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Introduction

B “Kernel methods” for statistical inference

— We have seen that positive definite kernels are used for capturing
‘nonlinearity’ or ‘high-order moments’ of original data.

e.g. Support vector machine, kernel PCA, kernel CCA, etc.

— Kernelization: mapping data into a RKHS and apply linear
methods on the RKHS.

D (X) =k( , X)
X T

o -

Q (original space) ~ Mapping to | H (RKHS
a Hilbert space / ( )




B Do more basic descriptive statistics!

— Consider basic linear statistics (mean, variance, ...) on RKHS, and
their meaning on the original space.

— Basic statistics Basic statistics
on Euclidean space on RKHS
Mean Mean element
Covariance Cross-covariance operator

Conditional covariance Conditional-covariance operator
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Mean Element on RKHS |

([ A£): measurable sapce.

X: random variable taking value on [.

k: measurable positive definite kernel on [.
H: RKHS defined by k.

®(X)=k(-,X): random variable on RKHS.

— Assume E|Jk(X, X)J< 00, (satisfied by a bounded kernel)
— We want to define the mean E[®(X)] of ®(X) on H.

It can be defined as the integral of a Hilbert-valued function.



Mean Element on RKHS I

— Alternative definition:
Define the mean element of X on Hbym, € H that satisfies

(my, f)=E[f(X)] (Vf e H)

Existence and uniqueness.:
ELF(X)T<E[{f.k(, X)) FIENK(, X)lI= E[VK(X, X) ]Il £
f > E[f(X)] is abounded linear functional on H.
Use Riesz’s lemma.

— Explicit form:
my (u) = E[k(u, X)]

=) my (u) = (my k(- u)) = E[K(X,u)].



Mean Element on RKHS Il

— Intuition on the role: the mean element contains the information of
the high-order moments.

X: R-valued random variable. k: pos.def. kernel on R.
Suppose pos. def. kernel k admits a power-series expansion on R.
k(u,X) = ¢, +C,(Xu)+c, (Xu)? +--- (c;>0)
e.g.) k(x,u)=exp(xu)

The mean element my works as a moment generating function:
m, (u) = E[k(u, X)]=¢, +C,E[ X Ju+C,E[X*Ju® +---
1d’

=——m, () =E[X’
™) =X



Characteristic Kernel |

@ family of all the probabilities on a measurable space (Q, B).

H: RKHS on Q with a bounded measurable kernel k.
me: mean element on H for a probability P e®

— Definition
The kernel k is called characteristic (w.r.t. @ if the mapping
P —H, P—mg
IS one-to-one.

— The mean element for a characteristic kernel uniguely
determines a probability.

_ me=m, < P=Q
l.e.
Ep[f(X)] = EQlf(X)] VfeH) < P=Q.



Characteristic Kernel Il

— Generalization of characteristic function
With Fourier kernel k. (x,y) =exp(v=1x"y)
Ch.f., (u) = E[ke (X,u)].
* The characteristic function uniquely determines a Borel
probability on R™.

 The mean element my (u) = E[k(u, X)] w.r.t. a characteristic
kernel uniquely determines a probability on (Q, 3).

Note: 2 may not be Euclidean.

— The characteristic RKHS must be large enough!
Examples for R™ (proved later)
. Gaussian RBF kernel exp(—3= 1z — y||?).

« Laplacian kernel  exp(—a > " | |z; — yil)-

* Polynomial kernels are not characteristic.
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Empirical Estimation of Mean Element

B Empirical mean element on RKHS
— An advantage of RKHS approach is its easy empirical estimation.

- X®  XM-iid. sample > ®(X,),...,®(X, ): sample on RKHS

Empirical mean 1 1 N
My’ == 2 ®(X;) == k(- X;)
N i N i

The empirical mean element gives empirical average

N ~
<m§('\'),f>=%§f(xi) SEV[F(X)]  (vfeH)
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Asymptotic Properties |

Theorem (strong /N-consistency)
Assume E[k(X, X)]< .

A —m =0,/ VN) (N >o0)

Proof. NG A N
Ellmy” —mx||” = E2i=1 Zj:lEXiEXj[k:(Xi?Xj)}

_ %ZLE&EX k(X X)] + Ex Ex [k(X, X))
- %ZL > Elk(X, X;)] + %EX k(X,X)] — ExE¢[k(X,X)]
_ %{Ex[k(X,X)] — ExE¢[k(X, X)]}.
By Chebychev’s inequality,

~ Ellm(n) — 2
Pr(valm(™ —my|| 2 5) < "ot =6 0




Asymptotic Properties lI

Corollary (Uniform law of large numbers)
Assume E[k(X, X)]< oo.

N
1
sup ‘— I— (1/V'N) (N — o).
rem <! N =
Proof.
LHS = sup }(ﬁzg(N) —mx, )| = ||m(N) —mx]|.
feH, [l fll<1 O]

Note: sup‘ (h, £)=|h]

Ifll<t
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Asymptotic Properties Il

Theorem (Convergence to Gaussian process)
Assume E[k(X, X)] < oo.

VNmEWY) —my) = G inlaw (N—>o),

where G is a centered Gaussian process on H with the
covariance function

C(f,9) = E[f(X)g(X)] - E[f(X)]Elg(X)] = Cov[f(X), g(X)].

Proof is omitted. See Berlinet & Thomas-Agnan, Theorem 108.
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Application: Two-sample problem

— Homogeneity test
Two 1.i.d. samples are given,

XO XN gnd YO oy ()

Q: Are they sampled from the same distribution?

— Practically important.
We often wish to distinguish two things:

— Are the experimental results of treatment and control
significantly different?

— Were the plays “Henry VI” and “Henry II” written by the
same author?

— Kernel solution:

Use the difference My — My

with a characteristic kernel such as Gaussian.
15



N =100

— Example: do they have the same distribution?
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Kernel Method for Two-sample

Problem

B Maximum Mean Discrepancy (Gretton etal 07, NIPS19)

In population
MMD? = m, —m, 7,

Empirically
s o (12
Iv”VIDezmp_H mYHH
1 Nx 2
S N (I B ELT 1 ) (CIRARSCED S (A
X 1,j=1 x Ny i=la=1 Y a,b=1

With characteristic kernel, MMD =0 if and only if P, =P.

Asymptotic distribution of MMD;, is known, and used for two-
sample homogeneity test (Gretton et al. 2007).
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Conditions on Characteristic Kernels

Theorem (FBJ08+)

k: bounded measurable pos. def. kernel on a measurable space
(QQ, B). H: associated RKHS. Then,

k is characteristic if and only if H + R is dense in L?(P) for any
probability P on (Q2, B).

Proof. See Appendix 1.
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Shift-invariant Characteristic Kernels

— Continuous shift-invariant kernels on R™.  ¢(x-y)
By Bochner’s theorem, Fourier transform of ¢ is non-negative.
The characteristic kernels in this class are completely determined.

Theorem (Sriperumbudur et al. 2008)

Let k(x,y) = #(x-y) be a R-valued continuous shift-invariant positive
definite kernel on R™ such that

b(x) = [ /71 TdA(w),

Then, k is characteristic if and only if supp(A) = R™.

supp(u) ={xeR™| (U) %0 forallopensetU s.t.xeU}

MUOn - [k(x=y) py)ex=[k(x=)a(ydx = p=g
or $(p-G)=0 = p=q 22



— Observation: if ¢(w)=0 on an interval of some frequency, then k
must not be characteristic.

9 4= G i@

If (p - )" differ only out of [-a, a],

p and g are not distinguishable.

— Conjecture: if ¢(w) >0 for all w, then k(x, y) = Ax - y) is characteristic.

E.g. Gaussian kernel
p) =6 Glw)=e

— Is B,,.;1-Spline kernel characteristic? .

¢2n+l(x) = I[_% %] Ko E I[_% %]

. 2\"" sin?™? (@/2)
¢2n+1 (C()) = (;j a)2n+2 /

23



— Examples
e Gaussian RBF kernels and Laplacican kernels are characteristic.

P(X) = e127" () = g 2 support = R
~ 2
B(x) = e N d(w) = G support = R

* B,..;-spline kernel is characteristic.

2 j”*l sin2"? (w/2)

2n+2
a

G (@) =( support = R

T

— Remark:
The Fourier analysis, Bochner’s theorem, and the theorem on shift-

iInvariant characteristic kernels on R™ can be extended to locally

compact Abelian groups (Fukumizu et al 2009).
24



Summary

B Mean element in RKHS
— A random variable X can be transformed into a RKHS by

O(X)=k(-,X)
It contains the information of the higher-order moments of X.

— The mean element is defined by m, = E[®(X)].

— If the pos. def. kernel is characteristic, the mean element
uniquely determines a probability.

— The mean element with a characteristic kernel can be used for
homogeneity tests.

— The shift-invariant characteristic kernels on R™ (and locally
compact Abelian groups) is completely determined.
25
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Appendix 1: proof on the
characteristic kernel

Proof.
<) Assume m, = m,
|P—Q]|: the total variation of P - Q.

Since H + R is dense in L°((P—Q]), forany ¢>0and Ac®
there exists f e H + R and such that

JIf = Lald(|P = Q) <e.
ThUS, *|(Ep[f(X)] - P(A)) - (Eolf(X)] - Q(A))| < =.
From mp =mq, Ep[f(X)] = Eg[f(X)], thus [P(A) - Q(A)| < e
This means P = Q.

27



=) Suppose H + R is not dense in L2(P).

Thereis f e L*(P) (f #0)
[ fedP =0, (Vo € H), [fdP=0.

o 1
Let €= T71,.1

(P)

Define probabilities Q, and Q, by
Q1(E) =c [g|fldP,  Qa2(E)=c [(|f]-

Q1¢Q2 by f #0.

But,
EQl[k(°7X)] EQ2 [k , X )| = Cff )dp(x) =0,

which means k is not characterlstlc.
[]

28



Appendix 2: Review of Fourier analysis

— Fourier transform of f e L}(R")

f(w)=[ f(x)e ™1 *dm, dm, = GArde
— Fourier inverse transform

F(z) = [ F(w)eV=1 “dm,
— Fourier transform of a bounded C-valued Borel measure u

f(@)=[ e *du(x)
— Convolution

f*g=[f(x-y)g(y)dy=[g(x-y)f(y)dy

p*g=[f(x=y)du(y)

— Fourier transform of convolution:
(u*g) =i14
29
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