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Convexity I
For the details on convex optimization, see [BV04].

• Convex set:
A set C in a vector space is convex if for every x, y ∈ C and
t ∈ [0, 1]

tx+ (1− t)y ∈ C.

• Convex function:
Let C be a convex set. f : C → R is called a convex function if for
every x, y ∈ C and t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

• Concave function:
Let C be a convex set. f : C → R is called a concave function if
for every x, y ∈ C and t ∈ [0, 1]

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y).
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Convexity II

convex set non-convex set

convex function concave function
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Convexity III
• Fact: If f : C → R is a convex function, the set

{x ∈ C | f(x) ≤ α}

is a convex set for every α ∈ R.
• If ft(x) : C → R (t ∈ T ) are convex, then

f(x) = supt∈T ft(x)

is also convex.

α
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Convex optimization I

• A general form of convex optimization
f(x), hi(x) (1 ≤ i ≤ `): D → R, convex functions on D ⊂ Rn.
ai ∈ Rn, bj ∈ R (1 ≤ j ≤ m).

min
x∈D

f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
aTj x+ bj = 0 (1 ≤ j ≤ m).

hi: inequality constraints,
rj(x) = aTj x+ bj : linear equality constraints.

• Feasible set:

F = {x ∈ D | hi(x) ≤ 0 (1 ≤ i ≤ `), rj(x) = 0 (1 ≤ j ≤ m)}.

The above optimization problem is called feasible if F 6= ∅.
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Convex optimization II

• Fact 1. The feasible set is a convex set.
• Fact 2. The set of minimizers

Xopt =
{
x ∈ F | f(x) = inf{f(y) | y ∈ F}

}
is convex. No local minima for convex optimization.

proof. The intersection of convex sets is convex, which leads
(1).
Let

p∗ = infx∈Ff(x).

Then,
Xopt = {x ∈ D | f(x) ≤ p∗} ∩ F .

Both sets in r.h.s. are convex. This proves (2)
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Examples
• Linear program (LP)

min cTx subject to

{
Ax = b,

Gx � h.1

The objective function, the equality and inequality constraints are
all linear.

• Quadratic program (QP)

min
1
2
xTPx+ qtx+ r subject to

{
Ax = b,

Gx � h,

where P is a positive semidefinite matrix.
Objective function: quadratic.
Equality, inequality constraints: linear.

1Gx � h denotes gT
j x ≤ hj for all j, where G = (g1, . . . , gm)T .
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Lagrange dual

• Consider an optimization problem (which may not be convex):

(primal) min
x∈D

f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
rj(x) = 0 (1 ≤ j ≤ m).

• Lagrange dual function: g : R` × Rm → [−∞,∞)

g(λ, ν) = inf
x∈D

L(x, λ, ν),

where

L(x, λ, µ) = f(x) +
∑`
i=1λihi(x) +

∑m
j=1νjrj(x).

λi and νj are called Lagrange multipliers.
• g is a concave function.
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Geometric interpretation of dual function

G = {(u, v, t) = (h(x), r(x), f(x)) ∈ R` × Rm × R | x ∈ Rn}.

Omit r(x) and v for simplicity.
For λ ≥ 0,

g(λ) = infxλTh(x) + f(x)

= inf{t+ λTu | (u, t) ∈ G}.

The hyperplane

t+ λTu = b

intersects t-axis at b = g(λ).

g(λ) is the smallest t-intercept among all
the hyperplanes intersecting G with the
fixed normal λ.

t

u

(λ,1)

g(λ)

λu+ t = g(λ)

G

λu+ t = b

b
p*
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Dual problem and weak duality I
• Dual problem

(dual) max g(λ, ν) subject to λ � 0.

• The dual and primal problems have close connection.

Theorem 1 (weak duality)
Let

p∗ = inf{f(x) | hi(x) ≤ 0 (1 ≤ i ≤ `), rj(x) = 0 (1 ≤ j ≤ m)}.
and

d∗ = sup{g(λ, ν) | λ � 0, ν ∈ Rm}.
Then,

d∗ ≤ p∗.

The weak duality does not require the convexity of the primal
optimization problem.
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Dual problem and weak duality II

Proof. Let ∀λ � 0, ν ∈ Rm.
For any feasible point x,

L(x, λ, ν) = f(x) +
∑`
i=1λihi(x) +

∑m
j=1νjrj(x) ≤ f(x).

(The second term is non-positive, and the third term is zero.)
By taking infimum,

inf
x:feasible

L(x, λ, ν) ≤ p∗.

Thus,
g(λ, ν) = inf

x∈D
L(x, λ, ν) ≤ inf

x:feasible
L(x, λ, ν) ≤ p∗

for any λ � 0, ν ∈ Rm.
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Strong duality I
We need some conditions to obtain the strong duality d∗ = p∗.
• Convexity of the problem: f and hi are convex, rj are linear.

• Slater’s condition
There is x̃ ∈ relintD such that

hi(x̃) < 0 (1 ≤ ∀i ≤ `), rj(x̃) = aTj x̃+bj = 0 (1 ≤ ∀j ≤ m).

Theorem 2 (Strong duality)
Suppose the primal problem is convex, and Slater’s condition holds.
Then, there is λ∗ ≥ 0 and ν∗ ∈ Rm such that

g(λ∗, ν∗) = d∗ = p∗.

Proof is omitted (see [BV04] Sec.5.3.2.).
There are also other conditions to guarantee the strong duality.
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Strong duality II

p∗ = inf{t | (u, t) ∈ G, u � 0} (v omitted)

g(λ) = inf{λTu+ t | (u, t) ∈ G}

d∗ = sup{g(λ) | λ � 0}

t

u

λu+ t = g(λ∗)
G

p*

λu+ t = g(λ1)

d*

duality gap

t

u

G

p* = d*

λu+ t = g(λ∗)

strong duality
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Complementary slackness I
• Consider the (not necessarily convex) optimization problem:

min f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
rj(x) = 0 (1 ≤ j ≤ m).

• Assumption: the optimum of the primal/dual problems are given
by x∗ and (λ∗, ν∗) (λ∗ � 0), and they satisfy the strong duality;

g(λ∗, ν∗) = f(x∗).

• Observation:

f(x∗) = g(λ∗, ν∗) = infx∈DL(x, λ∗, ν∗) [definition]
≤ L(x∗, λ∗, ν∗)

= f(x∗) +
∑`
i=1λ

∗
i hi(x

∗) +
∑m
j=1ν

∗
j rj(x

∗)

≤ f(x∗) [2nd ≤ 0 and 3rd = 0]

The two inequalities are in fact equalities.
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Complementary slackness II

• Consequence 1:

x∗ minimizes L(x, λ∗, ν∗)

(Primal solution by unconstrained optimization)

• Consequence 2:

λ∗i hi(x
∗) = 0 for all i

The latter is called complementary slackness.
Equivalently,

λ∗i > 0 ⇒ hi(x∗) = 0,

or
hi(x∗) < 0 ⇒ λ∗i = 0.

18 / 35



A quick course on convex optimization Optimization in learning of SVM

KKT condition I
KKT conditions give useful relations between the primal and dual
solutions.

• Consider the convex optimization problem.
Assume D is open and f(x), hi(x) are differentiable.

min f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
rj(x) = 0 (1 ≤ j ≤ m).

• x∗ and (λ∗, ν∗): any optimal points of the primal and dual
problems.

• Assume the strong duality holds.
• From Consequence 1 (x∗ = arg minL(x, λ∗, ν∗)),

∇f(x∗) +
∑`
i=1λ

∗
i∇gi(x∗) +

∑m
j=1ν

∗
j∇rj(x∗) = 0.
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KKT condition II
The following are necessary conditions.
Karush-Kuhn-Tucker (KKT) conditions:

hi(x∗) ≤ 0 (i = 1, . . . , `) [primal constraints]
rj(x∗) = 0 (j = 1, . . . ,m) [primal constraints]
λ∗i ≥ 0 (i = 1, . . . , `) [dual constraints]
λ∗i hi(x

∗) = 0 (i = 1, . . . , `) [complementary slackness]

∇f(x∗) +
∑`
i=1λ

∗
i∇gi(x∗) +

∑m
j=1ν

∗
j∇rj(x∗) = 0.

Theorem 3 (KKT condition)
For a convex optimization problem with differentiable functions, x∗

and (λ∗, ν∗) are the primal-dual solutions with strong duality if and
only if they satisfy KKT conditions.
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Example
• Quadratic minimization under equality constraints.

min
1
2
xTPx+ qTx+ r subject to Ax = b,

where P is (strictly) positive definite.
• KKT conditions:

Ax∗ = b, [primal constraint]

∇xL(x∗, ν∗) = 0 =⇒ Px∗ + q +AT ν∗ = 0

• The solution is given by(
P AT

A O

)(
x∗

ν∗

)
=
(
−q
b

)
.
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Primal problem of SVM

The QP for SVM can be solved in the primal form, but the dual form is
easier.

SVM primal problem:

min
wi,b,ξi

1
2
∑N
i,j=1wiwjk(Xi, Xj) + C

∑N
i=1ξi,

subj. to

{
Yi(
∑N
j=1k(Xi, Xj)wj + b) ≥ 1− ξi,

ξi ≥ 0.
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Dual problem of SVM
SVM Dual problem:

max
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjYiYjKij subj. to

{
0 ≤ αi ≤ C,∑N
i=1αiYi = 0

where Kij = k(Xi, Xi).

Solve it by a QP solver.
Note: the constraints are simpler than the primal problem.

Derivation [Exercise].
Hint: Compute the Lagrange dual function g(α, β) from

L(w, b, ξ, α, β) = 1
2

∑N
i,j=1wiwjk(Xi, Xj) + C

∑N
i=1ξi

+
∑N
i=1αi{1− Yi(

∑N
j=1wjk(Xi, Xj) + b)− ξi}+

∑N
i=1βi(−ξi).
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KKT conditions of SVM

KKT conditions
(1) 1− Yif∗(Xi)− ξ∗i ≤ 0 (∀i),
(2) −ξ∗i ≤ 0 (∀i),
(3) α∗i ≥ 0, (∀i),
(4) β∗i ≥ 0, (∀i),
(5) α∗i (1− Yif∗(Xi)− ξ∗i ) = 0 (∀i),
(6) β∗i ξ

∗
i = 0 (∀i),

(7) ∇w :
∑n
j=1Kijw

∗
j −

∑n
j=1α

∗
jYjKij ,

∇b :
∑n
j=1α

∗
jYj = 0,

∇ξ : C − α∗i − β∗i = 0 (∀i).
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Solution of SVM

SVM solution in dual form

f(x) =
n∑
i=1

α∗Yik(x,Xi) + b∗.

(Use KKT condition (7)).

How to solve b? −→ shown later.
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Support vectors I

• Complementary slackness

α∗i (1− Yif∗(Xi)− ξ∗i ) = 0 (∀i),

(C − α∗i )ξ∗i = 0 (∀i).

• If α∗i = 0, then ξ∗i = 0, and

Yif
∗(Xi) ≥ 1. [well separated]

• Support vectors
• If 0 < α∗i < C, then ξ∗i = 0 and

Yif
∗(Xi) = 1.

• If α∗i = C,
Yif

∗(Xi) ≤ 1.
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Support vectors II
Sparse representation: the optimum classifier is expressed only with
the support vectors.

f(x) =
∑

i:support vector

α∗i Yik(x,Xi) + b∗

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

w

support vectors
0 < αi < C
(Yif(Xi) = 1)

support vectors
αi =  C

(Yif(Xi) 1)≤
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How to solve b

• The optimum value of b is given by the complementary
slackness.

• For any i with 0 < α∗i < C,

Yi
(∑

jk(Xi, Xj)Yjα∗j + b
)

= 1.

• Use the above relation for any of such i, or take the average over
all of such i.
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Computational problem in solving SVM

• The dual QP problem of SVM has N variables, where N is the
sample size.

• If N is very large, say N = 100, 000, the optimization is very hard.

• Some approaches have been proposed for optimizing subsets of
the variables sequentially.

• Chunking [Vap82]
• Osuna’s method [OFG]
• Sequential minimal optimization (SMO) [Pla99]
• SVMlight (http://svmlight.joachims.org/)
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Sequential minimal optimization (SMO) I
• Solve small QP problems sequentially for a pair of variables

(αi, αj).

• How to choose the pair? – Intuition from the KKT conditions is
used.

• After removing w, ξ, and β, the KKT conditions of SVM are
equivalent to

0 ≤ α∗i ≤ C,
N∑

i=1

Yiα
∗
i = 0,

(∗)


α∗i = 0 ⇒ Yif

∗(Xi) ≥ 1,

0 < α∗i < C ⇒ Yif
∗(Xi) = 1,

α∗i = C ⇒ Yif
∗(Xi) ≤ 1.

(see Appendix.)
• The conditions can be checked for each data point.
• Choose (i, j) such that at least one of them breaks the KKT

conditions.
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Sequential minimal optimization (SMO) II
The QP problem for (αi, αj) is analytically solvable!

• For simplicity, assume (i, j) = (1, 2).
• Constraint of α1 and α2:

α1 + s12α2 = γ, 0 ≤ α1, α2 ≤ C,

where s12 = Y1Y2 and γ = ±
∑
`≥3 Y`α` is constat.

• Objective function:

α1 + α2 −
1
2
α2

1K11 −
1
2
α2

2K22 − s12α1α2K12

− Y1α1

∑
j≥3YjαjK1j − Y2α2

∑
j≥3YjαjK2j + const.

• This optimization is a quadratic optimization of one variable on
an interval. Directly solved.
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Other approaches to optimization of SVM

Recent studies (not a compete list).

• Solution in primal.
• O. Chapelle [Cha07]
• T. Joachims, SVMperf [Joa06]
• S. Shalev-Shwartz et al. [SSSS07]

• Online SVM.
• Tax and Laskov [TL03]
• LaSVM [BEWB05]
http://leon.bottou.org/projects/lasvm/

• Parallel computation
• Cascade SVM [GCB+05]
• Zanni et al [ZSZ06]

• Others
• Column generation technique for large scale problems [DBS02]
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Appendix: Proof of KKT condition

Proof.
• x∗ is primal-feasible by the first two conditions.
• From λ∗i ≥ 0, L(x, λ∗, ν∗) is convex (and differentiable).
• The last condition ∇xL(x∗, λ∗, ν∗) = 0 implies x∗ is a minimizer.
• It follows

g(λ∗, ν∗) = inf
x∈D

L(x, λ∗, ν∗) [by definition]

= L(x∗, λ∗, ν∗) [x∗: minimizer]

= f(x∗) +
∑`
i=1λ

∗
i hi(x

∗) +
∑m
j=1ν

∗
j rj(x

∗)

= f(x∗) [complementary slackness and rj(x∗) = 0].

• Strong duality holds, and x∗ and (λ∗, ν∗) must be the optimizers.
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Appendix: KKT conditions revisited I
• β and w can be removed by

∇ξ : β∗i = C − α∗i (∀i),
∇w :

∑n
j=1Kijw

∗
j =

∑n
j=1α

∗
jYjKij (∀i).

• From KKT (4) and (6),

α∗i ≤ C, ξ∗i (C − α∗i ) = 0 (∀i).

• The KKT conditions are equivalent to
(a) 1− Yif

∗(Xi)− ξ∗i ≤ 0 (∀i),
(b) ξ∗i ≥ 0 (∀i),
(c) 0 ≤ α∗i ≤ C (∀i),
(d) α∗i (1− Yif

∗(Xi)− ξ∗i ) = 0 (∀i),
(e) ξ∗i (C − α∗i ) = 0 (∀i),
(f)

∑N
i=1 Yiα

∗
i = 0.

and βi = C − α∗i ,
∑n

j=1Kijw
∗
j =

∑n
j=1 α

∗
jYjKij .
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Appendix: KKT conditions revisited II
• We can further remove ξ.

• Case α∗i = 0:
From (e), ξ∗i = 0. Then, from (a), Yif

∗(Xi) ≥ 1.
• Case 0 < α∗i < C:

From (e), ξ∗i = 0. From (d), Yif
∗(Xi) = 1.

• Case α∗i = C:
From (d) and (b), ξ∗i = 1− Yif

∗(Xi) ≥ 0.

Note in all cases, (a) and (b) are satisfied.

• The KKT conditions are equivalent to

0 ≤ α∗i ≤ C (∀i),∑N
i=1Yiα

∗
i = 0,

α∗i = 0 ⇒ Yif
∗(Xi) ≥ 1, (ξ∗i = 0)

0 < α∗i < C ⇒ Yif
∗(Xi) = 1, (ξ∗i = 0)

α∗i = C ⇒ Yif
∗(Xi) ≤ 1, (ξ∗i = 1− Yif∗(Xi)).
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