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Introduction

B Conditional independence in causal learning

— Determining independence and conditional independence is
essential in causal learning.
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— But, in practice
» Dependence for continuous domain is not straightforward.
How can we estimate mutual information?

« Many algorithms use linear statistical methods (partial
correlation) or discretization.



B “Kernel methods” for dependence of variables

— Positive definite kernels have been used for capturing nonlinearity of
original data. e.g. Support vector machine.

— Kernelization: mapping data into a functional space (RKHS) and
apply linear methods on RKHS.

— Recently, kernel methods have been applied for dependence
analysis. Covariance structure on RKHS gives dependence and
conditional dependence of the original variables.

feature map X(X) Dy (Y) 1\ feature map O
Y

@ - o &5

Y

/H TN '

RKHS RKHS




Positive Definite Kernel and RKHS

B Positive definite kernel (p.d. kernel)

Q: set. k:QxQ—>R

k is positive definite if k(x,y) =k(y,x) and forany ne N, X;,...X, € Q
the matrix (k(X;, X j))i,j (Gram matrix) is positive semidefinite.

— Example: Gaussian RBF kernel  k(x,y) = exp(—Hx— yHZ/az)

B Reproducing kernel Hilbert space (RKHS)

k: p.d. kernel on Q.
—> dl H: reproducing kernel Hilbert space (RKHS)

1) k(-,x)eH forall xeQ.
2) Span{k(-,x)|xeQ} is dense in H.
3) <k(-,x), f>H = f(x) (reproducing property)



B Feature map / feature vector
O:Q—>H, x> k(-Xx) l.e. d(x)=k(-,x)
Data: X, ..., X 2> D (X),..., Dy(Xy) : functional data

B \Why RKHS?

— By the reproducing property, computation of the inner product on
RKHS does not need expansion by basis functions.

(@(x), ®(y))=k(xY)
f=20a004)=Xak(,x), g=X1bdx)=3bk( - x)
|:> < > lel I((Xi’xj)

The computational cost essentially depends on the sample size.
Advantageous for high-dimensional data of small sample size.
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Covariance on RKHS

— Linear case (Gaussian):
Cov[X, Y] = E[YXT] - E[Y]E[X]" : covariance matrix

— On RKHS:
X, Y :random variables on Q, and Q, , resp.
Prepare RKHS (H,, k,) and (H,, k,) defined on Q, and Q,, resp.
Define random variables on the RKHS H, and H, by

CI)X(X)sz(-,X) CDY(Y):kY("Y)

Define the big (possibly infinite dimensional) covariance matrix Z,
x(x) Dy(Y) /I\
-

on the RKHS.
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B Cross-covariance operator
— Definition

Zyx = E[@y (Y)(@x (X), - )] E[Dy (Y)IE[[ Dy (X),- )]

2,y Is an operator from H, to H, such that

(9.Zy F)=E[g(Y) f (X)I-E[g(YV)IEL (X)] (= Cov[f(X),g(Y)])
forall feH,,geH,

— c.f. Euclidean case
Vx = E[YXT] = E[Y]E[X]" : covariance matrix
(b,Vyxa)=Cov[(b,Y),(a, X)]



B Higher-order moments
Suppose X and Y are R-valued, and k(x,u) admits the expansion

k(x,u) =1+cxu+c,x’u? +c,x%u®+---  e.g.) k(x,u) =exp(xu)

With respect to the basis 1, u, u?, u3, ..., the random variables on
RKHS are expressed by

D(X)=k(X,u) ~ (L ¢, X, c, X% ¢ X3, ..)
O(Y)=k(Y,u) ~ (L, cY,c,Y% ey ..)

0 0 0 0
0 ¢’CovlY,X] ¢C,Cov[Y,X?] c¢cCovY?® X]
Sy ~ |0 6 CovY? XT  c;Cov[Y?, X*]  c,cyCovlY?, X7]
0 c,c,Cov[Y®, X] c4c,Cov[Y®, X?] ciCov[Y?, X°]

The operator %, contains the information on all the
higher-order correlation. 10



Characterization of Independence

B Independence and Cross-covariance operator
If the RKHS’s are “rich enough” to express all the moments,

XandY are independent < X,, =0

3
(= is always true. Cov[f (X),g(Y)]=0
<— requires some assumption or
Gaussian RBF kernels gives E[g(Y)f(X)]=E[g(Y)]E[f(X)]
the above equivalence. forall feH,,geH,

K(x,y) = expl=[x-y[* /o)

— c.f. for Gaussian variables
Xand Y are independent < V,, =0 i.e. uncorrelated

11



Kernel Dependence Measure

— Hilbert-Schmidt Independence Criteria (HSIC)
HSIC(X,Y) =|Zyx | e
HSIC =0 = XY
— Empirical estimator
HSIC (X,Y):Z(N) Tr[G, G, |

emp
Gy =1, - 1N1TN) o (1, = 1,17 ): centered Gram matrix
Ky :(k(X X)) o

— Hilbert-Schmidt norm of an operator

A:H, —> H, operator on a Hilbert space
{p.}, {l//,- }: complete orthonormal system of H, and H, (resp.).

2
HAHZHS = ZjZi <‘//j ’ A¢i> c.f. Frobenius norm of a matrix .



Independence Test

B Permutation test for independence
— Null hypothesis
Hyo: X 1LY
— Permutation test: simulation of the distribution of test statistics

under H,.

 Make many samples consistent with the null hypothesis by
random permutations of the original sample.

X, X, Xq Xy Xe Xg X, oy KORX X XXXy
AAAAAANE YoV, Y,Y, Y, Y Y,

« Compute the values of test statistics (dependence measure) for
the samples.

« Compute the critical region for a prescribed significance level.

13



B Experiments of independence test

0

% acceptance of H

— Synthesized data: two d-dimensional samples
X X XM XY (Y0, (60, YW)
« Hy: Xand Y are independent
 Significance level = 5%
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B Power Divergence (Ku&Fine05, Read&Cressie)

— Make partition {A;},_,: Each dimension is divided into q parts so
that each bin contains almost the same number of data.

— Power-divergence .,
Ty =21*(X,m)=N “’j -

1= M| D : fre A
, quency in
12= Mean Square Conting. p™): marginal freq. in r-th interval

— Null distribution under independence

T, = 75 (N — o)

g —-gN+N-1

— Estimation for high-dimensional data is difficult.

15
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Conditional Covariance on RKHS

B Conditional Cross-covariance operator
X, Y, Z : random variables on Q,, Q,, Q, (resp.).
(Hy, ky), (Hy, k), (H;, k;) : RKHS defined on Q,, Q,, Q, (resp.).

— Conditional cross-covariance operator H, — H,

ZYX|z =2yx — szzilzzzx

— c.f. For Gaussian variables
Conditional covariance of Y given X is equal to

— —
VYX|Z =VYX _VYZVZZVZX
(conditional covariance matrix)

17



B Conditional independence with kernels

Theorem
Define the augmented variable X =(X,z) and define a kernel
on Q, xQ, by

K =Kyk,

Under some richness assumption, which is satisfied by Gaussian
RBF kernels,

Z“\(>Z|z:O < XY |Z

ZYXlZ:O & meo & ZmZ:O & X1Y|Z

18



B Kernel conditional dependence measure
— Hilbert-Schmidt conditional independent criterion

HSCIC(X,Y |Z) =|z.

YX1Z || s

— Empirical measure

2
S0 _SWEW +a,1) 5]

=Tr[c;xc;Y ~2G, (G, +Nzy 1y )" G,G,
+G, (GZ +Ney Iy )_lGx (Gz + Ney Iy )_1GZGYJ

HSCIC. (X,Y|Z)=

emp

B Consistency

If the regularization coefficient satisfies
(9N %O Nl/BgN _)OO,
then

HSCIC,,, > HSCIC (N — ) .



Conditional Independence Test

B Permutation test with the kernel measure

A 2
Tn= 2\9)\]“)2 HHS
— If Z takes values in a finite set {1, ..., L}, o (T TV
set A ={i|Z, =0} (¢=1,...,L), *g < Xll’_'l Y?l C
otherwise, partition the values of Z into 3 Xl"i Yl"iz :
L subsets C,, ..., C,, and set W =
A ={i|Z eC} (/=1..L). g (§2,i4 Xz,u -
— Repeat the following process B times: (b =1, ..., B) % | Xz’iz Y2,i2 2
1. Generate pseudo cond. independent i L
data D® by permuting X data within each A, . o (Tx. v
2. Compute T,® for the data D® . =B | v [
—> Approximate null distribution S TR
under cond. indep. assumption il R

— Set the threshold by the (1-a)-percentile of
the empirical distributions of T®). 20
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Causal Inference from
Non-Experimental Data

B Constraint-based methoc

— Determine the (cond.) independence of the underlying probability.
— Relatively efficient for hidden variables.

B Score-based method

— Structure learning of Bayesian network
— Able to use informative prior.
— Optimization in huge search space.

— Many methods assume discrete variables (discretization) or
parametric model.

B Kernel-based Causal Learning

— Constraint-based method. A variant of Inductive Causation (IC)
22



Fundamental Assumptions

B Causal Markov Condition

— Causal relation is expressed by a DAG, and the probability
generating data is consistent with the graph. aO\ f b

P(X) = p(X,) p(Xp) p(X, | X4 Xp) P(Xq | X,) ic

Od
B Causal Faithfulness Condition

— The inferred DAG (causal structure) must express all the
Independence relations.

a a ( v
O\ /O b /O This includes the true probability

C as a special case, but the structure
does not express a Il b

Od Od

. 23
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Inductive Causation

B |C algorithm (Verma&Pearl 90)

Input — V: set of variables, D: dataset of the variables.
Output — DAG (specifies an equivalence class, directed partially)

1. Foreach (a,b)eV xV (a=hb), searchfor S, <V \{a,b}
such that X, 1L Xp | S,

Construct an undirected graph (skeleton) by making an edge
between a and b if and only if no set S_, can be found.

2. For each nonadjacent pair (a,b) with a— ¢ — b, direct the edges
by a—>Cc«DbifceS,

3. Orient as many of undirected edges as possible on condition
that neither new v-structures nor directed cycles are created.

24



Kernel-based Causal Leaning

B Limitations of the previous implementations of IC

— Linear / discrete assumptions in Step 1.

e.g. PC-algorithm (Spirtes & Glymour 91) uses partial correlation
and y° test.

Difficulty in testing conditional independence for continuous
variables.

- kernel method!

— Errors of the skeleton in Step 1 cannot be recovered in the later
steps.

-> voting method for direction

Note: The error in Step 1 is inevitable by statistical tests.

25



B KCL algorithm (sun et al. ICML07, Sun et al. 2007)

— Dependence measure: H®Y = HSIC = HZ(N)H

YX|Z HS

— Conditional dependence measure: HN =
Cazlls

YX|Z =

where the operator C,, : H, — H, is defined by
<f,szg>: E[f (Z)g(Z)]

Motivation: make AYX sz and V>2|z " comparable
Theorem
it (X, Y) 1Lz, \((I;I<I)Z||Hs HCZZ HHS (N)HHS




Outline of KCL algorithm: 1 algorithm is modified as follows.

KCL-1: Skeleton by statistical tests with the kernel measure H{),
(1) Permutation tests of conditional independence X 1LY | Sy,
(2) Connect X and Y if no such S, exists.

The candidates of S, should be restricted - explained later.

KCL-2: Voting for unshielded triplets
For each triplet X —Z - Y (X and Y not adjacent), compute

H, X Y
MXY|ZE ~ v Myzs Mgy
YX

Give avotetothe direction X > ZandY 2> Z if
Myyz > max{M vz M zxw}

Make an arrow to each edge if a vote is given ( “«<»" is allowed).

KCL-3: Same as IC-3
27



KCL-4: Voting for shielded triplets
For each triplet X —Z — Y (X and Y adjacent), compute

M XY|Z 1 MYZ|X’ MZXIY X Y
Give avotetothe directon X > ZandY =2 Z if ; ;
Z

Myyz > max{M vz Mzxy j

Make an arrow to each edge if a vote is given ( “«<»" is allowed).

— The resulting graph is mixed: undirected —, directed —, or
bi-directed <— .

— Motivation of KCL-2 and 4:

e By inevitable errors in statistical tests, it is preferred that the
orientation process be separated from Step 1.

« Step 4 looks for more directed edges.
It relies on the heuristic assumption that conditioning common

effect strengthens the dependence between the causes.
28



B ||lustration of KCL

FrTEY

true KCL-1 KCL-2 KCL-3 KCL-4

Heuristic assumption: M[C%)p J > M[C%)p JM[C%)/O ]

Conditioning common effect strengthens the dependence
between the causes.

29



B Detalls of Step 1

Auxiliary partially directed graphs are used for restricting conditioning
variables S, .

— Initialize G by a complete undirected graph.

— 1(a): Unconditional independence tests
For all pairs (X,Y), apply permutation tests for X 1LY with H{\)
Remove X — Y if the independence is accepted.

— 1(b): Auxiliary graph
Orient G by majority votes on all triplets X - Y — Z.

— 1(c): Cond. indep. tests X LLY | Sy, with H{), in the auxiliary graph.
Syy: only variables in the directed (incl. undirected) path

between X and Y.

— 1(d): Change the directed edges into undirected ones to make a
skeleton G.

— 1(e): Repeat (a)-(d) until nothing changes.

30



Experiments with Simple Networks

(B) (C)

?70 SRV

Xs(O—>(O)%a Xs(O—>(O)%

P(X;=1)=0.6 P(X;=1)=0.6 P(X;=1)=0.6
P(X,=X,]|X;)=0.8 P(X,=1)=0.5 P(X,=X,]X;)=0.8
X, = NoisyOR(X,, X,) P(X;=1)=04 X5 = NoisyOR(X,, X,)

X, =NoisyOR(X,, X,,X;) X, =NoisyOR(X,, X,, X,)

X .1 = NoisyOR(X,..., X,)
& P(Xp =1] Xy, X,) =0.8x(1-0.2%777 )4 0.2
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- Results
(200 data,
1000 runs)

KCL

PC

BN-PC

(Ml is used)
[Cheng et al. '02]
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Hidden Common Cause

— One of the difficulties in causal leaning is possible existence of
common hidden causes.

— Some methods can handle hidden variables.

FCI (Fast Causal Inference, Spirtes et al. 93) extends PC to allow
hidden variables.

33



B KCL for hidden common causes

— A bi-directional arrow (<) given by KCL may suggest existence of a
hidden common cause.
Empirically verified in some situations, but no theoretical justification.

— lllustration
Latent Latent Latent
Truth 9 O O O
O O S O O O
Voting

V|l
9
>

wk |
9

O-0
O-0

d
O-0

T T
Result g_g

34



— Experiments (200 data, 1000 runs)

Truth & A;;”t
® & ®

OR gates

Result of KCL
76.5

W<—)

79.2 éD 875 ég.s

Latent

® 0

@e@<®+@

Noisy OR gates

L o

35



Experiments with Real Data

B Smoking and Cancer
— Data: 5 continuous variables, N =44

CIGARET: Cigarettes sales in 43 states in US and District of
Columbia

BLADDER, LUNG, KIDNEY, LEUKEMIA: death rates from
various cancers

— Results KCL

36



B Montana Economic Outlook Poll (1992)

— Data: 7 discrete variables, N = 209
AGE (3), SEX (2), INCOME (3), POLITICAL (3), AREA (3),
FINANCIAL status (3, better/same/worse than a year ago),
OUTLOOK (2)

P =

37



Conclusion

B Kernel measures of (conditional) dependence

— Covariance and conditional covariance considered on RKHS

provide criterion of independence and conditional independence,
resp.

— Kernel measures are proposed for (conditional) dependence.

B Causal inference from non-experimental data
— Kernel-based Causal Learning (KCL) algorithm
» Constraint-based method: A variant of Inductive Causation
— Conditional independence tests with kernel measures
— Voting method for orienting edges

« KCL can handle discrete and continuous domains in a unified
way.
» More theoretical justification is required.
38



References

Sun, X., D. Janzing, B. Scholkopf, and K. Fukumizu. A kernel-based causal
learning algorithm. Proc. 24th Intern. Conf. Machine Learning (ICML2007),
pp.855-862. (2007)

Sun, X., D. Janzing, B. Scholkopf, K. Fukumizu, and A. Gretton. Learning causal
structures via kernel-based statistical dependence measures. Submitted (2007)

Fukumizu, K., F. Bach, and M. Jordan. Dimensionality reduction for supervised
learning with reproducing kernel Hilbert spaces. Journal of Machine Leaning
Research, 5:73-99 (2004).

Fukumizu, K., F. Bach, and M. Jordan. Kernel dimension reduction in regression.
Tech Report 715, Dept. Statistics, University of California, Berkeley, 2006.

Gretton, A., O. Bousquet, A. Smola and B. Scholkopf. Measuring statistical
dependence with Hilbert-Schmidt norms. Algorithmic Learning Theory: 16th

International Conference, ALT 2005, pp.63-78 (2005) 29



	Learning Causal Structure with �Kernel-based Dependence Measures 
	Outline
	Introduction
	Positive Definite Kernel and RKHS
	Outline
	Covariance on RKHS
	Characterization of Independence
	Kernel Dependence Measure
	Independence Test
	Outline
	Conditional Covariance on RKHS
	Conditional Independence Test
	Outline
	Causal Inference from �Non-Experimental Data
	Fundamental Assumptions
	Inductive Causation
	Kernel-based Causal Leaning
	Experiments with Simple Networks
	Hidden Common Cause
	Experiments with Real Data
	Conclusion
	References

