Kernel Method: Data Analysis with Positive
Definite Kernels

Kenji Fukumizu
The Institute of Statistical Mathematics.
Graduate University of Advanced Studies /
Tokyo Institute of Technology

Nov. 17-26, 2010
Intensive Course at Tokyo Institute of Technology
Outline I

17 (Wed) Introduction: overview of kernel methods

- Basic ideas of kernel method
- Examples of kernel methods

Basics on positive definite kernels

- Positive definite kernels
- Reproducing kernel Hilbert spaces

18 (Thu) Methods with kernels (I)

- Kernel PCA, kernel CCA, kernel FDA, Basics of SVM

Methods with kernels (II)

- Principle of kernel methods
- Representer theorem, etc.
19 (Fri) Support vector machine and related topics

- Basics on convex analysis
- Optimization of SVM and its dual form
- Computational aspect and SMO

Support vector machine and related topics

- Extension of SVM
- Generalization ability of SVM: computational learning theory
Outline III

24 (Wed) Theory of positive definite kernel and RKHS (I)
- Positive and negative definite kernels
- Various examples of positive definite kernels

Theory of positive definite kernel and RKHS (II)
- Bochner’s theorem, Mercer’s theorem
- Explicit expression of RKHS

25 (Thu) Kernel methods for structured data
- Kernels for strings and graphs

Nonparametric inference with kernels (I)
- Mean on covariance on RKHS
- Characteristic property
Outline IV

26 (Fri) Nonparametric inference with kernels (II)

- Homogeneity and independence test
- Conditional independence with kernels

Relation to other statistical methods

- Relation to functional data analysis, Gaussian process, and spline
Comments on Terminology

- “Kernel" is a general word for a function of the form

\[k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}. \]

But, “kernel" is often used to mean “positive definite kernel" for the methodology in this course in machine learning community.

- In statistics, the word “kernel" is often used for the method of kernel density estimation or Parzen window approach, e.g.,

\[\hat{p}(x) = \frac{1}{N} \sum_{i=1}^{N} k(x, X_i). \]

- In this course, “kernel method" is used for “the method with positive definite kernels".
Web page:
http://www.ism.ac.jp/~fukumizu/TITECH2010/

The information and the slides for this course will be put on the web page.
Time Table

<table>
<thead>
<tr>
<th>Week</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week</td>
<td>17 (Wed)</td>
<td>18 (Tue)</td>
<td>19 (Wed)</td>
</tr>
<tr>
<td>15:00-16:30</td>
<td>Intro</td>
<td>Methods (I)</td>
<td>SVM (I)</td>
</tr>
<tr>
<td>16:40-18:10</td>
<td>Basics on pos. def. kernels</td>
<td>Methods (II)</td>
<td>SVM (II)</td>
</tr>
<tr>
<td>2nd week</td>
<td>24 (Wed)</td>
<td>25 (Thu)</td>
<td>26 (Fri)</td>
</tr>
<tr>
<td>15:00-16:30</td>
<td>Theory on kernel and RKHS (I)</td>
<td>Structured data</td>
<td>Nonparametric inference (II)</td>
</tr>
<tr>
<td>16:40-18:10</td>
<td>Theory on kernel and RKHS (II)</td>
<td>Nonparametric inference (I)</td>
<td>Relation to other methods</td>
</tr>
</tbody>
</table>