments on the vision-based mobile robot
localization task. The goal is to sequentially estimate the po-
sition of a robot moving in a building, based on a sequence
of vision images observed by the robot. Thus, the state-space
X consists of the two-dimensional location and the orienta-
tion of the robot, i.e. X = Rd × [0, 2π]. The observation

space Z consists of vision images. In this experiment, we do
not compare with PF-GP, since it assumes that the observa-
tions are real-valued vectors and therefore cannot be applied
to this problem straightforwardly.

We used odometry motion model for the transition model
p(xt|xt−1, ut), which is standard in robotics (Thrun, Bur-
gard, and Fox 2005). In this model, ut corresponds to the
odmetry measurements. We used the algorithm in Table 5.6.
of Thrun, Burgard, and Fox (2005), where we set the param-
eters to be a small value 0.1.

We used the spatial pyramid kernel (Lazebnik, Schmid,
and Ponce 2006), which is a standard kernel for images, for
Z , with the parametrization that gives 4200 histograms for
each image, as suggested by the authors. We used a Gaussian
kernel3 for X . In this experiment, we also used the spatial
pyramid kernel for PF-NN as a similarity measure of nearest
neighbors search.

Datasets were taken from the COLD database (Pronobis
and Caputo 2009), in which we used Freiburg, Part A, Path
1, cloudy. This dataset is made of three similar sequences,
each of which consists of position-image pairs taken by a
robot moving in a building. We used two of them for train-
ing, and the rest for test. The time resolution was set to 0.44
images per second.

The hyperparmeters of each method were chosen by two-
fold cross-validation, using the two sequences of the train-
ing data. As a baseline for this task, we performed a naive
method (NAI) that estimates the ground-truth state by the
state in the training samples that has the closest observa-
tion to the test observation. Since posterior distributions are
highly multimodal in this problem, we used the sample point
with maximum weight for point estimation for the proposed
method and KBRF. PF-NN estimated the state by the parti-
cle with maximum weight. We ran each experiment 10 times
for each of different size of training data.

The results are shown in Figure 4. Our method (KMC)
significantly outperformed the competitors in terms of
RMSE. This shows that our method can effectively learn the
complex observation model from the training data. Compar-
ison with KBRF confirms the effectiveness of our sampling
method combined with kernel embeddings.

7 Conclusions
We have presented a kernel embedding-based Monte Carlo
filtering algorithm. The proposed method is aiming at the
setting where sampling from the transition model is possi-
ble, while the observation model is unknown but its train-
ing samples are available. We proved the convergence of the
sampling method with kernel embeddings. Applications of
the proposed method can be found in robotics, such as lo-
calization problems.
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