Relations to Other Statistical Methods

Statistical Data Analysis with Positive Definite Kernels

Kenji Fukumizu

Institute of Statistical Mathematics, ROIS

Department of Statistical Science, Graduate University for Advanced Studies

October 6-10, 2008, Kyushu University

Outline

- 1. Spline smoothing and RKHS
- 2. Relation to random process

Outline

- 1. Spline smoothing and RKHS
- 2. Relation to random process

Spline smoothing

$$(X_1, Y_1), ..., (X_N, Y_N) : X_i \subseteq \mathbb{R}^n, Y_i \subseteq \mathbb{R}$$

P: differential operator on \mathbf{R}^n

Spline smoothing:

$$\min_{f} \sum_{i=1}^{N} (Y^{i} - f(X^{i}))^{2} + \lambda \int |Pf(x)|^{2} dx$$
Roughness penalty

Laplacian and Green function

Laplacian
$$\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}$$

Self-adjoint: if |f(x)|, $|g(x)| \rightarrow 0$ $(x \rightarrow \infty)$

$$\int \Delta f(x)g(x)dx = \int f(x)\Delta g(x)dx$$
 [partial integral]

Green function for Laplacian

$$\Delta G(x,\xi) = \delta(x-\xi)$$
 i.e.
$$\int \Delta G(x,\xi) f(x) d\xi = f(\xi)$$

– Green function solves a differential equation: $\Delta f = \varphi$ given φ .

$$\Rightarrow f(x) = \int G(x, y) \varphi(y) dy$$

$$f(\xi) = \int f(x)\Delta G(x,\xi)dx = \int \Delta f(x)G(x,\xi)dx = \int \varphi(x)G(x,\xi)dx \quad 5$$

Smoothing penalty

Regularization term

Consider functions on \mathbb{R}^n for simplicity (no boundary)

$$J_{m}^{n}(f) = \sum_{\alpha_{1}+\dots+\alpha_{n}=m} \frac{m!}{\alpha_{1}!\alpha_{2}!\dots\alpha_{n}!} \|D^{\alpha}f\|_{L^{2}}^{2} \qquad L^{2} \text{ norm of } m\text{-th derivative}$$

$$= \sum_{\alpha_{1}+\dots+\alpha_{n}=m} \frac{m!}{\alpha_{1}!\alpha_{2}!\dots\alpha_{n}!} \int \left|\frac{\partial^{m}f}{\partial x_{1}^{\alpha_{1}}\partial x_{2}^{\alpha_{2}}\dots\partial x_{n}^{\alpha_{n}}}\right|^{2} dx$$

- example (n = m = 2)

$$J_2^2(f) = \int \left\{ \left| \frac{\partial^2 f}{\partial x_1^2} \right|^2 + 2 \left| \frac{\partial^2 f}{\partial x_1 \partial x_2} \right|^2 + \left| \frac{\partial^2 f}{\partial x_2^2} \right|^2 \right\} dx$$

Smoothing

$$\min_{f} \sum_{i=1}^{N} (Y^{i} - f(X^{i}))^{2} + \lambda \sum_{m=0}^{\infty} a_{m} J_{m}^{n}(f) \qquad (a_{m} \ge 0)$$

Expression by Laplacian

Partial integral shows

$$J_m^n(f) = (-1)^m (f, \Delta^m f)_{L^2}$$

The smoothing problem is expressed by

$$\min_{f} \quad \sum_{i=1}^{N} \left(Y^i - f(X^i) \right)^2 + \lambda \left(f, Af \right)_{L^2}$$
 where $A = \sum_{m=0}^{\infty} \left(-1 \right)^m a_m \Delta^m$

Two cases

■ Case $a_0 \neq 0$

e.g.
$$\int |f(x)|^2 dx + \int \left(\frac{\partial f(x)}{\partial x}\right)^2 dx = (f, f)_{L^2} + (f, -\Delta f)_{L^2}$$

- The Green function is a positive definite kernel.
- The penalty term is equal to the squared RKHS norm.
- - Spline smoothing
 - The functional space is RKHS + polynomial of some order
 - The penalty term is equal to the squared RKHS norm of the projection of f onto the RKHS.

$a_0 \neq 0$: RKHS regularization

■ Solution

$$\min_{f} \sum_{i=1}^{N} \left(Y^{i} - f(X^{i}) \right)^{2} + \lambda \left(f, Af \right)_{L^{2}}$$

Variational calculus

$$\sum_{i=1}^{N} (Y^{i} - f(x)) \delta(x - X^{i}) + \lambda Af = 0$$

$$Af = -\frac{1}{\lambda} \sum_{i=1}^{N} (Y^{i} - f(x)) \delta(x - X^{i})$$

If we have the Green function G for A i.e. $AG = \delta$

$$f(\xi) = -\frac{1}{\lambda} \sum_{i=1}^{N} \int (Y^i - f(x)) \delta(x - X^i) G(x, \xi) dx$$
$$= -\frac{1}{\lambda} \sum_{i=1}^{N} (Y^i - f(X^i)) G(\xi, X^i)$$
$$\text{Note: } f(X_i) \text{ unknown}$$

The solution is to have the form:

$$f = \sum_{i=1}^{N} c_i G(\cdot, X^i)$$

Plug it into the original problem:

$$\min_{c \in \mathbf{R}^{N}} \sum_{i=1}^{N} \left(Y^{i} - \sum_{j=1}^{N} c_{j} G(X^{i}, X^{j}) \right)^{2} + \lambda \sum_{i,j=1}^{N} c_{i} c_{j} G(X^{i}, X^{j})$$

$$\therefore (Af, f)_{L^{2}} = \sum_{i,j} c_{i} c_{j} (AG(\cdot, X_{i}), G(\cdot, X_{j}))_{L^{2}} = \sum_{i,j} c_{i} c_{j} G(X_{i}, X_{j})$$

By differentiation,

$$c=(G+\lambda I)^{-1}\mathbf{Y}$$
 where $G_{ij}=G(X^i,X^j)$ $\mathbf{Y}=(Y^1,...,Y^N)^T$

The solution:

$$f(x) = \mathbf{Y}^T (G + \lambda I)^{-1} g(x)$$
 where $g_i(x) = G(x, X^i)$

Green function

Theorem

If $a_0 \neq 0, a_j \neq 0 (\exists j \geq 1)$, the Green function of A is a positive definite kernel.

Proof.

Since *A* is shift invariant, so is G(G(x, y) = G(x-y)). Thus,

$$\sum_{m=0}^{\infty} (-1)^m a_m \Delta^m G(z) = \delta(z)$$

By Fourier transform

$$\sum_{m=0}^{\infty} a_m \|u\|^{2m} \widehat{G}(u) = \frac{1}{(2\pi)^{n/2}}$$

$$\widehat{G}(u) = \frac{1}{(2\pi)^{n/2} (a_0 + \sum_{m=1}^{\infty} a_m \|u\|^{2m})}$$

If $a_0 \neq 0, a_j \neq 0 (\exists j \geq 1)$, the Fourier inversion is possible. Use Bochner's theorem.

Regularization by RKHS norm

Assume $a_0 \neq 0, a_1 \neq 0$

G: Green function of A.

 H_G : RKHS w.r.t. G.

$$\min_{f} \sum_{i=1}^{N} \left(Y^{i} - f(X^{i}) \right)^{2} + \lambda \sum_{m=0}^{\infty} a_{m} J_{m}^{n}(f)$$

The solution is given by $f = \sum_{i=1}^{N} c_i G(\cdot, X^i)$

The penalty term is, then,

$$\sum_{m=0}^{\infty} a_m J_m^n(f) = \sum_{i,j} c_i c_j G(X_i, X_j) = ||f||_{H_G}^2.$$

The above regularization is equivalent to the kernel ridge regression

$$\min_{f} \sum_{i=1}^{N} (Y^{i} - f(X^{i}))^{2} + \lambda \| f \|_{H_{G}}^{2}$$

$a_0 = 0$: Spline smoothing

■ Thin-plate spline

$$\min_{f} \sum_{i=1}^{N} \left(Y^{i} - f(X^{i}) \right)^{2} + \lambda J_{m}^{n}(f)$$

$$J_{m}^{n}(f) = \sum_{\alpha_{1} + \dots + \alpha_{n} = m} \frac{m!}{\alpha_{1}! \alpha_{2}! \cdots \alpha_{n}!} \left\| D^{\alpha} f \right\|_{L^{2}}^{2}$$

- The Green function of J_m^n is not necessarily positive definite, (but conditionally positive definite).
- The function space for f is

$$B_m^n: D^{\alpha} f \in L^2(\mathbf{R}^n) \quad (|\alpha| = m)$$

and

$$J_m^n(f) = 0 \quad \Leftrightarrow \quad f \in \mathcal{P}_{m-1}$$

 \mathcal{P}_{m-1} : Polynomials of degree at most m-1

Let $B_m^n = \mathcal{P}_{m-1} \oplus H_*$ be decomposition by direct sum.

Theorem (Meinguet 1979)

If m > n/2, the subspace H_* is a RKHS with inner product

$$\langle f, g \rangle_{H_*} = \sum_{|\alpha|=m} \frac{m!}{\alpha_1! \cdots \alpha_n!} \left(D^{\alpha} f, D^{\alpha} g \right)_{L^2} = \left((-1)^m \Delta^m f, g \right)_{L^2}$$

In particular, the norm is given by

$$\left\|f\right\|_{H_*}^2 = J_m^n(f)$$

$$\min_{f} \sum_{i=1}^{N} \left(Y^{i} - f(X^{i}) \right)^{2} + \lambda J_{m}^{n}(f)$$

$$\Longrightarrow \qquad \sum_{g \in H_{*}, p \in \mathcal{P}_{m-1}}^{N} \sum_{i=1}^{N} \left(Y^{i} - (g(X^{i}) + p(X^{i})) \right)^{2} + \lambda \parallel g \parallel_{H_{*}}^{2}$$

Solution of spline smoothing

By the representer theorem, the solution is to be of the form:

$$f(x) = \sum_{i=1}^{N} c_i K(x - X_i) + \sum_{\ell=1}^{M} b_{\ell} \phi_{\ell}(x)$$

By plugging it,

$$\min_{c,b} (Y - Kc - Hb)^T (Y - Kc - Hb) + \lambda c^T Kc$$

The solution:

$$(K + \lambda I)c + Hb = Y, \qquad H^Tc = 0.$$

$$\begin{cases} c = (I_N - H(H^T H)^{-1} H^T)(K + \lambda I)^{-1} Y \\ b = (H^T H)^{-1} H^T (K + \lambda I)^{-1} Y \end{cases}$$

Outline

- 1. Spline smoothing
- 2. Relation to random process

Gaussian process

- A Gaussian process is a random process $\{X_t\}_{t\in\Omega}$ (random variables with index Ω) such that for any finite subset $\{t_1,...,t_n\}$ of Ω , the random vector $(X_{t_1},...,X_{t_n})$ is a Gaussian random vector.
- Mean function $\mu(t) = E[X_t]$
- Covariance function $R(t,s) = Cov[X_t, X_s]$
- A Gaussian process is uniquely determined by the mean and covariance function.

$$\mathbf{X} = (X_{t_1}, ..., X_{t_n}) \sim N(\mu_{\mathbf{X}}, \Sigma_{\mathbf{X}})$$

$$\mu_{\mathbf{X}} = (\mu(t_1), \dots, \mu(t_n)), \qquad \Sigma_{\mathbf{X}} = \begin{pmatrix} R(t_1, t_1) & R(t_1, t_2) & \cdots & R(t_1, t_n) \\ R(t_2, t_1) & R(t_2, t_2) & \cdots & R(t_2, t_n) \\ \vdots & \vdots & \ddots & \vdots \\ R(t_n, t_1) & R(t_n, t_2) & \cdots & R(t_n, t_n) \end{pmatrix}$$

Examples

mean zero covariance function
$$R(s,t) = \exp\left(-\frac{1}{2\sigma^2}(s-t)^2\right)$$

Generated by Matlab gpml toolbox (Rasmussen and Williams)

Random process and positive definite kernel

Covariance function is a positive definite kernel

Theorem

The covariance function R(s, t) of a random process $\{X_t\}_{t \in \Omega}$ is a positive definite kernel.

::) For simplicity, mean = 0.

$$\begin{split} \sum_{i,j=1}^{n} c_{i} c_{j} R(t_{i}, t_{j}) &= \sum_{i,j=1}^{n} c_{i} c_{j} E[X_{t_{i}}, X_{t_{j}}] \\ &= E \left[\sum_{i=1}^{n} c_{i} X_{t_{i}}, \sum_{j=1}^{n} c_{j} X_{t_{j}} \right] = E \left[\left(\sum_{i=1}^{n} c_{i} X_{t_{i}} \right)^{2} \right] \geq 0 \end{split}$$

- A random process on Ω determines a RKHS on Ω .

Positive definite kernel defines Gaussian process

k(s,t): positive definite kernel on Ω .

For any finite subset $\mathbf{t} = (t_1, ..., t_n)$ of Ω , the Gram matrix $\Sigma_{\mathbf{t}} = (k(t_i, t_j))$ is always positive semidefinite.

By Kolmogorov extension theorem, there is a Gaussian process with index set Ω such that

$$\mathbf{X} = (X_{t_1}, ..., X_{t_n}) \sim N(0, \Sigma_t)$$

The covariance function = k(s,t).

Stationary process and shiftinvariant kernel

Stationary case

 $\{X_t\}_{t\in\mathbb{R}^m}$: random process on \mathbf{R}^m

stationary process

$$E[X_{t+h}X_{s+h}] = E[X_tX_s] \qquad (\forall t, s, h \in \mathbf{R}^m)$$

covariance function is given by

$$R(t,s) \equiv R(t-s)$$

Positive definite kernel for a stationary process is given by

$$K(t,s) = K(t-s)$$

Bochner's theorem
 Wiener-Khinchine's theorem
 (covariance function of a stationary process on R^m is the inverse Fourier transform of the power spectral.)

References

- Wahba, G. Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics 59. SIAM. 1990.
- Meinguet, J. (1979) Multivariate Interpolation at Arbitrary Points Made Simple. J. Applied Mathematics and Physics (ZAMP) 30, 292—304.
- Berlinet, A. and C. Thomas-Agnan. *Reproducing Kernel Hilbert Spaces in Probability and Statistics.* Kluwer Academic Publishers, 2003.
- Gel'fand, I.M. and Vilenkin, N.Ya. *Generalized Functions Vol.4: Applications of Harmonic Analysis*. Academic Press. 1964.