Support Vector Machine II
Statistical Data Analysis with Positive Definite Kernels

Kenji Fukumizu

Institute of Statistical Mathematics, ROIS
Department of Statistical Science, Graduate University for Advanced Studies

October 6-10, 2008, Kyushu University
Outline

Generalization ability of SVM
 Framework of risk bound
 Risk bound of SVM

Extension of SVM
 Multiclass classification with SVM
 Combination of binary classifiers
 Structured output and others
Generalization ability of SVM
Framework of risk bound
Risk bound of SVM

Extension of SVM
Multiclass classification with SVM
Combination of binary classifiers
Structured output and others
Risk and empirical risk: Terminology

Supervised learning:
- $\mathcal{D} = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}$: data. i.i.d. sample.
- $X_i \in \mathcal{X}$: input, $Y_i \in \mathcal{Y}$: output.
- $\mathcal{F} \subset \{f : \mathcal{X} \to \mathcal{Y}\}$: function class.

Risk and empirical risk
- Loss function $\ell(y, f)$: measure discrepancy of Y_i and $f(X_i)$.
- Risk: the purpose of learning is to minimize the risk;
 \[L(f) = E[\ell(Y, f(X))], \quad (f \in \mathcal{F}). \]
- Empirical risk:
 \[L_n(f) = \widehat{E}_n[\ell(Y, f(X))] = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i)), \quad (f \in \mathcal{F}). \]
- Learning must be done with data:
 \[\widehat{f} = \arg \min_{f \in \mathcal{F}} L_n(f). \]
Loss function

- **Mean square error.**
 - $\ell(y, f) = (y - f)^2$.
 - Empirical risk: $\min_{f \in \mathcal{F}} \sum_{i=1}^{n} (Y_i - f(X_i))^2$ (least mean square).
 - Risk $= E[(Y - f(X))^2]$.

- **0-1 loss.** $y, f(x) \in \{\pm 1\}$.
 - $\ell(y, f) = \frac{1 - yf(x)}{2}$.
 - Empirical risk = ratio of errors:
 $$\hat{E}_n[\ell(Y, f(X))] = \frac{1}{n}|\{i \mid Y_i \neq f(X_i)\}|.$$
 - Risk = mean error rate: $E[\ell(Y, f(X))] = \Pr(Y \neq f(X))$.

- **Log likelihood**
 - $\ell(y, f) = -\log p(y|f)$.
 - Risk = - Expected log likelihood.
Bounding risk I

- Goal: What can we say about $L(\hat{f})$?

$$L(\hat{f}) - \hat{L}_n(\hat{f}) = E[\ell(Y, \hat{f}(X)) | D] - \hat{E}_n[\ell(Y, \hat{f}(X))].$$

- Approaches to analysis.
 - Asymptotic expansion of the expectation:

 e.g. $$E_D[E[\ell(Y, \hat{f}(X))] - \hat{E}_n[\ell(Y, \hat{f}(X))]] = \frac{A}{n} + \ldots$$

 \implies AIC, GIC.

- Bounding risk:

 e.g. $$\Pr(E[\ell(Y, \hat{f}(X)) | D] \leq \hat{E}_n[\ell(Y, \hat{f}(X))] + \varepsilon)$$

 $$\leq \Pr\left(\sup_{f \in F} (E[\ell(Y, f(X))] - \hat{E}_n[\ell(Y, f(X))]) \leq \varepsilon \right) \leq \alpha e^{-\beta \varepsilon^2 n}.$$
Bounding risk II

\[\hat{f} \]

\[f_\ast \]

\[L(\hat{f}) - \hat{L}_n(\hat{f}) \]

\[L(\hat{f}) - L(f_\ast) \]
Techniques

- How can we obtained a bound? (not explained in this course)
 - Symmetrization argument
 - Concentration inequality (Hoeffding, Azuma’s inequality)
 - Complexity bound (e.g. VC-dimension)

- For basic approach, see e.g. [Vap98].
- More recent approach by Rademacher average [BBM02, BM02].
Generalization ability of SVM

- Framework of risk bound
- Risk bound of SVM

Extension of SVM

- Multiclass classification with SVM
- Combination of binary classifiers
- Structured output and others
Surrogate loss I

• Risk is often evaluated by 0-1 loss (error rate)

\[\ell_{01}(y, f) = (1 - y \text{sgn}(f))/2. \]

\[L(f) = E[\ell_{01}(y, f(X))] = E[Y \neq \text{sgn}(f(X))]. \]

• SVM uses hinge loss for learning:

\[\ell_{\text{hinge}}(y, f) = \phi(fy), \quad \phi(t) = (1 - t)_+ \]

\[\min \hat{E}_n[\phi(Y_if(X_i))] + \frac{\lambda}{2} \|f\|^2. \]

• Hinge loss is a surrogate loss function.

\[\ell_{01}(y, f(x)) \leq \phi(yf(x)). \]
Surrogate loss II
Uniform risk bound for SVM I

• Recall margin $= 1/\|w\|$ (w: weight of linear classifier).

• Let $R > 0$. Consider

$$\hat{E}_n[\phi(Yf(X))] \quad \text{subj. to } \|f\|_{\mathcal{H}_k} \leq R.$$

Note: Slightly different from the original SVM.

Theorem 1

Let $\mathcal{F}_R = \{f \in \mathcal{H}_k \mid \|f\|_{\mathcal{H}_k} \leq R\}$. For any $\delta > 0$,

$$\Pr\left(\sup_{f \in \mathcal{F}_R} \left| L(f) - \frac{1}{n} \sum_{i=1}^{n} (1 - Y_if(X_i))_+ \right| \leq \right. \left. \right) \leq 2R \sqrt{\frac{E[k(X,X)]}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}} \geq 1 - \delta$$
Uniform risk bound for SVM II

Theorem 2

Let $\mathcal{F}_R = \{ f \in \mathcal{H}_k \mid \|f\|_{\mathcal{H}_k} \leq R \}$. With probability $\geq 1 - \delta$,

$$L(f) \leq \frac{1}{n} \sum_{i=1}^{n} (1 - Y_i f(X_i))_+ + 2R \sqrt{\frac{E[k(X, X)]}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}}$$

for any $f \in \mathcal{F}_r$.

- The risk is smaller for a class of larger margin (smaller R), given that the empirical error is the same.
- The complexity term of the function class does not depend on the dimensionality (\approx number of parameters), but only on the norm.
More on the bound for SVM.

- The previous theorem does not reflect the learning of SVM rigorously:
 The margin (norm) is determined as a result of learning, not *a priori*.

- More rigorous approaches to the risk bound of SVM:
 - Bound by fat shattering dimension [BST99].
 - Luckiness framework [Her01].
Generalization ability of SVM
 Framework of risk bound
 Risk bound of SVM

Extension of SVM
 Multiclass classification with SVM
 Combination of binary classifiers
 Structured output and others
Multiclass classification - overview - I

- Multiclass classification:
 \((X_1, Y_1), \ldots, (X_N, Y_N)\): data
 - \(X_i\): explanatory variable
 - \(Y_i \in \{C_1, \ldots, C_L\}\): labels for \(L\) classes.

Make a classifier: \(h: \mathcal{X} \rightarrow \{1, 2, \ldots, L\}\).

- The original SVM is applicable only to binary classification problems.

- There are some approaches to extending SVM to multiclass classification.
 - Direct construction of a multiclass classifier.
 - Combination of binary classifiers.
Multiclass classification - overview - II

Various methods (incomplete list).

- **Direct approach:**
 - Multiclass SVM ([CS01], [WW98], [BB99], [LLW] etc.)
 - Kernel logistic regression ([ZH02], K. Tanabe, [KDSP05])
 - and others

- **Combination approach:**
 - How to divide the problem
 - one-vs-rest (one-vs-all)
 - one-vs-one
 - Error correcting output code (ECOC) [DB95]
 - How to combine the binary classifiers
 - Hamming decoding
 - Bradley-Terry model ([HT98], [HWL06])
 - Learning of combiner (stacking [Shi08])
Multiclass SVM I

Multiclass SVM (Crammer & Singer 2001)

- **Large margin** criterion is generalized to multiclass cases.
- Efficient optimization.
- Implemented in SVM^light^.

- Linear classifier for \(L\)-class classification
 - Data: \((X_1, Y_1), \ldots, (X_N, Y_N), X_i \in \mathbb{R}^m, Y_i \in \{1, \ldots, L\}\).
 - Classifier:
 \[
 h(x) = \arg \max_{\ell=1,\ldots,L} w_\ell^T x.
 \]

 \(L\) linear classifiers are used.
 (The bias term \(b_\ell\) is omitted for simplicity.)

 - \(w_\ell^T x (\ell = 1, \ldots, L)\) is the **similarity score** for the class \(\ell\). The class of the largest similarity is the answer of the classifier.
Multiclass SVM II

- Margin for multiclass problem:

\[Margin_i = w_{Y_i}^T X_i - \max_{\ell \neq Y_i} w_{\ell}^T X_i. \]

- \(W = (w_1, \ldots, w_L) \) correctly classifies the data \((X_i, Y_i)\), if and only if \(Margin_i \geq 0 \).
- The scale of the margin must be fixed.

- Primal problem of multiclass SVM:

\[
\begin{align*}
\min_{W,\xi} & \quad \frac{\beta}{2} \|W\|^2 + \sum_{i=1}^{N} \xi_i \\
\text{subj. to} & \quad w_{Y_i}^T X_i + \delta_{\ell Y_i} - w_{\ell}^T X_i \geq 1 - \xi_i \quad (\forall \ell, i).
\end{align*}
\]

Note: \(\xi_i \) represents the break of separability.

- \# dual variable = \(NL \). Computational cost must be reduced by some methods.
Multiclass SVM III

Meaning of margin

\(\xi_i \)
Generalization ability of SVM
 Framework of risk bound
 Risk bound of SVM

Extension of SVM
 Multiclass classification with SVM
 Combination of binary classifiers
 Structured output and others
Combination of binary classifiers

- Base classifiers: make use of strong binary classifiers, and combine their outputs. e.g. SVM, AdaBoost, etc.

- Decomposition of a multiclass classification into binary classifications
 - 1-vs-rest
 \(i \)-class vs the other classes – \(L \) problems
 - 1-vs-1
 \(i \)-class vs \(j \)-class (\(\forall i, j \in \{1, \ldots, L\} \)) – \(L(L-1)/2 \) problems

- More general approach = Error correcting output code (ECOC). ECOC attributes a code for each class.

<table>
<thead>
<tr>
<th>class</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(f_3)</th>
<th>(f_4)</th>
<th>(f_5)</th>
<th>(f_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(C_2)</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>(C_3)</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(C_4)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Combining base classifiers

- Hamming decoding for ECOC:
 Let $W_{\ell a}$ be the code of ECOC for the class ℓ and classifier f_a $(1 \leq \ell \leq L, 1 \leq a \leq M)$.

 $$h(x) = \arg \min_\ell \|w_\ell - f(x)\|_{Hamming},$$

 where $f(x) = (f_1(x), \ldots, f_M(x)) \in \{\pm 1\}^M$.

 This is equivalent to

 $$h(x) = \arg \max_\ell \sum_{a=1}^{M} W_{\ell a} f_a(x).$$

- In the case of one-vs-one, Hamming decoding coincides with majority vote, which returns the class with the most "votes".

- Bradly-Terry model:
 A probabilistic model for paired comparison. It can be applied when the output of $f_i(x)$ is continuous.
Learning combiner

- Given base classifiers \(\{f_i(x)\}_{a=1}^{M} \), consider a linear combination function
 \[
 h(x) = \arg\max_{\ell} \sum_{a=1}^{M} v_{\ell a} f_a(x).
 \]

- It is reasonable to expect that adapting \(v \) by the data increases the classification accuracy.

- A better combination is possible, if we avoid overfitting caused by reusing the data for both of base classifiers and combiner.

Stacking via cross-validation ([Shi08]):

\[
\min_v \sum_{i=1}^{N} \left\| Y_i - \sum_{a=1}^{M} v_{a} f_a[-i](X_i) \right\|^2 + \lambda \|v\|^2.
\]
Generalization ability of SVM
 Framework of risk bound
 Risk bound of SVM

Extension of SVM
 Multiclass classification with SVM
 Combination of binary classifiers
 Structured output and others
Structured output

- The output of prediction may be structured object, such as label sequences (strings), trees, and graphs.

\[X: \text{image} \quad Y: \text{label sequence} \]

\[\text{sunny} \]

\[\text{s} \quad \text{u} \quad \text{n} \quad \text{n} \quad \text{y} \]

\[X: \text{sentence} \quad Y: \text{parsing tree} \]

\[\text{The cat chased the mouse.} \]

\[\text{S} \quad \text{NP} \quad \text{VP} \]

\[\text{Det} \quad \text{N} \quad \text{V} \quad \text{Det} \quad \text{N} \]

\[\text{The} \quad \text{cat} \quad \text{chased} \quad \text{the} \quad \text{mouse}. \]
Large margin approach to structured output I

References

- Application to natural language processing [Col02].
- Max-Margin Markov Network (M3N) [TGK04].
- Hidden Markov support vector machine [ATH03].

Approach

- $(X_1, Y_1), \ldots, (X_N, Y_N)$: data
 - X_i: input variable,
 - $Y_i \in \mathcal{Y}$: structured object.
- Feature vector

 $$F(x, y) = (f_1(x, y), \ldots, f_M(x, y))$$

Make a classifier: $h : \mathcal{X} \rightarrow \mathcal{Y}$

 $$h(x) = \arg \max_{y \in \mathcal{Y}} w^T F(x, y).$$
Large margin approach to structured output II

Formulate the problem as a multiclass classification. Each $y \in \mathcal{Y}$ is regarded as a class.

- Multiclass SVM gives

\[
\min_{w,\xi} \frac{\beta}{2} \|w\|^2 + \sum_{i=1}^{N} \xi_i
\]

subj. to

\[
w^T F(X_i, Y_i) + \delta_{Y_i} - w^T F(X_i, y) \geq 1 - \xi_i \quad (\forall i, y \in \mathcal{Y}).
\]

- Problem:

constrains (= # dual variables) = $|\mathcal{Y}|$. This is prohibitive in many cases!

 e.g. for label sequence

 \[
 |\mathcal{Y}| = |\text{Alphabet}|^{\text{length}}.
 \]

- The computational cost must be reduced by some methods (e.g. [TGK04, ATH03]).
Other topics

- Support vector regression. [MM00]

- ν-SVM: Another formulation of soft margin. [SSWB00]
 - ν = an upper bound on the fraction of margin errors.
 - ν = the lower bound on the fraction of support vectors.

- One-class SVM: (similar to estimating a level set of density function.)

- Large margin approach to ranking.
References I

Hidden markov support vector machines.

Multicategory classification by support vector machines.

Localized rademacher complexities.

[BM02] Peter L. Bartlett and Shahar Mendelson.
Rademacher and gaussian complexities: Risk bounds and structural results.
References II

[BST99] Peter Bartlett and John Shawe-Taylor.
Generalization performance of support vector machines and other pattern classifiers.

Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms.

[CS01] Koby Crammer and Yoram Singer.
On the algorithmic implementation of multiclass kernel-based vector machines.

[DB95] Thomas G. Dietterich and Ghulum Bakiri.
Solving multiclass learning problems via error-correcting output codes.
References III

References IV

[MM00] O. L. Mangasarian and D. R. Musicant.
Robust linear and support vector regression.

[Shi08] Yuichi Shiraishi.
Game-theoretical and statistical study on combination of binary classifiers for multi-class classification.

New support vector algorithms.

[TGK04] Ben Taskar, Carlos Guestrin, and Daphne Koller.
Max-margin markov networks.
References V

[Vap98] Vladimir N. Vapnik.
Statistical Learning Theory.

Multi-class support vector machines.

[ZH02] Ji Zhu and Trevor Hastie.
Kernel logistic regression and the import vector machine.