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Abstract
This paper discusses the behavior of the maximum likelihood esti-

mator, in the case that the true parameter cannot be identified uniquely.
Among many statistical models with unidentifiability, neural network
models are the main concern of this paper. It has been known in some
models with unidentifiability the asymptotics of the likelihood ratio of
MLE has an unusually larger order. Using the framework of locally
conic models (Dacunha-Castelle and Gassiat 1997), as generalization
of Hartigan’s idea, a useful sufficient condition of such larger orders is
derived. This result is applied to neural network models, and a larger
order is proved if the true function is given by a smaller model. Also,
under the condition that the model has at least two redundant hidden
units, a log n lower bound for the likelihood ratio is derived

1 Introduction

This paper discusses the asymptotic behavior of the maximum likelihood
estimator (MLE) under the condition that the true parameter is uniden-
tifiable. The asymptotics of MLE is an important problem in estimation
theory, and the asymptotic normality under some regularity conditions is
well known. However, if the dimensionality of the set of true parameters
is larger than zero, the Fisher information matrix at a true parameter is
singular, and the asymptotic normality is no longer satisfied. There are
many statistical models with unidentifiability, such as finite mixture mod-
els (Hartigan 1985), ARMA (Veres 1987), reduced rank regression (Fuku-
mizu 1999), change point problems (Csörgő and Horváth 1996), and hidden
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Markov models (Gassiat and Kéribin 2000). The behavior of MLE in such
models has not been clarified completely, and many statistical methods like
model selection need special considerations.

The main topic of this paper is the asymptotic order of the likelihood
ratio (LR) test statistics of MLE, as the sample-size n goes to infinity. It has
been reported that LR of some unidentifiable models has a larger order than
Op(1), which is the order given by the ordinary asymptotic theory. Among
many studies, Hartigan (1985) discusses the normal mixture models with
two components under the null hypothesis of one component, and shows
LR has a larger order than Op(1). He conjectured also that the order is
log log n, which has been solved by Bickel and Chernoff (1993) and Liu and
Shao (2001). Gassiat and Kéribin (2000) discuss a similar mixture model in
a hidden Markov setting, and show divergence of LR for a two state model
under the null hypothesis of one state.

In this paper, a useful sufficient condition of a larger order of LR will be
shown by using the framework of locally conic models (Dacunha-Castelle and
Gassiat 1997), in which unidentifiability is regarded as a conic singularity
in the statistical model embedded in the functional space of the probability
densities. The sufficient condition of LR divergence is given by a functional
property of the tangent cone at the singularity.

Another main result is the asymptotic order of LR for multilayer neural
network models. It has been known that multilayer neural networks also
have unidentifiability in the parameterization. By analysis of the functional
properties of the tangent cone, divergence of LR will be shown on condition
that the model has redundant hidden units to realize the true function,
and a lower bound of logn will be derived for the models with at least two
redundant hidden units.

2 Divergence of Likelihood Ratio in Locally Conic
Models

2.1 Preliminaries

A statistical model S = {f(z; θ) | θ ∈ Θ} is a set of probability density func-
tions on a measure space (Z,B, µ), which is parameterized by a differentiable
manifold (with boundary) Θ. We assume that Suppf(z; θ) is invariant for
all θ ∈ Θ. Given i.i.d. sample Z1, . . . , Zn generated by the true probability
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density f0(z), we consider the likelihood ratio (LR, in short), defined by

sup
θ∈Θ

Ln(θ), where Ln(θ) =
n∑
i=1

log
f(Zi; θ)
f0(Zi)

, (1)

in the maximum likelihood framework. The main topic of this paper is the
asymptotic behavior of LR, as the number of samples n goes to infinity.

It is assumed that the true probability density is included in the model
S. Let Θ0 be the set of true parameters: Θ0 = {θ ∈ Θ | f(z; θ0)µ = f0(z)µ}.
We do not assume the uniqueness of θ0, but say that the true parameter is
unidentifiable, if Θ0 is a union of finitely many submanifolds of Θ and the
dimension of at least one of the submanifolds is larger than zero. There
are many important models, in which the true parameter can be uniden-
tifiable. Finite mixture models and multilayer neural networks are among
such examples. Suppose, for example, we have a mixture model with two
components, f(z; a1, a2, b) = b g(z; a1)+(1−b) g(z; a2), and the true density
f0(z) = g(z; a0) for some a0. Then, the set of true parameters contains
{(a1, a2, b) | a1 = a2 = a0} ∪ {(a1, a2, b) | b = 0, a2 = a0} ∪ {(a1, a2, b) | b =
1, a1 = a0}, which are high dimensional. If the true parameter is unidenti-
fiable, LR does not follow the usual chi-square asymptotics, which requires
uniqueness of the true parameter in the regularity conditions.

2.2 Locally conic model and likelihood ratio

If a statistical model is considered in the functional space of probability den-
sity functions, the set of true parameters corresponds to a single point. This
point is a singularity in the model S, if the dimensionality shrinks only at
an exceptional parameter set with measure zero. The local property around
the singularity will be better understood by introducing convenient parame-
terization. Following Dacunha-Castelle and Gassiat (1997), with some mod-
ification, a locally conic model is used for discussing unidentifiability.

We write R≥0 = {β ∈ R | β ≥ 0}. Let A0 be a (d − 1)-dimensional
differentiable manifold (with boundary), Θ a submanifold in A0 ×R≥0, S =
{f(z; θ) | θ ∈ Θ} a statistical model, and f0(z) an element in S. The
parameter θ ∈ Θ is decomposed as θ = (α, β) for α ∈ A0 and β ∈ R≥0. The
statistical model S is called locally conic at f0 if the following conditions are
satisfied;

1. The parameter space Θ includes Θ0 := A0 × {0}, and the set of the
parameters to give f0 is Θ0; that is, f(z; (α, β))µ = f0(z)µ ⇔ β = 0.
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2. For each α ∈ A0, the set Θ(α) := {β ∈ R≥0 | (α, β) ∈ Θ} is a closed
interval with open interior.

3. f(z; (α, β)) is differentiable on β (right differentiable at 0) for each
α ∈ A0 and f0µ-a.e. z. For each α ∈ A0 the Fisher information at f0

is one; ∥∥∥∥∂ log f(z;α, 0)
∂β

∥∥∥∥
L2(f0µ)

= 1. (2)

Intuitively, a locally conic model S is a union of one-dimensional sub-
models Sα = {f(z;α, β) | β ∈ Θ(α)}. If the dimension of A0 is larger than
zero, the parameter to give f0 is unidentifiable, which is a singularity in the
model. The score function of Sα at the origin,

vα(z) =
∂ log f(z; (α, 0))

∂β
, (3)

can be looked as a unit tangent vector along Sα. The family of score func-
tions C = {vα | α ∈ A0} generates the tangent cone at the singularity f0.
We call the set C the basis of the tangent cone, which will have a key im-
portance in the following discussion. An example of locally conic model is
the multilayer neural network model, which will be shown in Section 3.

Let a model S = {f(z; (α, β)) | (α, β) ∈ Θ} be locally conic at f0 ∈ S,
and Z1, . . . , Zn be i.i.d. random variables with law f0µ. Assume that all
the submodels Sα satisfy the following regularity conditions of the asymp-
totic normality. The conditions 1–3 are slight modification of Wald’s con-
ditions for consistency (Wald 1949), and the condition 4 assures asymp-
totic efficiency (Cramér 1946). For simplicity, we write each submodel by
{g(z;β)|β ∈ V }, omitting the index α, where V = Θ(α).

[Conditions on asymptotic normality (AN)]

1. For any β ∈ V , the integral Ef0µ[| log g(z;β)|] is finite.

2. If V = R≥0, the function H(z; t) = supβ≥t log g(z;β) satisfies
limt→∞Ef0µ[H(z; t)] <∞, and there exist ∆ such that

∫
∆ f0(z)dµ > 0

and limt→∞H(z; t) = −∞ for all z ∈ ∆.

3. lim
ρ↓0

Ef0µ
[

sup
|β′−β|≤ρ

log g(z;β′)
]
<∞ for all β ∈ V.
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4. The density g(z;β) is three-times differentiable on β for all z, and

lim
ρ↓0

∫
sup

0≤β≤ρ

∣∣∣∂νg(x;β)
∂βν

∣∣∣dµ <∞ (ν = 1, 2),

lim
ρ↓0

Ef0µ

[
sup

0≤β≤ρ

∣∣∣∂3 log g(z;β)
∂β3

∣∣∣] <∞.

Under the assumptions [AN], by applying the standard asymptotic the-
ory to each Sα, the LR in the model S can be decomposed into (Dacunha-
Castelle and Gassiat 1997)

sup
θ∈Θ

Ln(θ) = sup
α∈A0

Ln(α, β̂α) = sup
α∈A0

{
1
2
Un(α)2 · 1Un(α)≥0 + op(1)

}
, (4)

where Un(α) is a random variable defined by

Un(α) =
1√
n

n∑
i=1

vα(Zi), vα(z) =
∂

∂β
log f(z; (α, 0)). (5)

The function vα(z) belongs to the basis of the tangent cone C. While the
variable Un(α) converges in law to the standard normal distribution for each
α ∈ A0, we have to consider Un(α) over all α to see the LR in S.

2.3 Larger order of likelihood ratio

The LR can have a larger order than Op(1), if the function class of the tan-
gent cone is ”rich” enough. In this subsection, a useful sufficient condition
of such an unusually larger order is derived. We generalize Hartigan’s idea
on a Gaussian mixture model (Hartigan 1985), by applying it to the gen-
eral expression of eq.(4) for locally conic models, which is originally used
for deriving the asymptotic distribution of LR under the assumption of the
uniform convergence of Un to a Gaussian process (Dacunha-Castelle and
Gassiat 1997; Dacunha-Castelle and Gassiat 1999).

Note that the marginal distribution of Un in eq.(4) on finite points
v1, . . . , vm in C always converges to an m-dimensional normal distribution
with the covariance EP [vivj ]. Two components of the limit are independent
if their covariance is zero. Suppose we can find an arbitrary number of ”al-
most” uncorrelated random variables in C. Then, the supremum of Un(α)
on such variables can take an arbitrarily large value, since the maximum of
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m independent samples from the standard normal distribution is approxi-
mately

√
2 logm for large m. Hartigan (1985) applied this idea to a normal

mixture model with two components, calculating the covariance explicitly.
Generalization of his idea leads us to the following theorem;

Theorem 1. Let a statistical model S = {f(z; (α, β))} be locally conic at
f0 ∈ S, and C = {vα(z) = ∂

∂β f(z; (α, 0))} be the basis of the tangent cone.
Assume that for each α ∈ A0 the submodel Sα = {f(z;α, β) | β} satisfies the
conditions of asymptotic normality [AN]. If there exists a sequence {vn}∞n=1

in C such that vn → 0 in probability, then, for arbitrary M > 0, we have

lim
n→∞Prob

(
sup
(α,β)

Ln(α, β) ≤M
)

= 0. (6)

Remark. The regularity condition [AN] can be replaced by any other condi-
tions for asymptotic normality, such as Le Cam (1970). The condition [AN]
uses a classical one by Cramér, which will give an easy extension to derive
a lower bound of the order of LR in the next section.

Proof. Using the bound

|Ef0µ[vmvn]| ≤
∫
{|vn|≥ε}

|vmvn|f0dµ+
∫
{|vn|<ε}

|vmvn|f0dµ

≤
(∫

{|vn|≥ε}
|vm|2f0dµ

)1/2
+ ε

∫
|vm|f0dµ,

we have limn→∞E[vmvn] = 0 for arbitrary m ∈ N. From this fact, for
arbitrary ε > 0 and K ∈ N, there exist v(α1), . . . , v(αK) ∈ C such that
|E[v(αi)v(αj)]| < ε for different i and j. The rest of the proof is exactly the
same as the argument in Hartigan (1985), which is omitted here.

The sufficient condition of the theorem is very easy to apply. For exam-
ple, consider the Gaussian mixture model with two components

f(x;µ, b) = bφ(x;µ) + (1 − b)φ(x; 0),

where φ(x;µ) is the probability density function of the normal distribution
with mean µ variance 1. We see that for µ 	= 0

f(x;µ, b) = β
exp(µx− µ2/2) − 1

‖ exp(µx− µ2/2) − 1‖L2(φ0)
φ(x; 0) + φ(x; 0), (7)

where β = b‖ exp(µx− µ2/2) − 1‖L2(φ0). This gives a locally conic parame-

terization at φ(x; 0). It is easy to see that exp(µx−µ2/2)−1
‖ exp(µx−µ2/2)−1‖L2(φ0)

converges to

zero in probability as µ→ ∞. This gives another proof of Hartigan (1985).
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3 Likelihood Ratio of Multilayer Perceptrons

3.1 Unidentifiability in multilayer perceptrons

The multilayer perceptron model with H hidden units (Rumelhart et al.
1986) is defined by a family of functions

ϕ(x; θ) =
H∑
j=1

bj s(ajx+ cj) + d, (8)

where x ∈ X = R, s(t) = tanh(t), and θ = (a1, b1, c1, . . . , aH , bH , cH , d) ∈
R

3H+1.
Learning in neural networks can be regarded as statistical estimation.

Throughout this paper, we assume that the input sample Xi is i.i.d. with
law Q = q(x)µR, where µR is the Lebesgue measure on R and the integral
EQ| log q(x)|2 is finite. Let Y be a subset of R, (Y,By, µy) a measure space,
and r(y | u) a conditional probability density function of y ∈ Y given u ∈ R.
The statistical model of multilayer perceptron, MH , is defined by

f(z; θ) = r(y | ϕ(x; θ))q(x), (9)

where z = (x, y) ∈ X × Y. We assume that the noise model r(y|u) satisfies
the following assumptions;

[Conditions on noise model (NM1)]

1. The conditional density r(y|u) is of class C1 on u for all y ∈ Y.

2. r(y|u1)µy 	= r(y|u2)µy for different u1 and u2.

3. The Fisher information G(u) of r(y|u), which is defined by

G(u) =
∫ (∂ log r(y|u)

∂u

)2
r(y|u)dµy,

is positive, finite, and continuous for all u ∈ R.

Popular choices of r(y | u) are the additive Gaussian noise 1√
2πσ

exp
{− 1

2σ2 (y−
u)2
}

for continuous y, and the logistic model euy/(1+ eu) for binary output
y ∈ Y = {0, 1}, which often appears in classification problems.

The true parameter can be unidentifiable in the multilayer perceptron
model. Suppose, for example, we have the multilayer perceptron model with
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2 hidden units and the true function ϕ0(x) given by a perceptron with only
one hidden unit, say, ϕ0(x) = b0 tanh(a0x). Then, any parameter θ in the
high-dimensional set {θ | a1 = a0, b1 = b0, c1 = b2 = d = 0} ∪ {θ | a1 = a2 =
a0, c1 = c2 = d = 0, b1 + b2 = b0} realizes the function ϕ0(x). It is known
that the true parameter is unidentifiable if and only if the true function
can be realized by a network with smaller number of hidden units than the
model (Sussmann (1992), Fukumizu and Amari (2000)).

A locally conic structure can be seen in this unidentifiability of multilayer
perceptrons. Suppose we have the model MH , and the true function ϕ0(x),
which is given by a multilayer perceptron with K (0 ≤ K < H) hidden
units,

ϕ0(x) =
K∑
k=1

b0k s(a
0
kx+ c0k) + d0, (10)

with ak 	= 0, bk 	= 0, (1 ≤ k ≤ K), and (ak, bk) 	= ±(ai, bi) (1 ≤ k < i ≤ K).
For later use, we define a submodel of MH by

ψ(x;ω) = ϕ0(x) + β{η s(ξx+ ζ) + δ}, (11)

where ω ∈ {ω = (α, β) = ((ξ, η, ζ, δ), β) | η 	= 0, ξ 	= 0, (ξ, ζ) 	= ±(a0
k, c

0
k) (1 ≤

k ≤ K), β ≥ 0}. We can see that the model {r(y|ψ(x;ω))q(x)} is locally
conic at f0(z) = r(y|ϕ0(x))q(x). In fact, because the functions {1, s(a0

kx +
c0k), s(ξx+ ζ) | 1 ≤ k ≤ K} are linearly independent (see Fukumizu (1996)),
β must be zero to satisfy ψ(x;ω) = ϕ0(x). This shows the condition
1 of the definition. Let N(α) be the L2(f0µ)-norm of a tangent vector
∂
∂β log f(x, y; (α, 0)). It is given byN(α)2 =

∫
G(ϕ0(x))

{
∂ψ(x;(α,0))

∂β

}2
q(x)dx,

where
∂ψ(x; (α, 0))

∂β
= η s(ξx+ ζ) + δ. (12)

Since this partial derivative is not constant zero, we have 0 < N(α) < ∞
for all α. Replacing β by N(α)β, we have locally conic parameterization.

3.2 Divergence of LR in multilayer perceptrons

For applying Theorem 1 to the multilayer perceptron model, we need addi-
tional assumptions on the noise model r(y|u) to ensure the conditions [AN].
These assumptions are satisfied by many important noise models. It is easy
to see that the Gaussian and logistic model satisfy them.

8



[Conditions on noise model (NM2)]

1. For any compact set K ⊂ R,

sup
ξ,u∈K

Er(y|ξ)| log r(y|u)| <∞, and lim
ρ↓0

sup
ξ,u∈K

Er(y|ξ)
[

sup
|u′−u|≤ρ

log r(y|u′)] <∞.

2. The density r(y|u) is three-times differentiable on u for all y ∈ Y, and
for any compact set K ⊂ R there exists ρ > 0 such that

sup
ξ∈K

∫
sup

|ξ′−ξ|≤ρ

∣∣∣∂νr(y|ξ′)
∂νu

∣∣∣dy <∞ (ν = 1, 2),

and sup
ξ∈K

Er(y|ξ)
[

sup
|ξ′−ξ|≤ρ

∣∣∣∂3 log r(y|ξ′)
∂3u

∣∣∣] <∞.

Theorem 2. Assume that the model is the multilayer perceptrons with H
hidden units MH , and the true function is given by a network with K hidden
units for K < H. Under the assumptions [NM1] and [NM2] on the noise
model r(y|u), we have for arbitrary M > 0,

lim
n→∞Prob

(
sup
θ
Ln(θ) ≤M

)
= 0. (13)

Remark. This theorem means that the LR is strictly larger than Op(1).

Proof. Let σ(x; ξ, h) be a bounded, monotone decreasing function defined
by

σ(x; ξ, h) =
1
2
{
1 + s(−1

2ξ(x− h))
}

=
1

1 + exp{ξ(x− h)} , (14)

and {g(z; t, c, β)} a submodel of eq.(11), given by

g(z; t, c, β) = r
(
y
∣∣ϕ0(x) + β 1√

B(t,c)
σ(x; c2, t+ 1

c )
)
q(x), (15)

where B(t, c) =
∫
G(ϕ0(x))σ(x; c2, t+ 1

c )
2dQ(x) and β ∈ [0, 1]. The basis of

the tangent cone C consists of the functions

v(x, y; t, c) =
1√

B(t, c)
∂ log r(y|ϕ0(x))

∂u
σ(x; c2, t+ 1

c ). (16)

From the boundedness of ϕ0(x) and σ(x; ξ, h), it is straightforward to
see that [NM1] and [NM2] imply the asymptotic normality [AN].
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Fix A > 0 such that G(ϕ0(x)) ≥ A for all x ∈ R. Let FQ(t) be the dis-
tribution function of the input probability Q, and t0 = inf{t ∈ R | FQ(t) >
0} ∈ R∪{−∞}. From the fact limc→∞ σ(x; c2, t+ 1

c ) = χ(−∞,t](x), we have,
for given t, B(t, c) ≥ A

4 FQ(t) for sufficiently large c. For any t > t0 and
δ > 0, we have σ(x; c2, t + 1

c ) ≤ FQ(t) for all x ≥ t + δ and sufficiently
large c. Then, we can choose sequences tn ↓ t0, δn ↓ 0, and sufficiently
large cn such that |v(x, y; tn, cn)| ≤ 2√

A

∣∣∣∂ log r(y|ϕ0(x))
∂u

∣∣∣√FQ(tn) holds for all
x ≥ tn + δn and y. Because FQ(tn) → 0, we have v(x, y; tn, cn) → 0 almost
everywhere.

3.3 Asymptotic order of LR in multilayer perceptrons

We will derive a logn lower bound for LR in the case K ≤ H − 2. To show
this bound, we will use nγ (γ > 0) ”almost independent” variables in the
basis of the tangent cone, as described below. However, unlike Theorem
1, approximation by the multi-dimensional Gaussian distribution is not ob-
vious, because the dimensionality goes to infinity along with n. Sazonov’s
result (Sazonov 1968) and Lemma 1 in Appendix are used to solve this
problem.

Let W = {w(x; ξ, h, t) | ξ, t ∈ R, h > 0} be a family of functions given by

w(x; ξ, h, t) =
1√

A(ξ, h, t)
1
2
{s(ξ(x− t+ h)) − s(ξ(x− t− h))}, (17)

where A(ξ, h, t) = EQ
[
G(ϕ0(x))1

4{s(ξ(x − t + h)) − s(ξ(x − t − h))}2
]

is a
normalization constant. Note that limξ→∞ 1

2{s(ξ(x − t + h)) − s(ξ(x − t −
h))} = χ[t−h,t+h] for any t and h. Using an argument similar to Section 3.1,
we can easily prove that the function family

ψ(x; ξ, h, t, β) = ϕ0(x) + βw(x; ξ, h, t)

define a locally conic submodel of MH . The basis of the tangent cone
includes an arbitrary number of almost independent functions for any family
of disjoint intervals.

First, a general result will be shown under the condition that the regres-
sor class can approximate χI(x) for any interval I ⊂ R. For the theorem,
we need further assumptions on the noise model r(y|u). In listing them, we
do not avoid overlap with the former assumptions for simplicity. It is not
difficult to verify the following assumptions for the Gaussian and the logistic
model.
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[Conditions on noise model (NM3)]

1. For any compact set K ⊂ R, there exists a non-negative function τ(s)
on [0,∞) such that for some positive numbers Ai, δi (i = 1, 2) and T0

τ(s) ≥ A1s
δ1 (0 ≤ ∀s ≤ T0) and τ(s) ≥ A2s

δ2 (∀s > T0)

hold, and a lower bound of the KL-divergence is given by

Er(y|ξ)
[
log

r(y|ξ)
r(y|u)

]
≥ τ(|u− ξ|),

for all ξ ∈ K and u ∈ R.

2. There exist a continuous function �2(ξ) and ν > 0 such that

Er(y|ξ)
[

sup
|u|≤R

∣∣∣∂ log r(y|u)
∂u

∣∣∣2] ≤ �2(ξ)Rν for all R ≥ 1.

3. For any compact set K ⊂ R,

sup
u∈K

Er(y|u)
[| log r(y|u)|2] <∞, sup

u∈K
Er(y|u)

[∣∣∣∂ log r(y|u)
∂u

∣∣∣3] <∞,

and sup
ξ,u∈K

Er(y|ξ)
[∣∣∣∂2 log r(y|u)

∂u2

∣∣∣2] <∞.

4. For any compact set K ⊂ R,

lim
ρ↓0

sup
ξ∈K

Er(y|ξ)
[

sup
|ξ′−ξ|≤ρ

∣∣∣∂3 log r(y|ξ′)
∂u3

∣∣∣2] <∞.

Theorem 3. Let r(y|u) be a conditional density function of y ∈ Y given
u ∈ R, which satisfies the conditions [NM1], [NM2], and [NM3], ϕ0(x) a
bounded function on R, and f0(z) = r(y|ϕ0(x))q(x) a density function with
respect to the measure µ = µR × µy, where z = (x, y). For a closed interval
I, a non-negative value M(I) is defined by

M(I) =
∥∥∥∂ log r(y|ϕ0(x))

∂u
χI(x)

∥∥∥2

L2(f0µ)
=
∫
I
G(ϕ0(x))q(x)dx, (18)
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and a function uI(z) by

uI(z) =
1√
M(I)

∂ log r(y|ϕ0(x))
∂u

χI(x), (19)

for I with M(I) > 0. Suppose W = {w(x;α) | α ∈ A0} is a family of
functions with the following conditions: the function

v(z;α) =
∂ log r(y|ϕ0(x))

∂u
w(x;α) (20)

satisfies ‖v(z;α)‖L2(f0µ) = 1 for all α ∈ A0, and there exist a, b > 0 such that
for any ε > 0 and closed interval I with M(I) > 0 one can find w(x;α) ∈ W
which satisfies (i) 0 < w(x;α) ≤ a√

M(I)
for all x ∈ R, (ii) w(x;α) ≥ b√

M(I)

for all x ∈ I, and (iii) ‖v(z;α) − uI(z)‖L2(f0µ) < ε.
Then, for the locally conic model f(z;α, β) = r(y|ϕ0(x) + βw(x;α))q(x)

(α ∈ A0 and β ∈ R), there exists δ > 0 such that, given i.i.d. sample from
f0µ, we have

lim inf
n→∞ Prob

(supα,β Ln(α, β)
log n

≥ δ
)

> 0. (21)

Remark. This theorem asserts that the order of LR is at least logn. The
model {f(z;α, β)} is regarded as a locally conic model by using f(z;α+, β) =
r(y|ϕ0(x) + βw(x;α+)) and f(z;α−, β) = r(y|ϕ0(x) − βw(x;α−)) for β ∈
R≥0. For simplicity, we take negative β into consideration.

Theorem 3 can be applied to multilayer perceptrons for K ≤ H − 2.

Corollary 1. Suppose that the model is the multilayer perceptron with H
hidden units MH , and the true function is given by a network with K hidden
units for K ≤ H−2. Then, under the conditions [NM1], [NM2] and [NM3],
there exists δ > 0 such that

lim inf
n→∞ Prob

(supθ Ln(θ)
log n

≥ δ
)

> 0. (22)

Proof of Theorem 3. From [NM1]-3 and the boundedness of ϕ0(x), we have
0 < M(R) <∞. FixK > 0 such thatM([−K,K]) = M(R)

2 . For an arbitrary
m ∈ N, we can obtain a partition {I [m]

k | k = 1, . . . ,m} of [−K,K] such that

12



I
[m]
k ’s are closed intervals with disjoint interiors and M(I [m]

k ) = M(R)
2m for all

k. For each k (1 ≤ k ≤ m), a unit score function u[m]
k (z) is defined by

u
[m]
k (z) =

∂

∂β
log r

(
y
∣∣∣ϕ0(x) + β 1√

M(I
[m]
k )

χIk(x)
)∣∣∣

β=0

=
√

2m
M(R)

∂ log r(y|ϕ0(x))
∂u

χ
I
[m]
k

(x).

Note that the functions u[m]
k (z) are uncorrelated under the probability f0µ.

Let H3(x) be a function defined by H3(x) = Er(y|ϕ0(x))

∣∣∣∂ log r(y|ϕ0(x))
∂u

∣∣∣3.
By [NM1]-3 and [NM3]-3, there exists B > 0 such that H3(x) ≤ BG(ϕ0(x))
for all x ∈ [−K,K]. Then, we obtain

Ef0µ
∣∣u[m]
k (z)

∣∣3 = 1

M(I
[m]
k )3/2

∫
H3(x)χI[m]

k

(x)q(x)dx ≤
√

2B√
M(R)

√
m. (23)

Let Pn and Qm be the probability of the m-dimensional random vec-
tor

(
1√
n

∑n
i=1 u

[m]
1 (Zi), . . . , 1√

n

∑n
i=1 u

[m]
m (Zi)

)
and the m-dimensional nor-

mal distribution N(0, Im), respectively. Let D denote the family of all the
convex measurable sets on R

m. A Berry-Esseen-type inequality (Sazonov
1968) gives

sup
∆∈D

|Pn(∆) −Qm(∆)| ≤ Lm4

√
n

∑
1≤k≤m

Ef0µ|u[m]
k (Z)|3, (24)

where L is a universal constant. From eqs.(23) and (24), choosing ∆ =
[−ν√logm, ν

√
logm]m, we have for all n and m∣∣∣∣∣Prob

(
max

1≤k≤m
∣∣ 1√
n

n∑
i=1

u
[m]
k (Zi)

∣∣ > ν
√

logm
)
− Prob

(
Vm > ν

√
logm

)∣∣∣∣∣
≤ C ′m11/2

√
n
,

where Vm is the maximum of the absolute values of m i.i.d sample from
N(0, 1), and C ′ is a constant independent of n and m. If we choose 0 < ν <√

2 and m = [nγ ] for 0 < γ < 1
11 , where [x] is the largest integer that is not

larger than x, the extreme value theory tells for arbitrary ε > 0

lim
n→∞Prob

(
max

1≤k≤m

∣∣∣ 1√
n

n∑
i=1

u
[m]
k (Zi)

∣∣∣2> ν2γ log n
)

> 1 − ε. (25)
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By the assumptions on W, for any ε, δ > 0, m ∈ N, and k (1 ≤ k ≤ m),
there exists w[m]

k ∈ W such that (i) 0 < w
[m]
k (x) ≤ ã

√
m, (ii) w[m]

k (x) ≥ b̃
√
m

on I [m]
k , and (iii) Ef0µ

∣∣v[m]
k (z) − u

[m]
k (z)

∣∣2 < εδ2

m , where v[m]
k (z) is a function

defined by eq.(20) for w[m]
k (x), and ã, b̃ are positive constants independent

of ε, δ, m and k. Then, noting the fact

max
1≤k≤m

∣∣∣ n∑
i=1

v
[m]
k (Zi)

∣∣∣ ≤ max
1≤k≤m

∣∣∣ n∑
i=1

(
v

[m]
k (Zi)−u[m]

k (Zi)
)∣∣∣+ max

i≤k≤m

∣∣∣ n∑
i=1

u
[m]
k (Zi)

∣∣∣,
we obtain from Chebyshev’s inequality

Prob

(∣∣∣∣∣ max
1≤k≤m

∣∣∣ 1√
n

n∑
i=1

u
[m]
k (Zi)

∣∣∣− max
i≤k≤m

∣∣∣ 1√
n

n∑
i=1

v
[m]
k (Zi)

∣∣∣∣∣∣∣∣ ≥ δ

)

≤ Prob
(
1 ≤ ∃k ≤ m,

∣∣∣ 1√
n

n∑
i=1

(
u

[m]
k (Zi) − v

[m]
k (Zi)

)∣∣∣ ≥ δ
)

≤ m
Ef0µ|u[m]

k (z) − v
[m]
k (z)|2

δ2
< ε. (26)

Combining eqs.(25) and (26), we have a series {w[m]
k } and γ′ > 0 such that

lim
n→∞Prob

(
max

1≤k≤m

∣∣∣ 1√
n

n∑
i=1

v
[m]
k (Zi)

∣∣∣2 > γ′ log n
)
> 1 − 2ε. (27)

From [NM1]-3, there exist c, d > 0 such that c
m ≤ Q(I [m]

k ) ≤ d
m holds

for all m and k (1 ≤ k ≤ m). Then, by the choice of {w[m]
k }, Lemma 1 in

Appendix asserts that there exists γ1 > 0 such that for all 0 < γ < γ1 and
m = [nγ ] we obtain the asymptotic expansion of LR,

max
1≤k≤m

sup
|β|≤1

n∑
i=1

log
f

[m]
k (Zi;β)
f0(Zi)

=
{

max
1≤k≤m

1
2

( 1√
n

n∑
i=1

v
[m]
k (Zi)

)2}
(1 + op(1)),

(28)
where f

[m]
k (z;β) = r(y|ϕ0(x) + βw

[m]
k (x))q(x). Noting that the range of

β can be restricted to obtain the lower bound, the proof is completed by
combination of eqs.(27) and (28).

Proof of Corollary 1. We will show that the function class W = {w(x; ξ, h, t) |
ξ, h, t ∈ R} defined by eq.(17) satisfies the assumption of Theorem 3. Let
σ(x; ξ, h, t) = s(ξ(x − t + h)) − s(ξ(x − t − h)) and I = [t − c, t + c]. By

14



[NM1]-3, M(I) is positive. We can easily find sequences hn ↘ c and ξn → ∞
such that (A) σ(x; ξn, hn, t) ≤ 2 for all x ∈ R, (B) σ(x; ξn, hn, t) ≥ 1

2 for all
x ∈ I, and (C) |σ(x; ξn, hn, t) − χI(x)| → 0 for all x ∈ R. From (A), (C),
and the boundedness of G(ϕ0(x)),

∂ log r(y|ϕ0(x))
∂u σ(x; ξn, hn, t) converges to

∂ log r(y|ϕ0(x))
∂u χI(x) in L2(f0µ). This gives the assumption (iii). Also, we

have 1
2M(I) ≤ A(ξn, hn, t) ≤ 2M(I) for sufficiently large n. Combining this

with (A) and (B), we obtain (i) and (ii) by taking a = 2
√

2 and b = 1
2
√

2
.

The order log n has been formerly obtained by Hagiwara et al. (2000).
However, they consider only the least square loss function and use its special
property. The approach in this paper extends their results, and can be
applied to various noise models, including binary output models.

As shown in the above discussions, the behavior of LR deeply depends on
the functional property of the tangent cone C. If the multilayer perceptron
model has only one redundant hidden unit, the behavior can be totally
different. In fact, Hayasaka et al. (1996) show that, if the network model has
one hidden unit of the step function and the true function is constant zero,
the LR under Gaussian noise has the order of log logn, which is essentially
the same as the result of a change point problem (Csörgő and Horváth 1996).

4 Conclusion

Under the assumption that the true parameter is unidentifiable, the larger
asymptotic order of likelihood ratio test statistics has been investigated. I
have shown a useful sufficient condition of an unusually larger order of LR,
using the framework of locally conic models (Dacunha-Castelle and Gassiat
(1997)). This result has been applied to neural network models to show
the divergence of LR in redundant cases. Also, a logn lower bound for the
likelihood ratio has been obtained under the assumption that there are at
least two redundant hidden units to realize the true function.
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APPENDIX

A Lemmas used for the proof of Theorem 3

Lemma 1. Let ϕ0(x) be a bounded function on R, Y a subset of R, {r(y|ξ) |
ξ ∈ R} a family of probability density functions on a measure space (Y,By, µy),
which satisfies [NM1], [NM2], and [NM3], Q = q(x)µR a probability on R

with EQ| log q(x)|2 < ∞, and f0(z)µ = r(y|ϕ0(x))q(x)µRµy. For fixed pos-
itive constants a, b, c, d and a compact interval D, function classes Wm

(m ∈ N) are defined by

Wm = {w ∈ L2(f0µ) | ‖w‖L2(f0µ) = 1, 0 < w(x) ≤ a
√
m for all x ∈ R, and there

exists a closed interval I ⊂ D such that c
m ≤ Q(I) ≤ d

m and w(x) ≥ b
√
m on I}.

Given γ > 0, let mn = [nγ ] for n ∈ N, and Gγ be a family of sequences
{{w(n)

k }n∈N,1≤k≤mn | w(n)
k ∈ Wmn}. Suppose we have i.i.d. random variables

(X1, Y1), . . . , (Xn, Yn) with the law f0µ. Then, there exists γ0 > 0 such that
for any 0 < γ ≤ γ0 and {w(n)

k } ∈ Gγ, we obtain, as n goes to infinity,

max
1≤k≤mn

sup
|β|≤1

n∑
i=1

log
r(Yi|ϕ0(Xi) + βw

(n)
k (Xi))

r(Yi|ϕ0(Xi))

=
{

max
1≤k≤mn

1
2

( 1√
n

n∑
i=1

u
(n)
k (Xi, Yi)

)2}
(1 + op(1)), (29)

where u(n)
k (x, y) is a tangent vector given by

u
(n)
k (x, y) =

∂ log r(y|ϕ0(x) + βw
(n)
k (x))

∂β

∣∣∣
β=0

=
∂ log r(y|ϕ0(x))

∂ξ
w

(n)
k (x).

First, we will establish the uniform consistency of MLE for β.

Lemma 2. Let r(y|ξ), q(x), ϕ0(x), f0, and Wm be the same as in Lemma 1.
For m ∈ N, define Hm by Hm = {{wk}mk=1 | wk ∈ Wm}. Let β̂[m]

k (Ξ) be the
maximum likelihood estimator of the model {r(y|ϕ0(x)+βw

[m]
k (x))q(x) | β ∈

[−1, 1]} for Ξ = {w[m]
k }mk=1 ∈ Hm, given i.i.d. sample (X1, Y1), . . . , (Xn, Yn)

with the law f0(z)µ. Then, there exist A, λ, ν > 0 such that

Prob
(

max
1≤k≤m

∣∣β̂[m]
k (Ξ)

∣∣ ≥ ε
) ≤ A

mλ

nεν
(30)

holds for all 0 < ε < 1, n,m,∈ N, and Ξ ∈ Hm.
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Proof. The proof is divided into three parts. In the first two parts, we discuss
only one w(x) ∈ Wm, and write f [m](z;β) = r(y|ϕ0(x) + βw(x))q(x), for
simplicity. We define g[m](z;β; ρ) for β ∈ [−1, 1] and ρ > 0 by

g[m](z;β, ρ) = sup
|β′−β|≤ρ

log f [m](z;β′). (31)

A constant M is fixed so that |ϕ0(x)| ≤M for all x ∈ R.

(a) Bounds of Ef0µ[g
[m](z;β, ρ)]. We will show that there exist B, C, γ, η >

0, such that for arbitrary δ > 0 and β ∈ [−1, 1] the inequalities

Ef0µ[g
[m](z;β, ρ)] ≤ Ef0µ[log f [m](z;β)] + δ (32)

and
Ef0µ

∣∣g[m](z;β, ρ)
∣∣2 ≤ Cmγ + 2δ2 (33)

hold for ρ ≤ Bδm−η.
From [NM3]-2, we can find τ > 0, Ψ(y), and �2(ξ) such that

| log f [m](z;β) − log f [m](z;β′)| ≤ Ψ(y)w(x)|β − β′| (34)

and Er(y|ξ)[|Ψ(y)|2] ≤ �2(ξ)(M + a
√
m)τ hold for β ∈ [−1, 1] . Using Γ =

EQ[�2(ϕ0(x))] <∞, eq.(34) shows

Ef0µ[g
[m](z;β, ρ)] ≤ Ef0µ[log f [m](z;β)] + ρa

√
Γm(M + a

√
m)τ ,

which implies eq.(32) by choosing ρ ≤ Bδm−( τ
4
+ 1

2
) for some B. The second

assertion is also easily obtained from eq.(34) and [NM3]-3.

(b) Lower bound of KL-divergence. We will show that there exist D > 0,
ξ > 0, and ζ ∈ R such that the bound

sup
ε≤|β|≤1

Ef0µ[log f [m](z;β)] ≤ Ef0µ[log f0(z)] −Dmζεξ (35)

holds for arbitrary 0 < ε < 1 and m ∈ N.
From [NM3]-1, for all x ∈ I and β with |β| ≥ ε we have

Er(y|ϕ0(x))

[
log r(y|ϕ0(x) + βw(x)) − log r(y|ϕ0(x))

] ≤ −Fεξ√mσ

for some ξ, σ, F > 0. By integrating this on x with the probability Q,

Ef0µ[log f [m](z;β) − log f0(z)] ≤ −Fεξmσ/2 c

m
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is obtained, which means the assertion.

(c) Uniform consistency. We write f [m]
k (z;β) = r(y|ϕ0(x)+βw

[m]
k (x))q(x).

By the fact (b), we have Ef0µ[log f [m]
k (z;β)]−Ef0µ[log f0(z)] ≤ −4δm for all

β with ε ≤ |β| ≤ 1 and m ∈ N, where δm = 1
4Dm

ζεξ. From the fact (a),
we have Ef0µ[g

[m](z;β, ρm)] ≤ Ef0µ[log f(z;β)] + δm for all β ∈ [−1, 1] and
ρm = Bδmm

−η. Let Nm ∈ N be given by Nm = [1/ρm] + 2. Note that there
exist G, t > 0 such that Nm ≤ Gmtε−ξ. Dividing the set [−1,−ε]∪ [ε, 1] into
Nm intervals Jj = [βj − ρm, βj + ρm] (1 ≤ j ≤ Nm) with disjoint interiors,
we have

Ef0µ[g
[m](z;βj , ρm)] ≤ Ef0µ[log f0(z)] − 3δm (36)

for all j. Then, by Chebyshev’s inequality, we have

Prob
(
∃k, ∃β ∈ [−1,−ε] ∪ [ε, 1],

1
n

n∑
i=1

log f [m]
k (Zi;β) ≥ 1

n

n∑
i=1

log f0(Zi)
)

≤ mNm Prob
( 1
n

n∑
i=1

g[m](Zi;βj , ρm) >
1
n

n∑
i=1

log f0(Zi)
)

≤ mNm Prob
( 1
n

n∑
i=1

g[m](Zi;βj , ρm) − Ef0µ[g
[m](Z;βj , ρm)] > δm

)
+mNm Prob

( 1
n

n∑
i=1

log f0(Zi) − Ef0µ[log f0(Zi)] < −δm
)

≤ Gmt+1ε−ξ
{V [g[m](z;βj , ρm)]

nδ2m
+
V [log f0(Z)]

nδ2m

}
. (37)

From eqs.(33), (37), and [NM3]-3, there exist A, λ > 0 so that

Prob
(
∃k, β̂[m]

k ∈ [−1,−ε] ∪ [ε, 1]
)
≤ A

mλ

nε3ξ
,

which proves Lemma 2.

Proof of Lemma 1. From Lemma 2, the MLE β̂
(n)
k of the model f (n)

k (z;β) =
r(y|ϕ0(x) + βw

(n)
k (x))q(x) satisfies the likelihood equation

n∑
i=1

∂ log f (n)
k (Zi; β̂

(n)
k )

∂β
= 0
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for all 1 ≤ k ≤ mn, with a probability converging to one. By the standard
argument of Taylor expansion, we obtain

n∑
i=1

log
f

(n)
k (Zi; β̂

(n)
k )

f0(Zi)
=

(
1√
n

∑n
i=1

∂ log f
(n)
k (Zi;0)

∂β

)2

− 1
n

∑n
i=1

∂2 log f
(n)
k (Zi;0)

∂β2

{
S(k)
n − 1

2
T (k)
n

}
, (38)

where S(k)
n and T (k)

n are defined by

S(k)
n =

1
n

∑n
i=1

∂2 log f
(n)
k (Zi;0)

∂β2

1
n

∑n
i=1

∂2 log f
(n)
k (Zi;β∗

k)

∂β2

,

and T (k)
n =

1
n

∑n
i=1

∂2 log f
(n)
k (Zi;0)

∂β2
1
n

∑n
i=1

∂2 log f
(n)
k (Zi;β

∗∗
k )

∂β2(
1
n

∑n
i=1

∂2 log f
(n)
k (Zi;β∗

k)

∂β2

)2
,

with β∗k and β∗∗k between 0 and β̂(n)
k . The proof of Lemma 1 is completed if

we show for arbitrary ε > 0

Prob
(

max
1≤k≤mn

∣∣∣ 1
n

n∑
i=1

∂2 log f (n)
k (Zi; β̃k)
∂β2

+ 1
∣∣∣ ≥ ε

)
−→ 0 (n→ ∞), (39)

with β̃k =0, β∗k, or β∗∗k .
By Taylor expansion, we have

1
n

n∑
i=1

∂2 log f (n)
k (Zi; β̃k)
∂β2

=
1
n

n∑
i=1

∂2 log f (n)
k (Zi; 0)
∂β2

+
1
n

n∑
i=1

∂3 log f (n)
k (Zi; η)
∂β3

β̃k,

where η is between 0 and β̃k. Using ∂2 log f
(n)
k (z;0)

∂β2 = ∂2 log r(y;ϕ0(x))
∂u2 (w(n)

k (x))2

and [NM3]-3, we have B > 0 such that the bound

Ef0µ

[∣∣∣ 1
n

n∑
i=1

∂2 log f (n)
k (Zi; 0)
∂β2

+ 1
∣∣∣2] ≤ 2 + 2Bm2

n

n

holds for all n ∈ N. Then, by Chebyshev’s inequality, for 0 < γ < 1
3 and

mn = [nγ ] we obtain

Prob
(

max
1≤k≤mn

∣∣∣ 1
n

n∑
i=1

∂2 log f (n)
k (Zi; 0)
∂β2

+1
∣∣∣ > ε

2

)
≤ 2mn

2 + 2Bm2
n

nε
−→ 0.

(40)
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Take d > 2. From [NM3]-4, there exists C > 0 such that

Er(y|ϕ0(x))

[
sup

|β|≤m−d
n

∣∣∣∂3 log r(y|ϕ0(x) + βw
(n)
k (x))

∂u3

∣∣∣2] ≤ C

holds for all x ∈ R and sufficiently large n. If we define M (n)
k (z) by

M
(n)
k (z) = sup

|β|≤m−d
n

∣∣∣∂3 log f (n)
k (z;β)
∂β3

∣∣∣,
we have

Prob
(
1 ≤ ∃k ≤ mn,

∣∣∣ 1
n

n∑
i=1

∂3 log f (n)
k (Zi; η)
∂β3

β̃k

∣∣∣ ≥ ε

2

)
≤ Prob

(
max

1≤k≤mn

|β̂k| ≥ 1
md
n

)
+ Prob

(
max

1≤k≤mn

∣∣∣ 1
n

n∑
i=1

∂3 log f (n)
k (Zi; η)
∂β3

∣∣∣ ≥ ε

2
md
n

)
≤ Prob

(
max

1≤k≤mn

|β̂k| ≥ 1
md
n

)
+mn Prob

( 1
n

n∑
i=1

M
(n)
k (Zi) ≥ ε

2
md
n

)
. (41)

Since Ef0µ[(M
(n)
k (z))2] ≤ C(a

√
m)6 from [NM3]-4, by Chebyshev’s inequal-

ity the second term is not greater than 4mnE[M (n)
k (z)2]ε−2m−2d

n ≤ 4Ca6m4−2d
n ε−2,

which converges to zero for d > 2. From Lemma 2, there exist A, λ, ν > 0
such that the first term of eq.(41) is bounded by Amλ+dν

n /n. This converges
to zero for sufficiently small γ with γ(λ+ dν) < 1 and mn = [nγ ]. Thus, for
such γ and mn, we obtain

Prob
(
1 ≤ ∃k ≤ mn,

∣∣∣ 1
n

n∑
i=1

∂3 log f (n)
k (Zi; η)
∂β3

β̃k

∣∣∣ ≥ ε

2

)
−→ 0, (42)

as n→ ∞. Eqs.(40) and (42) show eq.(39), and complete the proof.
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