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Kernel methodology: feature space by RKHS
Kernel methodology = Data analysis by transforming data into a
high-dimensional feature space given by RKHS.

k: positive definite kernel.

Φ : X → Hk, x 7→ Φ(x) := k(·, x)

X 3 X1, . . . , XN 7→ Φ(X1), . . . ,Φ(XN ) ∈ Hk

Feature space (RKHS)

xi

Hk

X xｊ

,
ixφ

jxφ

Space of original data

feature map

),()( xkx ⋅=Φ

Apply linear methods on RKHS – kernelization
The computation of the inner product is cheap.
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Higher-order statistics by positive definite kernel

• A nonlinear kernel can include higher-order statistics.

Example: Polynomial kernel on R: k(y, x) = (yx+ 1)d.

• Data are transformed as k(·, X1), . . . , k(·, XN ) ∈ Hk.
• Regarding k(·, X) = k(y,X) as a function of y,

k(y,X) = Xdyd + ad−1X
d−1yd−1 + · · ·+ a1Xy + a0 (ai 6= 0).

• {1, y, y2, . . . , yd} is a basis of Hk.
• With respect to this basis, the component of the feature vector
k(·, X) is

(Xd, ad−1X
d−1, . . . , a1X, a0)T .

This includes the statistics (X,X2, . . . , Xd).

• Similar nonlinear statistics appear in other kernels such as
Gaussian, Lapacian, etc.

5 / 46



Kernel Methodology Kernel PCA Kernel CCA Introduction to Support Vector Machine Representer theorem and other kernel methods Kernels for structured data

Kernel Methodology

Kernel PCA

Kernel CCA

Introduction to Support Vector Machine

Representer theorem and other kernel methods

Kernels for structured data

6 / 46



Kernel Methodology Kernel PCA Kernel CCA Introduction to Support Vector Machine Representer theorem and other kernel methods Kernels for structured data

Kernel PCA I
• X1, . . . , XN : data on X .
• k : X × X positive definite kernel, Hk: RKHS.
• Transform the data into Hk by Φ(x) = k(·, x) :

X1, . . . , XN 7→ Φ(X1), . . . ,Φ(XN ).

Kernel PCA ([SSM98]): Apply PCA on Hk:
• Maximize the variance of the projection onto the unit vector f .

max
‖f‖=1

Var[〈f,Φ(X)〉] = max
‖f‖=1

1
N

∑N
i=1

(
〈f,Φ(Xi)〉− 1

N

∑N
j=1〈f,Φ(Xj)〉

)2
• It suffices to use f =

∑n
i=1 aiΦ̃(Xi), where

Φ̃(Xi) = Φ(Xi)− 1
N

∑N
j=1Φ(Xj).

The direction orthogonal to {Φ̃(X1), . . . , Φ̃(XN )} does not
contribute.
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Kernel PCA II

• The PCA solution:

max aT K̃2a subject to aT K̃a = 1,

where K̃ is N ×N matrix with K̃ij = 〈Φ̃(Xi), Φ̃(Xj)〉.

K̃ = k(Xi, Xj)− 1
N

∑N
b=1k(Xi, Xb)− 1

N

∑N
a=1k(Xa, Xj)

+ 1
N2

∑N
a,b=1k(Xa, Xb).

K̃ is called a centered Gram matrix.

Note:

1
N

∑N
i=1〈f, Φ̃(Xi)〉2 = 1

N

∑N
i=1〈

∑N
j=1ajΦ̃(Xj), Φ̃(Xi)〉2 = 1

N
aT K̃2a,

‖f‖2 = 〈
∑n

i=1aiΦ̃(Xi),
∑n

i=1aiΦ̃(Xi)〉 = aT K̃a.
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Kernel PCA III

• The p-th principal direction f (p) =
∑N
i=1 α

(p)
i Φ̃(Xi) is given by

maxα(p)T K̃2α(p) subj. to

{
α(p)K̃α(p) = 1
α(p)K̃α(a) = 0 (a = 1, . . . , p− 1).

Principal components of kernel PCA

Let K̃ =
∑N
p=1λpu

(p)u(p)T is the eigen decomposition
(λ1 ≥ · · · ≥ λN ≥ 0).
The p-th principal component of the data Xi is

〈Φ̃(Xi),
∑N
j=1α

(p)
j Φ̃(Xj)〉 =

∑N
j=1

√
λpu

(p)
i ,
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Kernel PCA: numerical examples
• Wine data (from UCI repository [MA94]).
• 178 data of 13 dimension. They represents chemical

measurements of different wine.
• There are three classes, which correspond to types of wine.
• The classes are shown in different colors, but not used for the

analysis.

Linear PCA KPCA Gaussian kernel
linear σ = 3
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KPCA with Gaussian kernels. k(x, y) = exp
{
− 1
σ2 ‖x− y‖2

}
.

σ = 2 σ = 4 σ = 5
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Application of KPCA to noise reduction I
• X1, . . . , XN : data, 7→ Φ(X1), . . . ,Φ(XN ): data in RKHS.
• Vd: principal subspace of Hk spanned by f (1), . . . , f (d).
• Π(x) (∈ Hk): orthogonal projection of Φ(x) onto Vd.
• Find a point y in the original space such that

y = arg min
y∈X
‖Φ(y)−Π(x)‖Hk

.

Note: Π(x) is not necessarily in the image of embedding Φ.
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Application of KPCA to noise reduction II
USPS hand-written digits data:
7191 images of hand-written digits of 16 × 16 pixels.

Sample of denoised images (linear PCA)

Sample of noisy images 

Sample of denoised images (kernel PCA, Gaussian kernel)

Sample of original images (not used for experiments)

Generated by Matlab Stprtool (by V. Franc).
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Properties of kernel PCA

• Nonlinear features can be considered.

• The results depend on the choice of kernel and kernel
parameters. Interpreting the results may not be straightforward.

• Can be used for a preprocessing of other analysis like
classification. (Dimension reduction / feature extraction)

• How to choose a kernel and kernel parameter?
• Cross-validation may be possible, in general.
• If it is a preprocessing, the performance of the final analysis should

be maximized.
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Canonical correlation analysis I

Canonical correlation analysis (CCA)

• Linear dependence of two multivariate.
• Data (X1, Y1), . . . , (XN , YN )
• Xi: m-dimensional, Yi: `-dimensional.

• Find the directions a and b so that the correlation between the
projections of X onto a and that of Y onto b is maximized:

ρ = max
a∈Rm,b∈R`

Cov[aTX, bTY ]√
Var[aTX]Var[bTY ]

= max
a∈Rm,b∈R`

aT V̂XY b√
aT V̂XXa

√
bT V̂Y Y b

,

where V̂XX , V̂Y Y , and V̂XY are the sample variance (covariance)
matrices.
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Canonical correlation analysis II
• Optimization:

max aT V̂XY b subject to aT V̂XXa = bT V̂Y Y b = 1.

• Solution is obtained by the largest ρ for the generalized
eigenproblem:(

O V̂XY
V̂Y X O

)(
a
b

)
= ρ

(
V̂XX O

O V̂Y Y

)(
a
b

)

Derivation: Lagrange multiplier

max aT V̂XY b+
µ

2
(aT V̂XXa− 1) +

ν

2
(bT V̂Y Y b− 1).

From ∂/∂a = ∂/∂b = 0,
VXY b+ µVXXa = 0, VY Xa+ νVY Y b = 0.

µ = ν is derived. Set ρ = −µ = −ν.
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Kernel CCA I
Kernel CCA: kernelization of CCA ([Aka01, MRB01, BJ02]).

• Data: (X1, Y1), . . . , (XN , YN ).
• Xi, Yi: arbitrary variables taking values in X and Y (resp.).

• Embedding: prepare kernels kX on X and kY on Y.
X1, . . . , XN 7→ ΦX (X1), . . . ,ΦX (XN ) ∈ HkX .
Y1, . . . , YN 7→ ΦY(Y1), . . . ,ΦY(YN ) ∈ HkY .

• Apply CCA on HX and HY .

max
f∈HX ,g∈HY

∑N
i=1〈f, Φ̃X (Xi)〉HX 〈g, Φ̃Y(Yi)〉HY√∑N

i=1〈f, Φ̃X (Xi)〉2HX
√∑N

i=1〈g, Φ̃Y(Yi)〉2HY

where

Φ̃X (Xi) = ΦX (Xi)− 1
N

∑N
j=1ΦX (Xj), and Φ̃Y(Yi) similar.
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Kernel CCA II

• We can assume f =
∑N
i=1 αiΦ̃X (Xi) and g =

∑N
i=1 βiΦ̃Y(Yi).

ρ = max
α∈RN ,β∈RN

αT K̃XK̃Y β√
αT K̃2

Xα
√
βT K̃2

Y β
,

K̃X and K̃Y are the centered Gram matrices.

• Regularization:
Canonical correlation in N dimensional space with N data is
ill-posed with correlation 1.

max
f∈HX ,g∈HY

∑N
i=1〈f, Φ̃X (Xi)〉HX 〈g, Φ̃Y(Yi)〉HY√∑N

i=1〈f, Φ̃X (Xi)〉2HX + εN‖f‖2
√∑N

i=1〈g, Φ̃Y(Yi)〉2HY + εN‖g‖2
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Kernel CCA III

• Kernel CCA

(
O K̃XK̃Y

K̃Y K̃X O

)(
α
β

)
= ρ

(
K̃2
X + εNKX O

O K̃2
Y + εNKy

)(
α
β

)
The Solution is obtained as a generalized eigenproblem.

• The multiple feature vectors (second, third, eigenvectors) can be
also obtained.

• Remark:
• The results of kernel CCA depends on the kernels and εN .
• The consistency is known if εN decreases sufficiently slowly as
N →∞ [FBG07].
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Toy example of Kernel CCA

X, Y : one-dimensional. Gaussian RBF kernels are used.
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Application of Kernel CCA

Application of kernel CCA to image retrieval ([HSST04]).

Idea: use d eigenvectors f1, . . . , fd and g1, . . . , gd as the feature
spaces which contain the dependence between X and Y .

• Xi: image, Yi: text (extracted from webpages).

• Compute the d-eigenvectors f1, . . . , fd and g1, . . . , gd by kernel
CCA.

• Compute the feature vectors by projections
ξi = (〈ΦX (Xi), fa〉HX )da=1 ∈ Rd for all images.

• For a new text Ynew, compute the feature
ζ = (〈ΦY(Ynew), ga〉HY )da=1 ∈ Rd, and output the image

arg maxi = ξTi ζ.
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Linear classifier

• (X1, Y1), . . . , (XN , YN ): data
• Xi: explanatory variable (m-dimensional)
• Yi ∈ {+1,−1} binary,

• Linear classifier
f(x) = sgn

(
wTx+ b

)
y = fw(x)

fw(x)≧0

fw(x) < 0
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Large margin classifier I

Linear support vector machine (in Rm)

• Assumption: the data is linearly separable.

• Large margin criterion:
Among infinite number of separating hyperplanes, choose the
one to give the largest margin.

• Margin = distance of two classes measured along the direction of
w.

• The classifying hyperplane is the middle of the margin.
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Large margin classifier II

To fix a scale, assume{
min(wTXi + b) = 1 i : Yi = +1,
max(wTXi + b) = −1 i : Yi = −1.

Then,

Margin =
2
‖w‖
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Large margin classifier III
• Large margin linear classifier

max
1
‖w‖

subj. to

{
wTXi + b ≥ 1 if Yi = +1,
wTXi + b ≤ −1 if Yi = −1.

Equivalently,

Linear support vector machine (hard margin)

min
w,b
‖w‖2 subject to Yi(wTXi + b) ≥ 1 (∀i).

• Quadratic objective function with linear constraints =⇒ free from
local minima!

• This optimization can be numerically solved with the standard
quadratic programming (QP, quadratic objective function with
lienar constraints. Discussed later). Software packages are
available.
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SVM with soft margin

Relax the separability assumption. The linear separability is too
restrictive in practice.
• Hard constraint: Yi(wTXi + b) ≥ 1

• Soft constraint: Yi(wTXi + b) ≥ 1− ξi (ξi ≥ 0)

Linear support vector machine (soft margin)

min
w,b,ξi

‖w‖2 + C
∑N
i=1ξi subj. to

{
Yi(wTXi + b) ≥ 1− ξi,
ξi ≥ 0.

• The optimization is still QP.
• C is a hyper-parameter, which we have to decide.
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Soft margin as regularization

• Soft margin linear SVM is equivalent to the following
regularization problem (λ = 1/C):

min
w,b

N∑
i=1

(
1− Yi(wTXi + b)

)
+

+ λ‖w‖2

where
(z)+ = max(z, 0)

z0

max(z,0)

• `(f(x), y) = (1− yf(x))+: hinge loss.
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Tikhonov Regularization

General theory of regularization

• When the solution of the optimization

min
α∈A

Ω(α)

(A ⊂ H) is not unique or stable, a regularization technique is
often used.

• Tikhonov regularization: add a regularization term (or penalty
term), e.g.,

min
α∈A

Ω(α) + λ‖α‖2.

λ > 0: regularization coefficient.
• The solution is often unique and stable.
• Other regularization terms, such as ‖α‖, are also possible, but

differentiability may be lost.
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Tikhonov Regularization II
• Example

• Ill-posed problem:
min

f
(Yi − f(Xi))

2.

Many f give zero error, if f is taken from a large space.

• Regularized objective function

min
f

(Yi − f(Xi))
2 + λ‖f‖2

finds a unique solution, which is often smoother.
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SVM with kernels I
Kernelization of linear SVM

• (X1, Y1), . . . , (XN , YN ): data
• Xi: arbitrary covariate taking values in X ,
• Yi ∈ {+1,−1} binary,

• k: positive definite kernel on X . H: associated RKHS.
• Φ(Xi) = k(·, Xi): transformed data in H.

• Large margin linear classifier on RKHS

f(x) = sgn
(
〈h,Φ(x)〉H + b

)
= sgn(h(x) + b).

Objective function (soft margin):

min
h,b,ξi

‖h‖2H+C
∑N
i=1ξi subj. to

{
Yi(〈h,Φ(Xi)〉+ b) ≥ 1− ξi,
ξi ≥ 0,

or equivalently

min
h,b

∑N
i=1

(
1− Yi(〈h,Φ(Xi)〉+ b)

)
+

+ λ‖h‖2
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SVM with kernels II

• It suffices to assume

h =
N∑
i=1

ciΦ(Xi)

The orthogonal direction only increases the regularization term
without changing the first term of

min
h,b

∑N
i=1

(
1− Yi(〈h,Φ(Xi)〉+ b)

)
+

+ λ‖h‖2.

• In this case,
‖h‖2 =

∑N
i,j=1cicjk(Xi, Xj),

〈h,Φ(Xi)〉 =
∑N
j=1cjk(Xi, Xj).
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SVM with kernels III

In summary,

SVM with kernel

min
ci,b,ξi

∑N
i,j=1cicjk(Xi, Xj) + C

∑N
i=1ξi,

subj. to

{
Yi(
∑N
j=1k(Xi, Xj)cj + b) ≥ 1− ξi,

ξi ≥ 0.

• The optimization is numerically solved with QP.
• The dual form is simpler to solve (discussed later.)

• The parameter C and the kernel are often chosen by
cross-validation.
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Demonstration of SVM

Webpages for SVM Java applet
• http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
• http://www.eee.metu.edu.tr/~alatan/Courses/
Demo/AppletSVM.html
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Results on character recognition

MNIST: Handwritten digit recognition
28× 28 binary pixels.
60000 training data
10000 test data

k-NN
Euclid

10PCA
+
quad.

RBF +
lin.

LeNet-
4

LeNet-
5

SVM
poly4

RS-
SVM
poly5

Test
error
(%)

5.0 3.3 3.6 1.1 0.95 1.1 1.0

Taken from [LBBH98]
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Mini-summary on SVM

• Kernel trick (a common property of kernel methods):
• linear classifier on RKHS.
• The computation of inner product is easy.

• Large margin criterion
• May not be the Bayes optimal, but causes other good properties.

• Quadratic programming:
• The objective function is solved by the standard quadratic

programming.
• Sparse representation:

• The classifier is represented by a small number of support vectors.
• Regularization:

• The soft margin objective function is equivalent to the margin loss
with regularization.
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Representer theorem I

Minimization problems on RKHS

min
f∈Hk

(Yi − f(Xi))2 + λ‖f‖2 (ridge regression),

min
f∈Hk,b

∑N
i=1

(
1− (Yif(Xi) + b)

)
+

+ λ‖f‖2 (SVM).

We have seen that the solution can be taken from

f =
N∑
i=1

αik(·, Xi).
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Representer theorem II
• General problem:

• Hk: RKHS with associated with a positive definite kernel k.
• X1, . . . , XN , Y1, . . . , YN : data.
• h1(x), . . . , hm(x): fixed functions.
• Ψ : [0∞)→ R: non-decreasing function (regularization term).

Minimization

min
f∈H,c∈Rm

L
(
{Xi}Ni=1, {Yi}Ni=1, {f(Xi)+

∑m
a=1 caha(Xi)}Ni=1

)
+Ψ(‖f‖).

Representer theorem
The solution of the above minimization is achieved by a function of
the form

f =
∑N
i=1αik(·, Xi).

• The optimization in an high (or infinite) dimensional space can be
reduced to the optimization in a subspace of N dimension
(sample size).
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Proof of the representer theorem

• Decomposition:
Hk = H0 ⊕H⊥

0 ,

H0 = span{k(·, X1), . . . , k(·, XN )}, H⊥
0 : orthogonal complement.

Decompose
f = f0 + f⊥

accordingly.
• Because

〈f⊥, k(·, Xi)〉 = 0,

the loss function L does not change by replacing f with f0.
• The second term:

‖f0‖ ≤ ‖f‖ =⇒ Ψ(‖f0‖) ≤ Ψ(‖f‖).

• Thus, the optimum f can be in the space H0.
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Other kernel methods

• Kernel PLS

• Support vector regression (SVR)

• Kernel logistic regression

• Kernel FDA (Fisher discriminant analysis)

• Kernel K-means clustering

• Other variants of SVM (ν-SVM, one-class SVM etc.). etc...
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Structured data

Positive definite kernels can be defined on an arbitrary set.

Kernel methods can be applied to any type of data (vector /
non-vectorial).

Structured data: non-vectorial data with some structure such as
strings, tees, graphs, and so on.

Special kernels are studied for each domain.
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Choice of Kernel

How to choose a kernel?

• Reflect knowledge on the problem as much as possible.
(structured data)

• For supervised learning such as SVM, use cross-validation.

• For unsupervised learning such as kernel PCA and kernel CCA,
there are no theoretically guaranteed methods.

Suggestions: make a relevant supervised method and use
cross-validation.
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Summary of Section 3

• Various classical linear methods of data analysis can be
kernelized – linear algorithms on RKHS.
Kernel PCA, SVM, kernel CCA, kernel FDA, etc.

• The solution often has the form

f =
∑N
i=1αik(·, Xi)

(representer theorem).

• The problem is reduced to operations on Gram matrices of the
sample size N .

• The kernel methods can be applied to any type of data including
non-vectorial (structured) data, such as graphs, strings, etc, if a
positive definite kernel is provided.
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