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Spline smoothing

(X1 Y1), oo K Vo) - X ERY Y ER
P: differential operator on R"

Spline smoothing:

min %(Yi—f(xi))2+ﬁj|Pf(x)|Zdx

Roughness penalty



Laplacian and Green function
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B [aplacian At

Self-adjoint: if | f(X)],|g (x) | > 0 (z — o)
_[ Af (X)g(x)dx = _[ f (X)Ag(x)dx  [partial integral]

B Green function for Laplacian
AG(x,8) =6(x—=¢)
e [AG(z, &) f(x)dE = f(€)

— Green function solves a differential equation: Af = @  given o.

= f(x)=]G(x,y)e(y)dy

) 1€ = [ 1@AG@9ds = [ Af@)G( s = [ p()Gw iz s



Smoothing penalty

B Regularization term
Consider functions on R" for simplicity (no boundary)

m!

In(f)= X D :

1 2 L2 norm of m-th derivative
a1+...+an:m 0[1.0(2 _--oan L

5 m!
a1+...+an:m al !az !

— example (n=m = 2)
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B Smoothing

min S (Y - (X)) 23 apdn(h) (ay, 2 0)
i=1

m=0

B Expression by Laplacian
Partial integral shows

In(f)=(-0)"(f,A"f)

L2
The smoothing problem is expressed by
] N : N
min > (Y= F(XD) +A(F,Af),
i=1

where A=Y (-1)"a A"

m=0



Two cases

lCase ao;tO
[0 P dx+[ (T  dx = (f, ) +(f,~Af) .

— The Green function is a positive definite kernel.
— The penalty term is equal to the squared RKHS norm.

W Casea, =0
eg [[Z10fax = (f,A21),,

— Spline smoothing
— The functional space is RKHS + polynomial of some order

— The penalty term is equal to the squared RKHS norm of the
projection of f onto the RKHS.




a, = 0 : RKHS regularization
B Solution N
min > (Y- F(XD) +A(F,Af)

Variational calculus
N ) )
> (Y= F(9)s(x—X")+2Af =0

1=1

Af =—=3 (Y= F(x))o(x-X)
If we have the Green function G forA 1.e. AG =

t(5) =—%_N§I(Yi - £ ()5 (x=X")G(x,£)dx

1 N i i I
== 2 (=T XDG(E XY
. Note: f(X;) unknown



The solution is to have the form:
N .
f=>¢G(,X")
i=1
Plug it into the original problem:

N N iy V)2 N iy
min z(Y -y ¢, G(X', X )) + YN cc,G(X', XT)
=1

ceRN
) (Af, 2 =2 cici(AG(, X)), G(+, X)) 12 = ¥ 5 cic; G(X;, Xj)

By differentiation,
c=(G+Al)Y o
where  G; =G(X', X 1) Y=(Y... YW

The solution:

F() =Y (G+A1) g(x)  where G;(X)=G(x,X')
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B Green function

Theorem

If a5 #0,a; #0(3) 21), the Green function of A is a positive definite
kernel.

Proof.
Since A is shift invariant, so is G (G(x, y) = G(x-y) ). Thus,

> (-)"a,A"G(2) = 5(2)
m=0

By Fourier transform

00 2m A _ 1
G(uw) = 1

(2m)"2(ag+Y =1 amllul[?™)

If 3y # 0,a; # 0(3] 1), the Fourier inversion is possible.
Use Bochner’s theorem.
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B Regularization by RKHS norm

Assume a, = 0,a, #0
G: Green function of A.
Hs: RKHS wr.t. G.

min %(Yi ~ (X)) +4X apdn(f)
f i=1

m=0

The solution is given by f = Zi'ilciG(-, X i)
The penalty term is, then,

7 > > N 1l nll

00 ) — N Y. XY — 2
2om=00mJIm\J) = 2. j Cic;G( A4, Xj5) = |[JlIg,.-
The above regularization is equivalent to the kernel ridge regression
Sy iy)2 2
min (Y = F(XD) 2l IR
i=1
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a, = 0: Spline smoothing
B Thin-plate spline
min i(v‘—f(x‘))ﬂu;(f)

()= X D f

o+ +a,=m Iaz

— The Green function of J! is not necessarily positive definite,
(but conditionally positive definite).

— The function space for f is
B': D*f el*(R") (al=m)
and
I")=0 < fea,,
P

.1 . Polynomials of degree at most m - 1
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Let Br?] =@, ;D H. bedecomposition by direct sum.

Theorem (Meinguet 1979)
If m>n/2, the subspace H. is a RKHS with inner product

In particular, the norm is given by
2
[Flh, = In(F)

(£.0)h = Yaimai (D f, D )L2 :((_1)mAmf,g)L2

N , .\ 2
min Y (Y'= (X)) +A35(f)
f i=1
=
. N i i i 2 2
min -~ S (Y =(g(X)+p(X")) +2lIg

H
QEH*’ peq)m—l |:1
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B Solution of spline smoothing

By the representer theorem, the solution is to be of the form:

N M
f(x)= ZCiK(X_ X;) —I—be@(X)
i=1 =1
By plugging it,
min., (Y —Kc— Hb)'(Y — Kc— Hb) + Al Kc

The solution:
(K+MX)c+Hb=Y, H'c=0.

= c=(Iy — HHTH)YHT)(K + \])~Y
b= (HTH)"*HT(K + \I)~'Y
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Gaussian process

A Gaussian process is a random process { Xt }tcq (random
variables with index Q) such that for any finite subset {t,, ..., t.} of
Q, the random vector (th,..., th) IS a Gaussian random vector.

Mean function u(t) = B Xy]
Covariance function R(t,s) = Cov|[Xy, X]

A Gaussian process is uniquely determined by the mean and
covariance function.

X = (X0 X, ) ~ N(px, Xx)
R(t1’t1) R(tptz) R(tl’tn)

o= () ptty)), 3y =| W) Rl RG)

R(tr.wt1) R(tr;’tz) R(tn’tn)
17



— Examples

mean zero 1
covariance function R(s,t) = exp(—22 (S —t)zj
o)

Generated by Matlab gpml toolbox (Rasmussen and Williams)
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Random process and positive
definite kernel

B Covariance function is a positive definite kernel

Theorem

The covariance function R(s, t) of a random process {X;}:cq
IS a positive definite kernel.

") For simplicity, mean = 0.
Z| J=1 | jR(tl’ j) Z| J_1C E[Xt 1X ]

_E[zizlcixti,zjzlcjxj} [(z, LG, )} 0

— A random process on Q determines a RKHS on Q.

19




B Positive definite kernel defines Gaussian process
K(s,t): positive definite kernel on Q.

For any finite subset t = (t;, ..., t, ) of Q, the Gram matrix Z, = (k(t; t;) )
Is always positive semidefinite.

By Kolmogorov extension theorem, there is a Gaussian process with
index set Q such that

X=Xy X, )~ N(0,%)

The covariance function = k(s,t).
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Stationary process and shift-

Invariant kernel

B Stationary case

{ X} }term : random process on R™
— stationary process

E[X.. X, ]=E[X,X.]  (¥tss,heR™)
covariance function is given by

R(t,s)=R(t-5)

S+h

— Positive definite kernel for a stationary process is given by

K(t,s)=K(t-5s)

— Bochner’s theorem & Wiener-Khinchine’s theorem
(covariance function of a stationary
process on RM is the inverse Fourier
transform of the power spectral.) 21
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