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What is Data Analysis?
Analysis of data is a process of inspecting, cleaning,
transforming, and modeling data with the goal of highlighting
useful information, suggesting conclusions, and supporting

decision making.

3468515 502947

22 5190045 0820569 1619692 5 003
51462980 -1 23680 1 8015 B 2269014,
|4 2200819 506083 2829401 634824
5 7751300 1690187 6322912 04583
6| 28006 195241 430027 o1riez7
7| -00%14 22124 29502

8 534 0440473

9 4 6528

N

5

14 3

15| 2122015 208277

16 05181 4101138

08 S 4

8670736 6
052

2501am
250076

365631 380763 1 X

2 392763 5904275 -0
24| 6376408 347153 3290102 6703063
5| 2960187 S0TC86 3669409 590672
26 213013 3206376 35IBA 2964425
3170689 0768527 0220175 3362905
4047065 2506478 231264 2679048
31176 & 384378 3118273
208603 450uan

o Adma
£ Shootd /Shostl-Shes

RESTr iy

2 “hoets

— Wikipedia

PCA 5 vars [
Princrp(x = ci, cor = cor) ® °®
T | S e
Feriity [ ]
xowe w--x ’ °
P
&) B 2ok .
o B :
e _o° . [ ]
LI
g ° :
1044741 neutiure 'K
2340010 L (1-3) 60% " ] Dot
e o .
[ X ]
== L ]
ering 4 groups Factor 1 [41%)] Fator 3 [19%]

560428

8

Q018
5952547
178007
4269563

2008022

Groups

}

Al

¥l

e



Linear Data Analysis

o Typically, data is expressed by a ‘table’ of numbers —
Matrix expression:

Xt x2 ... Xp
X21 X22 S X ' )

X = . (m dimensional, N data)
XL X3 oo Xuw

e Linear operations are used for data analysis. e.g.
Principal component analysis (PCA)

Canonical correlation analysis (CCA)

Linear regression analysis

Fisher discriminant analysis (FDA)

Logistic regression, etc.
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e Example 1: Principal Component Analysis (PCA)
X1,..., Xn : m-dimensional data.

e Find d-directions to maximize the variance.
e Purpose: represent the structure of the data in a low
dimensional space.




o The first principal direction:

1 [ 1 & 2
T
U1 = arg max —{ U (Xl—— X)}
L = N ; Z N; 7
= arg Hmﬁax u'Vu,
ul|l=1

where V is the variance-covariance matrix:

N
1
V=% Z( ZX ) ( Z X )
e General solution:
- Eigenvectors uyq, . .., u,, of V (in descending order of
eigenvalues).
- The p-th principal axis = u,.

- The p-th principal component of X; = ! X;



e Example 2: Linear classification
e Binary classification

Xll X12 e XM v
X o xz ... Xxp 1

X = . ’ Y = E{:l:l}
' Y;
Xy X3 o Xy i
Input Output

e Linear classifier
h(z) =aTz +b
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Are linear methods enough?

e Example 1: classification

linearly inseparable

linearly separable

=)

(z1,22) — (21, 22, 23) = (x%,x%, \@xlxg)

(Unclear? Watch http://jp.youtube.com/watch?v=311iCbRZPrZA)
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http://jp.youtube.com/watch?v=3liCbRZPrZA

e Example 2: dependence of two data
Correlation

ey CovXY]  B((X - BX)(Y - BY])]
VVarX[VarlY]  /E[(X — E[X])?]E[(Y — E[Y])?]

v . COIT( X Y) . M ‘.;:-:: ‘e Corr( ley)
. =047 Y =0.96

¢ Transforming data to incorporate high-order moments
seems attractive.
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Nonlinear Transform Helps!

e Analysis of data is a process of inspecting, cleaning,
transforming, and modeling data with the goal of
highlighting useful information, suggesting conclusions,
and supporting decision making. — Wikipedia.

¢ Kernel method = a systematic way of analyzing data by

transforming them into a high-dimensional feature space to
extract nonlinearity or higher-order moments of data.
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Feature Space for Transforming Data

e Kernel methodology = a systematic way of analyzing data
by transforming them into a high-dimensional feature

space.

Space of original data Feature space (RKHS)

Apply linear methods on the feature space.

e What space is suitable for a feature space?
e |t should incorporate various nonlinear information of the

original data.
e The inner product of the feature space is essential for data

analysis (seen in the next subsection).
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Computational Problem

For example, how about this?
(X,Y,2)— (X,Y,Z2,X%Y? 22, XY, YZ,ZX,...).

But, for high-dimensional data, the above expansion

makes the feature space very huge!

e.g. If X is 100 dimensional and the moments up to the

3rd order are used, the dimensionality of feature space is
100C1 + 100C2 + 100C3 = 166750.

This causes a serious computational problem in working
on the inner product of the feature space.
We need a cleverer way of computing it. = Kernel method.
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Inner Product by Positive Definite Kernel

e A positive definite kernel gives efficient computation of the
inner product:

With special choice of a feature space H and feature map
® , we have a function k(zx, y) such that
(P(X5), P(X;5)) = k(Xi, X)), positive definite kernel

where
X — H, z— D(x)eH.

e Many linear methods use only the inner product without
necessity of the explicit form of the vector ®(X).
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Review of PCA |

X1,..., Xy : m-dimensional data.

The first principal direction:

uy = arg HmHaX Var[u” X]
ul|=1

1 N 1 N 9
T

—argmax—{g U <XZ'——§ X)}
lul=1 N N = J

=1
Observation: PCA can be done if we can

e compute the inner product between v and the data,
e solve the optimum w.
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Kernel PCA |

X1,..., Xn : m-dimensional data.
Transform the data by a feature map & into a feature space H.:

Xl,...,XN I—)@(X1),,¢I><XN)
Assume that the feature space has the inner product ( , ).

Apply PCA on the feature space:
e Maximize the variance of the projections onto the direction

1.

N N
e V(0] = i 310060 D 06} )

j=1
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Kernel PCA I

e Note: it suffices to use
N ~
f = Z aZ(I)(X’L)¢
=1
where

O(X;) = D(X;) — 320y B(X).

The direction orthogonal to Span{®(X}),..., ®(Xy)} does
not contribute.

'Decompose f as f = fo + f1, where fo € Span{®(X;)}*, and f, inits
orthogonal complement. The objective function is maximized when f; = 0.
[Exercise: confirm the details.]
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Kernel PCA Il

o Insert f = SN | a;P(X;).
o Variance: L3N (f,8(X,))" = LaTK2a.
e constraint:  ||f|? =a’Ka=1.

e Kernel PCA problem:
maxa’ K2a subjectto o' Ka =1,
where K is N x N matrix with K;; = (®(X;), ®(X;)).

Kernel PCA can be solved by the above generalized
eigenproblem.
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Kernel PCA IV

e Eigendecomposition:

N
K:Z/\iuiu”, (/\1 Z)\NZO)
i=1

e Solution of kernel PCA:

o The first principal direction:

N
flzzaié(Xi)a a=—=u,
i=1

e The first principal component of the data X;:

(®(X,), f1) =Vl

e 2nd, 3rd, ... principal components are similar.
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Exercise: Check the following two relations for
f= Zz]\il a; ©(X5).
o Variance: + N (f,&(X;))* = LaTK2a.
e Squared norm: [|f]|?> =

Answer.
Var:

LN (N (), 8(X)) = AN, (N ag<<1><X-> B(X)))*
= 2 X (T aK5)" = £ T Y K ian K
= A Y aian s KiKn = £ 300 S ajan(K?), = a” K?a.
Norm:
I @@ (X0)? = (D, aid(X), o5 a,8(X))
= S aia (B(X,), (X))
=Y Y aia; K = " Ka.
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From PCA to Kernel PCA

e The optimum direction is obtained in the form

N ~
=> a;®(X
=1
i.e., in the linear hull of the (centered) data.
o PCA in the feature space is expressed by (®(X;), ®(X;))

or?
((Xi), ©(X;)) = k(Xi, X).

2Exercise: Check the following relation

Kij = k(Xi, X;) =% 30l 1 k(Xi, Xo)— %30 (X, X))+ mz Yon 1S pe  k(Xa, Xb).
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Basic idea of kernel methods

Two examples of kernel methods

Ridge regression and its kernelization
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Review: Linear Regression |

Linear regression
e Data: (Xl,Yl), e (XN,YN): data

e X;: explanatory variable, covariate (m-dimensional)
e Y;: response variable, (1 dimensional)

e Regression model: find the best linear relation

Y, =a' X; +¢
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Review: Linear Regression |l

o Least square method:  min ) (V; —
a .

e Matrix expression

X! Xz ... Xp Yy
XL X% X Yy

e Solution:

Observation: Linear regression can be done if we can
compute the inner product X7 X, a”« and so on.
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Ridge Regression

Ridge regression:
e Find a linear relation by

min 3277, (Y; — o X0) + Aa®.

A: regularization coefficient.
e Solution
a=(XTX +My)'XTY

For a general z,

o~

y(z) = aly = YTX(XTX + )\IN)_lx.

« Ridge regression is useful when (X7 X)~! does not exist,
or inversion is numerically unstable.
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Kernelization of Ridge Regression |
(X1,Y1) ..., (XN, Yn) (Yi: 1-dimensional)
Transform X; by a feature map @ into a feature space #:
Xi,..., XN '—>(I)(X1),...,(I)(XN)
Assume that the feature space has the inner product ( , ).

Apply ridge regression to the transformed data:
e Find the vector f such that

Y; — 24
?%5121 Xl + A3
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Kernelization of Ridge Regression |l

« Similarly to kernel PCA, we can assume 3

f=>c¢®(X)).

N
=1

e The objective function is

N
min g
C
=1

N

J=1

3[Exercise: confirm this.]

2 N 2
Yi— <Z ¢ (X)), ¢(Xi)>H‘ + )\“chq)(Xj)‘)H'
=1
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Kernelization of Ridge Regression |l

e Solution:
¢= (K + M\y)7tY,

where
Kij = ((X;), ©(X;))n = k(X;, X;).

For a general z,

@) = (F,e@)u = (;50(X;), (x)u
= YT (K + My) " 'k(z),

(@(X1), B(@)\ [ K(X1,2)
K(r) = 5 -
@(Xy), o)) \K(Xn2)

where
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Kernelization of Ridge Regression IV

Outline of Proof.
Matrix expression derives

N

>

IR MRSt St o
i=1 J=1 =

=Y - Ko)'(Y — Kc¢) + \c'Kc
=c(K? + \K)c —2YTKe+YTY.

Thus, the the objective function is a quadratic form of ¢. The solution
is given by
c= (K +My)'Y.

Inserting this to y(z) = (3_, ¢;®(X;), ®(z))n, we have the claim. [
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From Ridge Regression to its Kernelization

Observations:
e The optimum coefficients have the form

N
f = Z Clq)(Xl))
=1

i.e., a linear combination of the data.
The orthogonal directions do not contribute to the objective
function.

e The objective function of kernel ridge regression can be
expressed by the inner products

(B(X:), (X)) = k(X X;) and  ((X,), () = k(X;, ).
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Principles of Kernel Methods

e Observations common in two examples:

¢ A feature map transforms data into a feature space H with
inner product (, ).

X17...,XN — @(X1)7,(I>(XN) cH.
o Typically, the optimum solution (vector in ) has the form
f =Y (X).

e The problem is expressed by the inner product
(@(Xi), ©(X5)).
e If the inner product (®(X;), (X;)) is computable, various
linear methods can be done on a feature space.

e How can we define such a feature space in general?
= Positive definite kernel!
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