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Abstract

Local minima and plateaus pose a serious problem in learning of
neural networks. We investigate the hierarchical geometric structure
of the parameter space of three-layer perceptrons in order to show the
existence of local minima and plateaus. It is proved that a critical
point of the model with H — 1 hidden units always gives many critical
points of the model with H hidden units. These critical points consist
of many lines in the parameter space, which can cause plateaus in
learning of neural networks. Based on this result, we prove that a
point in the critical lines corresponding to the global minimum of the
smaller model can be a local minimum or a saddle point of the larger
model. We give a necessary and sufficient condition for this, and show
that this kind of local minima exist as a line segment if any. The results
are universal in the sense that they do not require special properties
of the target, loss functions, and activation functions, but only use the
hierarchical structure of the model.

1 Introduction

It has been believed that the error surface of multilayer perceptrons (MLP)
has in general many local minima. This has been regarded as one of the
disadvantages of neural networks, and a great deal of effort has been paid
to find good methods of avoiding them and achieving the global minimum.

There have been no rigorous results, however, to prove the existence of
local minima. Even in the simple example of the XOR. problem, existence
of local minima had been a controversial problem. Lisboa and Perantonis



([1]) elucidated all the critical points of the XOR problem and asserted with
a help of numerical simulations that some of them are local minima. Re-
cently, Hamney ([2]) and Sprinkhuizen-Kuyper and Boers ([3],[4]) rigorously
proved that what have been believed to be local minima in [1] correspond to
local minima with infinite parameter values, and that there always exists a
strictly decreasing path from each finite point to the global minimum. Thus,
there are no local minima in the finite weight region for the XOR problem.
Existence of local minima in general cases has been an open problem in the
rigorous mathematical sense.

It is also difficult to derive meaningful results on local minima from nu-
merical experiments. In practical applications, we often see extremely slow
dynamics around a point that differs from the global minimum. However,
it is not easy to tell rigorously whether it is a local minimum. It is known
that a typical learning curve shows a plateau in the middle of training, which
causes very slow decrease of the training error for a long time before a sud-
den exit from it (e.g. [5],[6]). A plateau can be easily misunderstood as a
local minimum in practical problems.

This paper discusses critical points of the MLLP model, which are caused
by the hierarchical structure of the models having a smaller number of hid-
den units. For simplicity, we discuss only the MLP model with a one-
dimensional output in this paper. The input-output function space of net-
works with H — 1 hidden units is included in the function space of networks
with H hidden units. However, the relation between the parameter spaces of
these two models is not so simple (see [7],[8]). Sussmann ([9]) elucidated the
condition that a function described by a network with H hidden units can
be realized by a network with H — 1 hidden units in the case of tanh activa-
tion function. In this paper, we further investigate the geometric structure
of the parameters of networks which are realizable by a network with H — 1
hidden units. In particular, we elucidate how they can be embedded in the
parameter space of H hidden units. Based on the geometric structure, we
show that a critical point of the error surface for the MLP model with H —1
hidden units gives a set of critical points in the parametric space of the MLP
with H hidden units.

The main purpose of the present paper is to show that a subset of crit-
ical points corresponding to the global minimum of a smaller network can
be local minima or saddles of the larger network. More precisely, the subset
of critical points on which the input-output behavior is the same is divided
into two parts, one consisting of local minima and the other saddle points.
We give an explicit condition when this occurs. This gives a formal proof of
the existence of local minima, for the first time. Moreover, the coexistence



of local minima and saddles in one equivalent set of critical points explains
a serious mechanism of plateaus: when such is the case, the network param-
eters are attracted in the part of local minima, stay and walking randomly
for a long time in that flat region on which the performance is the same,
but eventually go out from the part of saddles in the region. This is a new
type of critical points in nonlinear dynamics given rise to by the hierarchical
structure of a model.

This paper is organized as follows. In Section 2, after showing neces-
sary definitions and terminologies, we elucidate the geometric or topological
structure of the parameter space. Section 3 discusses critical points of the
error surface. In Section 4, we mathematically prove the coexistence of local
minima and saddles under one condition. This shows not only the existence
of local minima but also a possible mechanism of plateaus. We also show the
results of numerical simulations realizing local minima. Section 5 contains
conclusion and discussion.

2 Geometric structure of the parameter space

2.1 Basic definitions

In this paper, we consider a three-layer perceptron with one linear output
unit and L input unit. The input-output relation of a network with H
hidden units is described by the function

H
£ (z; 91y = Zvj © (w;r’a: + wjo) + vo, (1)
j=1

where T denotes transposition, = (z1,... ,z7)" € R is an input vec-
tor, w; = (wj1,...,wjr)T € R (1 < j < H) is the weight vector of the
jth hidden unit, and 81 = (vg, vy, ... L UH, W10, WT ... wiro, wh)T sum-
marizes all the parameters in one large vector. The function () is called
an activation function. In this paper, we use tanh for ¢. Introducing the
notations

. <1> ERM, W= (wj0> eR™*, (1<j<H), ()
x wj

for simplicity, we can write

H
U (@;001) =3 " o (@] &) + vo. (3)



Using the result of Kurkova & Kainen ([10]), all the theorems obtained
in this paper are applicable for other sigmoid- or bell-shaped activation
functions with necessary modifications. We will show this later. We use
the linear activation in the output layer. However, all the results are easily
extended to a model with a monotone nonlinear output unit, because this
causes only a nonlinear rescaling of the output data.

Given N input-output training data {(z®),y®))|v =1,... ,N}, we use
a MLP model to realize the relation expressed by the data. The objective of
training is to find the parameter that minimizes the error function defined
by

Eg(0') => "0y, f(=®);011))), (4)

where £(y, z) is a loss function such that [(y,z) > 0 and the equality holds
if and only if y = z. When I(y,2) = %[ly — z||?, the objective function is
the mean square error. We can use other loss functions such as L, norm
ly,z) = ;l,Hy — z||P and the cross entropy l(y,z) = —o(y)logo(z) — (1 —
o(y))log(l — o(z)), where o(t) is a sigmoidal function for the nonlinearity
of the output unit. The results in this paper are independent of the choice

of a loss function.

2.2 Hierarchical structure of MLP

The parameter vector @) consists of a LH +2H + 1 dimensional Euclidean
space O. Each (") gives a nonlinear function eq.(1) of &, so that the set
of all the functions realized by O is a function space described by

S ={fM(z;0")) . RE - R | ) € Oy}, (5)
We denote the mapping from O onto S by

T Oy — Sy, 0 — f(xz;01). (6)

We sometimes write f(gH) for ().

It is important to note that wpy is mot one-to-one, that is, different
0") may give the same input-output function. The interchange between
(vj,,wj,) and (vj,, w;,) does not alter the image of 7. In the case of
tanh activation function, Chen et al. ([7]) showed that any analytic map
T : Oy — Oy such that ) (z; T(0)) = f(H)(2;0(7)) is a composition
of hidden unit weight interchanges and hidden unit weight sign flips, which



latter are defined by (vj,w;) — (—v;, —w;). These transforms consist of an
algebraic group G g, which is isomorphic to a direct product of Weyl groups.
We write T, for the transform given by g € G

The function spaces Sy (H = 0,1,2,...) have a trivial hierarchical struc-
ture:

SCcSC---CcSyg_1CSgC---. (7)

The inclusion is denoted by tg_1 : Sg_1 < Sg. On the other hand, the
parameter space of the smaller networks is not canonically included in ©g.
Given a function féH_l) realized by a network with H — 1 hidden units,
there are a family of networks with H hidden units and parameters (1)
that realizes the same function féHfl). In other words, a map from Op
to Oy that commutes the following diagram is not unique.

Opg_1 —— Op

“’“l J”H (8)

Sg-1 —— Su
LH—1

The set of all the parameters 1) that realize the input-output functions
of networks with H — 1 hidden units is denoted by

Qi =7y (o1 (Sm-1))- (9)

From Sussmann’s result ([9], Theorem 1 and its corollary), the parameter
set Qy is the union of the following submanifolds of O (see Figure 1);

A = {00 oy v =0} (1<j<H) (10)
B = {6 ecoy|w;j=0} (1<j<H), (11)
ct = {0 coy| by, =i} (1<j<p<H). (12

Here, A; is the set of parameters where v; = 0 so that the jth hidden units
plays no role. Similarly, the jth hidden unit has 0 weight in B; so that it
outputs only a constant bias term. In Cji: o> the jith hidden unit and joth
hidden unit have the same (or opposite) wight vector and bias, so that their
behaviors are the same (opposite). They may be integrated into one unit,
where v1 + vy is the weight of the new unit to the output unit. From the
viewpoint of mathematical statistics, it is also proved by Fukumizu ([11])
that € is the set of all the points at which the Fisher information matrix is
singular.
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Figure 1: A network given by a parameter in A;, B; and le ja®

j C+j 1j2

We further investigate how each function in Sp_; is. Let fégf_ll)) be a
function in Sg_1 — Sg_92. To distinguish Oy _1 from O, we use different

parameter variables and indexing:
FH=D (g 9 1) Zgjwa &) + Co. (13)

Let Q7 (0U7—1) be the set of parameters (1) that realizes a given f (T 11)),

Qr (071 = 15 (e (f5000)- (14)

Then, Qg (817~")) is the union of the submanifolds in each of A;, B; and

C;f o For simplicity, we show only an example of the submanifolds of A,

By andCE;
A = {8 cOy| v =0,v =, =Wy =10y, (2<j < H)}
E = {8 coy|w; =0,v0(wyp)+ v = Co,v; = Cjyw; =uj, (2<j < H)}
T = {0 €Oy | d) =y = dz,v0 = (o, v1 +v2 = G,
vj =G, w; =uy, (3 <j < H)} (15)

The submanifold A is an L + 1 dimensional affine space parallel to the
w1-plane, because w; may take arbitrary values in it, but all the other
components of 8) are determined by prescribed 87 —1 . The set = is a 2
dimensional submanifold defined by a nonlinear equation

vip(wio) + vo = Co, (16)



where vy, v1, and wyy can take arbitrary values provided they satisfy the
above. The set I' is a line in the vivo-plane, defined by vi + vo = (o. It
is known that all the other components in Q(8(/=1) are obtained as the
transforms of A, =, and I" by g € Gy ([9],[10]). For example, the image of
I" by the sign flip about the second hidden unit is given by

D = {0 € Oy | w1 = s = @2, v0 = Co,v1 — v2 = (o,
vj =G, w; =u;, (3 <j < H)} (17)

The image of A, =, and " by a hidden-unit interchange is trivial. Thus,
each function of a smaller network is realized not by discrete points but by
high-dimensional submanifolds in O .

In order to make analysis more concrete, we give a definite correspon-
dence between ©pf_; and ©pg that realize the same function. We define
the following canonical embeddings of O _1 into O©f, which commute the
diagram (8), using w € RFT! (v,w) € R%, and X € R as their parameters;

Qapy :G)Hfl — @Ha O(H_l) = (CO? 07 <27 N 7CH7 {bTa ag’a s 71]’5)71
Brow) ©r—1 — O, 87D s (¢ — vp(w),v,Ca, .., Car, (w,07), @

M :Og-—1 — O,

o(H—l) = (COa AC?? (1 - A)C?a C3? s aCHa &ga ’a’g’? ag:a N a&E)T'
(18)

)
T
2

P

These maps are illustrated in Figures 2, 3, and 4. If we change the parameter
of each embedding, the images of 60(7=1) gpan the components, A, Z, and
T, of Qz(87—1); that is

A = {agp@PV) | w e RFFY,
= {ﬁ(v,w) (o(Hil)) | (’U,UJ) € RZ}a
T'={m@" )| xer}, (19)

(1]

3 Critical points of the MLP model

3.1 Learning and critical points

Generally, the optimum parameter cannot be calculated analytically when
the model is nonlinear. Some numerical optimization method is needed to
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obtain its approximation. One widely-used method is the steepest descent
method, which leads to a learning rule given by

OEu(0(t))

0(t+1)=6(t)—0o 20

(20)
where 0 is a learning rate. If 6, is the global minimum, 3(199_01{(0*) =0
holds and the above learning rule stops there. However, we cannot always
obtain the global minimum, since all the points that satisfy 8(199_011(9) =0 are
stationary points of eq.(20). Such a point is called a critical point of Ey.

There are three types of critical point: a local minimum, a local max-
imum, and a saddle point. A critical point 6 is called a local minimum
(mazimum) if there exists a neighborhood around 6y such that for any
point @ in the neighborhood Er(6) > Ex(60y) (Fx(0) < En(6y)) holds,
and called a saddle if it is neither a local minimum nor a local maximum,
that is, if in an arbitrary neighborhood of 8 there exist a point at which Eg
is smaller than Ef(6p) and a point at which Ep is larger than Eg(6y). It is
well known that if the Hessian matrix at a critical point is strictly positive
(negative) definite, the critical point is a local minimum (maximum), and if
the Hessian has both positive and negative eigenvalues, it is a saddle.

3.2 Existence of critical points

It is very natural to look for a critical point of Egy in the set Qp =
WEI(LH,l(SH,l)), because a critical point of Egy_; already satisfies some
of the conditions of a critical point of Ep.

Let 879 = (Cou, Conyv,Crnsid., . uh )T € O 1 — Op_5 be a
critical point of Fx_q1. It really exists if we assume that the global min-
imum of Eg_ 4 is isolated, which means it is not included in ©fz 5. This
assumption is practically plausible, because, for a set of data which is fitted
well with H hidden units, the optimum network with H — 1 hidden units
has no redundant hidden units in general.

At the critical point, the following equations hold for 2 < j < H;

T ) = S 0, 7 @ s6) ~ 0,

0

31;715—1(9,9{1)) = N B () pD (), 0T D)) (a3 = 0,
J

O0Em_1

St (O = G (W, 1D @007 ' (a2 )e )T =
J



We have two kinds of critical points.

Theorem 1. Let v\ be as in eq.(18). Then, for any A € R, the point
7,\(0§<H71)) is a critical point of Ey.

Theorem 2. Let ((,,,) be as in eq.(18). Then, for any w € R, the point
ﬁ(o’w)(O,EH_l)) is a critical point of Ey.

These theorems are easily obtained if we consider the partial derivatives of
Er, which are given by

0E

o (0) = 200 5w, 1D () 8)),
Vo

OFE Ty .

avl.q (0) =30 2 (y), fID(2); 0)) p(w!2™)), (1<j<H),
J

OFEm

(0) = v; 000 2 (y), fID(2); ) ' (w!2)a™T, (1<) < H).
(22)

D,

Note that () (a;0) = fH=D(2; 0" V) for 6 = 7, (0" V) or 6 = B (07 V).
It is easy to check that the conditions eq.(21) make all the above derivatives
7Zero.

The critical points in Theorems 1 and 2 consist of a line in O if we move
A € R and w € R, respectively. Note that ag = B if w = (w, 0T,
Thus, these two embeddings give the same critical point set. If 8 is a critical
point of Ey, so is T,(@) for any g € Gr. We have many critical lines in © .

The critical points in Theorems 1 and 2 do not cover all of the critical
points of Er. We consider the special subset of the critical points, which
appears because of the hierarchical structure of the model.

4 Local minima of the MLP model

4.1 A condition for the existence of local minima

In this section, we show a condition that a critical point in Theorem 1 is a
local minimum or a saddle point. The usual sufficient condition of a local
minimum using the Hessian matrix cannot be applied for a critical point in
Theorem 1 and 2. The Hessian is singular, because a one-dimensional set
including the point shares the same value of Ep in common.

10



Let 7Y be a point in Oy 1. We define the following (L+1) x (L+1)

symmetric matrix:
Al
v — v H-1 ~T ~(V)\ (V) (v
Ar = Gy o () J D@50 (a3, 80)E e (23)

v=1

Theorem 3. Let Oinl) be a local minimum of Eg_1 such that the Hessian

matriz at 877 s positive definite. Let yx be defined by eq.(18), and T :=

{0, € Og|0) = 'y,\(0£H_1)),)\ € R}. A matriz As is defined by eq.(23).
If Ay is positive (negative) definite, any point in the set Ty = {0y € T |
A1 =X)>0 (<0)} is a local minimum of Eg, and any point in T' — Ty is
a saddle. If Ay has both positive and negative eigenvalues, all the points in
I' are saddle points.

For the proof, see Appendix. Local minima given by Theorem 3, if any,
appear as one or two segments in a line. It is interesting that such a local
minimum can be changed into a saddle point without altering the function
f(gH), when the point moves in the segment. Figure 5 illustrates the error
surface around this critical set. We show only two coordinate axes for vari-
ables: one is the direction along I' and the other is the direction that attains
the minimum and maximum values at the points on I'. Each point that
looks like a maximum in the figure is a saddle point in reality.

Note that, if € is a local minimum given by Theorem 3, the image of the
point by any transform in Gg is also a local minimum. This can be easily
proved because the local property of Epx around the point does not change
by the transform. Therefore, the error function has many line segments of
local minima, if the condition of Theorem 3 holds.

The critical points in Theorem 2 do not give local minima.

Theorem 4. Any critical point given by Theorem 2 is a saddle.

For the proof, see Appendix.

The statements of Theorems 3 and 4 are also valid even if we consider the
transform of the embedded point by any g € Gy7. This can be proved easily
because the local property around the point is not changed any transform
in Gg. There are many saddle line segments, and line segments of local
minima if any.

4.2 Plateaus

We have proved that, when As is positive or negative definite, there exists
a one-dimensional submanifold T' of critical points. The output function is

11



Error

Figure 5: Critical set with local minima and plateaus

the same in I'. The set I' is divided into two parts I'g and I' — ['y, where L'y
consists of local minima and I' — I'y saddles.
If we map I to the function space, 7 (L") consists of a single point which

is the common function \u%wwv € Sy. Therefore, if we consider the cost

function Ep as a function on S, 7y (L) is a saddle, because Ep takes both
larger and smaller values than Ep(0(7)) in any neighborhood of \%va in
Sm.

It is interesting to see that ['g is attractive in its neighborhood. Hence,
any point in its small neighborhood is attracted to I'g. However, if we use
on-line learning, in which the parameter is updated with a training datum
presented one by one, the point attracted to I'g fluctuates randomly along
[y by learning dynamics (20). It eventually escapes from I" when it reaches
I' —T'y. This takes a long time because of the nature of random fluctuation.
This explains that this type of critical points are serious plateaus. This is
a new type of saddle which has so far not remarked in nonlinear dynamics.
This type of “intrinsic saddle” is given rise to by the singular structure of
the topology of Sp.

12



4.3 Remarks

The only property of tanh used in this paper is that it is odd. Kirkova &
Kainen ([10], Theorem 8) introduced the notion of affinely recursive func-
tions, and proved that if the activation function is odd or even and is not
affinely recursive, the functionally equivalent parameters are given by in-
terchanges and sign flips, neglecting compensation of constant. A func-
tion ¢ : R — R is not affinely recursive if and only if it has a non-trivial
affine relation p(t) = ap(wt + u) + b for a,w # 0 and an affine relation
>ty ajp(wjt +uj) +b =0 of more than three components can be decom-
posed into affine relations of two components (For the precise definition,
see [10]). Using this result, we can deduce that Qp is the same as for MLP
models with an odd or even activation function that is not affinely recursive,
and can determine the transform group for such MLP models. The group
is still the same as G, while we must replace the definition of a sign flip
by (vj,w;) — (vj, —w;) for an even activation function. Similar arguments
in Section 2.2 are valid, and Theorems 1-4 also hold with necessary mod-
ifications of the statements. A typical activation function like the logistic
function and Gaussian function can be converted by an affine transform to
an odd or even function that is not affinely recursive. Therefore, the results
obtained in the above are applicable to a wide class of three-layer models.

4.4 Numerical simulations

We have tried numerical simulation to exemplify local minima given by
Theorem 3 and plateaus described in 4.2.

In the first simulation, We use a network with 1 input unit, 1 output
unit, and 2 hidden units. We do not use bias terms for simplicity. Note that
there always exist local minima in this case, since As is a scalar. We use

the logistic function ¢(t) = # as the activation function, and the mean

square error [(y,z) = 3|ly — z||* for the loss function. To obtain training

data, 100 input data are generated using a normal distribution with 0 as its
mean and 4.0 as its variance, and corresponding output data are obtained
as y = f(xz) + Z, where f(z) = 2¢(x) — p(4z) and Z is a random variable
subject to the normal variable with 0 as its mean and 10~ as its variance.
For a fixed set of training data, we numerically calculate the global minimum
of MLP with 1 hidden unit using the steepest descent method. We update
the parameter 20000 times, and use the final state as the global minimum.
Even if we try several different initial conditions, obtained results are almost
the same. Therefore, we can consider it as an approximation of the global

13



1.0

—— Target function f(x)
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Figure 6: A local minimum in MLP (L=1, H=2).

minimum O,El) with high accuracy. The parameter is given by (o2, = 0.984

and wug, = 0.475. In this case, we have Ay = 1.910 > 0. Then, any point
in the set Ty = {(v1, v, w1, w2) | v1 + v2 = (ox,v1V2 > 0, w1 = Wo = Ugs}
is a local minimum. We set v; = v = (2./2 as 6, (A = 1/2), and evaluate
the values of Fy at 1 million points around @), which are generated using
a 4 dimensional normal distribution with @y as its mean and 10751, as its
variance-covariance matrix. As a result, all these values are larger than
E(6,). This experimentally verifies that ) is a local minimum. The graphs
of the target function f(x) and the function given by the local minimum
f(z; 05})) are shown in Figure 6.

In the second simulation, we use a network with 2 input units, 1 output
unit, and 3 hidden units. We do not use bias terms also in this simulation.
The 2 x 2 matrix As can have both of a negative and a positive eigenvalue
at the same time. The activation function is tanh, and the set of input
data is 100 independent samples from the normal distribution with 0 as its
mean and 25 X Iy as its covariance matrix. The target function is given by
a function in the model, which is defined by v; = vy = v3 = 1, wy = (2,1)7,
wy = (1,-1)7T, and w3 = (0.5,0)7. We numerically obtain the global
minimum of the model with two hidden units, 0,&2), in the similar method
to the first simulation. There are many cases in which the matrix As has
a negative and a positive eigenvalue, but for some sets of training data and
initial parameters we can find the matrix positive or negative definite. Figure
7 shows the graph of a function given by one of such local minima and the
graph of the target function. The parameter of this local minimum is (1, =

14



1.864, Cop = —1.158, w1, = (—0.680,0.247)7, and u, = (—0.905, —1.158)7".
We numerically confirmed in the same way as the first simulation that this
is really a local minimum.

Next, we have tried to verify that this local minimum causes a plateau.
In this simulation, we use online learning, in which the parameter is updated
with respect to only one training data that is selected at that time. All of
the training data are used by turns, and training is repeated cyclically. We
observe the behavior of the parameter after setting it close to the one that
gives the local minimum. Figure 8 is the graph of the value of error function
E5(0) during learning, which shows a typical plateau until about 50000
iterations. One sequence of presenting all data is counted as one iteration in
this figure. We can see a very long time interval, in which the error function
decreases very slowly, and a sudden steep decrease of the training error.
Figure 9 shows the behavior of the parameter w; and ws. They move close
to the parameter u;,, which gives the local minimum, and suddenly go away
from it. This simulation verifies that local minima given by Theorem 3 can
give rise to plateaus as we discussed in 4.2.

5 Conclusion

We investigated the geometric structure of the parameter space of multilayer
perceptrons with H — 1 hidden units embedded in the parameter space of
H hidden units. Based on the structure, we found a finite family of critical
point sets of the error surface. We showed that a critical point of a smaller
network can be embedded into the parameter space as a critical point set of a
one-dimensional affine space in two ways. We further elucidated a condition
that a point in the image of one embedding is a local minimum, and showed
that the image of the other embedding is a saddle. From this result, we
see that under one condition there exist local minima as line segments in
the parameter space, which cause serious plateaus because all points around
the set of local minima once converge to it and have to escape from it by
random fluctuation. These results are not dependent on the specific form of
activation functions nor the loss functions.

We consider only networks with one output unit. The extension of the
result on existence of local minima is not straightforward. The image of the
embedding v, form a critical line even in the M dimensional output case.
However, the critical line is contained in the M dimensional affine space
defined by vy 4+ vo = (24, in which a point does not give a critical point
in general, but defines the same input-output function as the critical line.

15
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Figure 7: A local minimum and the target in MLP (L=2, H=3)
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Figure 8: Value of the error function during learning

Paramater of the local minimum 5

10 2
10 10* 0 W W,
Number of iterations (log)

Figure 9: Behavior of parameters

17



From Lemma 1 in Appendix, we see that any point in the critical line is a
saddle. We have not yet known about existence of local minima in the case
of multiple output units.

Theorems 3 and 4 mean that the critical points are saddles in many
cases. It is very important to know a condition on the positive or negative
definiteness of Ay. This is a difficult problem, because it deeply depends
on the relation between the global minimum in ©x_1 and the target, and
the randomness of training data. From the practical point of view, it is
meaningful to see whether the saddle points in Theorem 3 and 4 are the
only reason of plateaus. If this is true, we can effectively avoid them by the
method of natural gradient ([6],[12],[13],[14]), because it enlarges the gradi-
ent of the repulsive direction from I' by multiplying the inverse of the almost
singular Fisher information matrix. However, all of the above problems are
left open.
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Appendix
A Proof of Theorem 3

Proof. For simplicity, we change the order of the components of 60" and
01 as (vy,ve, w7, WY, vy, v3,... ,og, Wk, ..., )T and (Co, 4k, Co,C3y .o s Cory s, ...
respectively. We introduce a new coordinate system of ©p to see the em-
bedding v, more explicitly. Let (¢1,97, &, b7, vg,v3,... ,o, w5 ,... ,w5)T
be a coordinate system of O — {0 | v) 4 vy = 0}, where

£ = v — vy,

J— 1 >t 7

n = U1+U2(w1_w2)a

§o = w1+,

b = — 2 i+ — 2 g, (24)

1
V1 + U9 V1 + V2
This is well-defined as a coordinate system, since the inverse is given by

v = %& + %&a
vy = —%& + 3527
@ = bt —512+ 5277’
Wy = b ;5277. (25)
Using this coordinate system, the embedding +y, is expressed as
i (G35 G0 oy s ot ay)”

= (A = 1)¢2,07, Go, w5, Co, G35 o, 05, ., ugy) T (26)

Note that in this definition we use the order of the components introduced
at the beginning of the proof.

Let (Cosy @2, Coxs Gy v oo, Clrv, Uy, ..., @k, )" be the component of Oinl).
The critical point set I' is a one-dimensional affine space parallel to &;-axis
with p = 0, §& = (24, b = U2y, Vo = (o4, Vj = (s (3<j<H),and Wi = Ujx
(3<j<H).

Let £14 be the §; component of 8y, and V¢, be a complement of I' defined
by

Ve, = {(&1,n",&,b" v, v3,... o, W5 ,...,5)" €On | & =&}
(27)
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We have ' N Vg, = 6. If 8 is a local minimum in Vg, for an arbitrary
0, € T'y, it is a local minimum also in ®p, since EFy has the same value
on each point of I'. It is trivial that if @) is a saddle point in V¢, _, it is a
saddle also in ©g. Thus, we can reduce the problem to the Hessian of Ep
restricted on Vg, . We write it by G, .

From the definition of n and &, we have

Lemma 1. For any 8 € {81 € ©5 | n = 0},

of of
—(x;0) =0 and —(x;0)=0 28
(i) o-(@:6) (28)
hold.
From eq.(26), we have also %(Ok) = 0 and g—g;(ﬂ)\) = 0 (this is another

proof of Theorem 2). Therefore, the second derivative of E at @) can be
written as

N oe

5, " f@,00)VV (), 0)).  (29)
v=1

VVER(0)) =

Let w represent one of the coordinate components in (¢1, 77, &, b7, vy, v3, . . .

From Lemma 1, at any point 8 € {n = 0}, the second derivative B?fgw (6) =
2

0 and z74(6) = 0 unless w = ; (1 < j < L+1). Combining this fact with

the expression of eq.(26), we have

25 (9,) 0
g == 2
I3 0°Efg—1

0 ag(H—l)ag(H—l)

(30)

(68 1y

By simple calculation, we can derive the following
Lemma 2. For any 8 € {81 € ©5 | n =0},
0’ f 0’ f

817877 (CB, 0) = 1)11)2%(33, 0) = UvaSQ(pII(bTi)@@T (31)

holds.

From this lemma, we have ‘321’%5 (0)) = M(1—))(2, As. From the assump-

2 _
tion, all the eigenvalues of m(afﬁ 1)) are positive, and (2. # 0.
Thus, if Ao is positive or negative definite, all the eigenvalues of G¢ . at a

point in T’y are positive, which means @) is a local minimum in ©g. If A,
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has positive and negative eigenvalues, so does G¢ , except for two points
given by A = 0,1. Then, all the points in T' — Ty are saddle points. As for
the two boundary points of I'g, any neighborhood of them contains a point
of I —Tg. Thus, the neighborhood includes a point attaining larger Ex than
Ey(6)) and a point attaining smaller E than Fy(0y). Thus, they are also
saddle points, and this completes the proof. O

B Proof of Theorem 4

Proof. First, we show the following lemma.

Lemma 3. Let E(0) be a function of class C', and 0, be a critical point of
E(0). If in any neighborhood of 0, there exists a point @ such that E(0) =
E(6.) and g—g(@) # 0, then 0, is a saddle point.

Proof. Let U be a neighborhood of 8,. From the assumption, we have a
point @; € U such that E(6;) < E(0.) and a point @3 € U such that
E(02) > E(6.). This means 6, is a saddle point. O

Back to the proof of Theorem 4, note that 5o . (Oinl)) € {aw (B,EH*l)) |

w € REFLY. In other words, the critical line in Theorem 2 is embedded in
an L + 1 dimensional plane that gives the same function as the critical line.
However, the point aﬁ,(Oinl)) is not a critical point for w # 0, because

%Evf # 0 in general. Thus, ﬁ(o,w)(oﬁfl‘”) satisfies the assumption of Lemma,
3. O
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