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Abstract

Topological data analysis (TDA) is an emerging mathematical concept for characteriz-
ing shapes in complicated data. In TDA, persistence diagrams are widely recognized as a
useful descriptor of data, distinguishing robust and noisy topological properties. This pa-
per introduces a kernel method for persistence diagrams to develop a statistical framework
in TDA. The proposed kernel is stable under perturbation of data, enables one to explicitly
control the effect of persistence by a weight function, and allows an efficient and accurate
approximate computation. The method is applied into practical data on granular systems,
oxide glasses and proteins, showing advantages of our method compared to other relevant
methods for persistence diagrams.

Keywords: Topological data analysis, persistence diagrams, kernel method, kernel em-
bedding, persistence weighted Gaussian kernel

1. Introduction

Recent years have witnessed an increasing interest in utilizing methods of algebraic topology
for statistical data analysis. In terms of algebraic topology, conventional clustering meth-
ods are regarded as charactering 0-dimensional topological features which mean connected
components of data. Furthermore, higher dimensional topological features also represent
informative shape of data, such as rings (1-dimension) and cavities (2-dimension). The re-
search analyzing these topological features in data is called topological data analysis (TDA)
(Carlsson, 2009), which has been successfully applied to various areas including informa-
tion science (Carlsson et al., 2008; de Silva and Ghrist, 2007), biology (Kasson et al., 2007;
Xia and Wei, 2014), brain science (Lee et al., 2011; Petri et al., 2014; Singh et al., 2008),
biochemistry (Gameiro et al., 2015), material science (Hiraoka et al., 2016; Nakamura et al.,
2015; Saadatfar et al., 2017), and so on. In many of these applications, data have compli-
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cated geometric structures, and thus it is important to extract informative topological
features from the data.

A persistent homology (Edelsbrunner et al., 2002), which is a key mathematical tool in
TDA, extracts robust topological information from data, and it has a compact expression
called a persistence diagram. While it is applied to various problems such as the ones listed
above, statistical or machine learning methods for analysis on persistence diagrams are still
limited. In TDA, analysts often elaborate only single persistence diagram and, in particular,
methods for handling many persistence diagrams, which can contain randomness from the
data, are at the beginning stage (see the end of this section for related works). Hence,
developing a framework of statistical data analysis on persistence diagrams is a significant
issue for further success of TDA and, to this goal, this paper discusses kernel methods for
persistence diagrams.

1.1 Topological descriptor

In order to provide some intuitions for the persistent homology, let us consider a typical
way of constructing persistent homology from data points in a Euclidean space, assuming
that the point set lies on a submanifold. The aim is to make inference on the topology
of the underlying manifold from finite data points. We consider the r-balls (balls with
radius r) to recover the topology of the manifold, as popularly employed in constructing an
r-neighbor graph in many manifold learning algorithms. While it is expected that, with an
appropriate choice of r, the r-ball model can represent the underlying topological structures
of the manifold, it is also known that the result is sensitive to the choice of r. If r is too small
(resp. large), the union of r-balls consists simply of the disjoint r-balls (resp. a contractible
space). Then, by considering not one specific r but all r, the persistent homology gives
robust topological features of the point set.

Figure 1: Unions of r-balls at data points (left) and its 1-st persistence diagram (right). The
point (b1, d1) in the persistence diagram represents the ring α1, which appears at
r = b1 and disappears at r = d1. The noisy rings are plotted as the points close
to the diagonal.
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As a useful representation of persistent homology, a persistence diagram is often used
in topological data analysis. The persistence diagram is given in the form of a multiset
D = {(bi, di) ∈ R2 | i ∈ I, bi < di} (Figure 1). Every point (bi, di) ∈ D, called a
generator of the persistent homology, represents a topological property (e.g., connected
components, rings, cavities, etc.) which appears at r = bi and disappears at r = di in
the ball model. Then, the persistence di − bi of the generator shows the robustness of the
topological property under the radius parameter. A generator with large persistence can
be regarded as a reliable structure, while that with small persistence (points close to the
diagonal) is likely to be a structure caused by noise. In this way, persistence diagrams
encode topological and geometric information of data points.

1.2 Contribution

Since a persistence diagram is a point set of variable size, it is not straightforward to apply
standard methods of statistical data analysis, which typically assume vectorial data. To
vectorize persistence diagrams, we employ the framework of kernel embedding of (prob-
ability and more general) measures into reproducing kernel Hilbert spaces (RKHS). This
framework has recently been developed and leading various new methods for nonparamet-
ric inference (Muandet et al., 2017; Smola et al., 2007; Song et al., 2013; Lopez-Paz et al.,
2015; Szabó et al., 2016). It is known (Sriperumbudur et al., 2011) that, with an appropri-
ate choice of kernels, a signed Radon measure can be uniquely represented by the Bochner
integral of the feature vectors with respect to the measure. Since a persistence diagram
can be regarded as a sum of Dirac delta measures, it can be embedded into an RKHS by
the Bochner integral. Once such a vector representation is obtained, we can introduce any
kernel methods for persistence diagrams systematically (see Figure 2).
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Figure 2: (1) A data set X is transformed into a persistence diagram Dq(X) (Section 2.1).
(2) The persistence diagram Dq(X) is mapped to an RKHS vector Ek(µw

Dq(X)),
where k is a positive definite kernel and w is a weight function controlling the
effect of persistence (Section 3.1). (3) Statistical methods are applied to those
vector representations of persistence diagrams (Section 4).

Furthermore, since each generator in a persistence diagram is equipped with a persis-
tence which indicates a robustness of the topological features, we will utilize it as a weight
on the generator. For embedding persistence diagrams in an RKHS, we propose a useful
class of positive definite kernels, called persistence weighted Gaussian kernel (PWGK). The
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advantages of this kernel are as follows: (i) We can explicitly control the effect of persistence
by a weight function, and hence discount the noisy generators appropriately in statistical
analysis. (ii) As a theoretical contribution, the distance defined by the RKHS norm for the
PWGK satisfies the stability property, which ensures the continuity from data to the vector
representation of the persistence diagram. (iii) The PWGK allows efficient computation by
using the random Fourier features (Rahimi and Recht, 2007), and thus it is applicable to
persistence diagrams with a large number of generators.

We demonstrate the performance of the proposed kernel method with synthesized and
real-world data, including granular systems (taken by X-ray Computed Tomography on
granular experiments), oxide glasses (taken by molecular dynamics simulations) and protein
datasets (taken by NMR and X-ray crystallography experiments). We remark that these
real-world problems have physical and biochemical significance in their own right, as detailed
in Section 4.

1.3 Related works

There are already some relevant works on statistical approaches to persistence diagrams.
Some studies discuss how to transform a persistence diagram to a vector (Adams et al., 2017;
Bubenik, 2015; Cang et al., 2015; Carrière et al., 2015; Donatini et al., 1998; Reininghaus et al.,
2015; Robins and Turner, 2016). In these methods, a transformed vector is typically ex-
pressed in a Euclidean space Rk or a function space Lp, and simple and ad-hoc summary
statistics like means and variances are used for data analysis such as principal component
analysis (PCA) and support vector machines (SVMs). In this paper, we will compare
the performance among the PWGK, the persistence scale-space kernel (Reininghaus et al.,
2015), the persistence landscape (Bubenik, 2015), the persistence image (Adams et al.,
2017), and the molecular topological fingerprint (Cang et al., 2015) in several machine learn-
ing tasks. Furthermore, we show that our vectorization is a generalization of the persistence
scale-space kernel and the persistence image although the constructions are different. We
also remark that there are some works discussing statistical properties of persistence dia-
grams for random data points: Chazal et al. (2015) show convergence rates of persistence
diagram estimation, and Fasy et al. (2014) discuss confidence sets in a persistence diagram.
These works consider a different but important direction to the statistical methods for
persistence diagrams.

The remaining of this paper is organized as follows: In Section 2, we review some
basics on persistence diagrams and kernel embedding methods. In Section 3, the PWGK
is proposed, and some theoretical and computational issues are discussed. Section 4 shows
experimental results and compares the proposed kernel method with other methods.

This paper is an extended version of our ICML paper (Kusano et al., 2016). The differ-
ence from this conference version is as follows: (i) Comparisons with other relevant methods,
in particular, persistence landscapes and persistence images, have been added to this ver-
sion. (ii) New experimental results in comparison with other relevant methods. (iii) The
theoretical results have been generalized to a class of kernels that satisfy the assumption
(K) and weight functions that satisfy assumption (W1) (Propositions 8 and 10). The proofs
have been modified accordingly, while the basic line of ideas are the same.
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2. Backgrounds

We review the concepts of persistence diagrams and kernel methods. For readers who are
not familiar with algebraic topology, we give a brief summary in Appendix A. See also
Hatcher (2002) as an accessible introduction to algebraic topology.

2.1 Persistence diagram

In order to define a persistence diagram, we transform a data set X into a filtration Filt(X)
and compute its persistent homology Hq(Filt(X)). In this section, we will first introduce this
mathematical framework of persistence diagrams. Then, by using a ball model filtration,
we will intuitively explain geometrical meanings of persistence diagrams. The ball model
filtrations can be generalized toward two constructions using Čech complexes and sub-level
sets. The former construction is useful for computations of persistence diagrams and the
latter is useful to discuss theoretical properties.

2.1.1 Mathematical framework of persistence diagrams

Let K be a coefficient field of homology1. Let Filt = {Fa | a ∈ R} be a (right continuous)
filtration of simplicial complexes, i.e., Fa is a subcomplex of Fb for a ≤ b and Fa =

∩
a<b Fb.

Alternatively, Filt may be a filtration of topological spaces: in this case Fa is a subspace
of Fb with the same condition as above. For a ≤ b, the K-linear map induced from the
inclusion Fa ↪→ Fb is denoted by ρba : Hq(Fa) → Hq(Fb), where Hq(Fa) is the q-th homology
of Fa. The q-th persistent homology Hq(Filt) = (Hq(Fa), ρba) of Filt is defined by the family
of homology {Hq(Fa) | a ∈ R} and the induced linear maps {ρba | a ≤ b}.

A homological critical value of Hq(Filt) is the number a ∈ R such that the linear map
ρa+ε
a−ε : Hq(Fa−ε) → Hq(Fa+ε) is not isomorphic for any sufficiently small ε > 0. The

persistent homology Hq(Filt) is called tame if dimK Hq(Fa) < ∞ for any a ∈ R and the
number of homological critical values is finite. A tame persistent homology Hq(Filt) has a
nice decomposition property:

Theorem 1 (Zomorodian and Carlsson (2005)) A tame persistent homology can be
uniquely expressed2 by

Hq(Filt) ∼=
⊕
i∈I

I[bi, di], (1)

where I[bi, di] = (Ua, ι
b
a) consists of a family of K-vector spaces

Ua =

{
K, bi ≤ a < di
0, otherwise

,

and ιba = idK for bi ≤ a ≤ b < di.

1. In this setting, all homology are K-vector spaces. You may simply consider the case K = R, but the
theory is built with an arbitrary field.

2. To be more precise, a persistent homology can be seen as an object of the functor category from the
poset category defined by (R,≤) to the category of finite dimensional vector spaces. The symbols ∼= and
⊕ represent the isomorphism and the direct sum in the functor category. It is far beyond the scope of
this paper to provide precise definitions of these notions. Interested readers can see Bubenik and Scott
(2014) for more details.
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Each summand I[bi, di] means a topological feature in Filt that appears at a = bi and
disappears at a = di. The birth-death pair x = (bi, di) is called a generator of the persistent
homology, and pers(x) := di − bi a persistence of x. We note that, when dimK Hq(Fa) ̸= 0
for any a < 0 (resp. for any a > 0), the decomposition (1) should be understood in the sense
that some bi takes the value −∞ (resp. di = ∞), where −∞,∞ are the elements in the
extended real R = R ∪ {−∞,∞}. Through the decomposition in Theorem 1, a persistent
homology Hq(Filt), which is an algebraic object and is not suitable to be analyzed by
statistical methods, is transformed into a multi-set3 of 2-dimensional vectors

Dq(Filt) =
{

(bi, di) ∈ R2
∣∣∣ i ∈ I

}
and we call it the persistence diagram of Filt.

In this paper, we assume that all persistence diagrams have finite cardinality because a
tame persistent homology defines a finite persistence diagram. Moreover, we also assume
that all birth-death pairs are bounded4, that is, all elements in a persistence diagram take
neither ∞ nor −∞. In the following, we also use abstract persistence diagrams (denoted
by D or E) given by finite multi-sets above the diagonal R2

ad := {(b, d) ∈ R2 | b < d}.

2.1.2 Ball model filtrations

The example used in Figure 1 can be expressed as follows. Let X = {x1, . . . ,xn} be a finite
subset in a metric space (M,dM ) and Xa :=

∪n
i=1B(xi; a) be a union of balls B(xi; a) =

{x ∈ M | dM (xi,x) ≤ a} with radius a ≥ 0. For convenience, let Xa := ∅ (a < 0). Since
X = {Xa | a ∈ R} is a right-continuous filtration of topological spaces and X is a finite set,
Hq(X) is tame and the persistence diagram Dq(X) is well-defined. For notational simplicity,
the persistence diagram of this ball model filtration is denoted by Dq(X).

We remark that, in this model, there is only one generator in D0(X) that does not
disappear in the filtration; its lifetime is ∞. From now on, we deal with D0(X) by re-
moving this infinite lifetime generator5. Let diam(X) be the diameter of X defined by
maxxi,xj∈X dM (xi,xj). Then, all generators appear after a = 0 and disappear before
a = diam(X) because Xdiam(X) becomes a contractible space. Thus, for any dimension q,
all birth-death pairs of Dq(X) have finite values.

2.1.3 Geometric complexes

We review some standard methods of constructing a filtration from finite sets in a metric
space. See also Chazal et al. (2014) for more details.

Let (M,dM ) be a metric space and X = {x1, . . . ,xn} be a finite subset in M . For a fixed
a ≥ 0, we form a q-simplex [xi0 · · ·xiq ] as a subset {xi0 , . . . ,xiq} of X whenever there exists
x̄ ∈ M such that dM (xij , x̄) ≤ a for all j = 0, . . . , q, or equivalently, ∩q

j=0B(xij ; a) ̸= ∅.

The set of these simplices forms a simplicial complex, called the Čech complex of X with
parameter a, denoted by Čech(X; a). For a < 0, we define Čech(X; a) as an empty set.
Since there is a natural inclusion Čech(X; a)↪→Čech(X; b) whenever a ≤ b, Čech(X) =

3. A multi-set is a set with multiplicity of each point. We regard a persistence diagram as a multi-set, since
several generators can have the same birth-death pairs.

4. This assumption will be justified in Section 2.1.2.
5. This is called the reduced persistence diagram.
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{
Čech(X; a)

∣∣ a ∈ R
}

is a filtration. When M is a subspace of Rd, from the nerve lemma
(Hatcher, 2002), it is known that the topology of Čech(X; a) is the same6 as Xa (Figure 3),
and hence Dq(Čech(X)) = Dq(X).

As a similar concept to the Čech complex, the Rips complex (or Vietoris-Rips complex)
is also often used in TDA. While the Rips complex gives different topology from the Čech
complex, it can be computed much more efficiently; the Rips complex needs only pairwise
distances, while the Čech complex needs all the (q + 1)-combinations among n points for
q-th homology, which easily becomes infeasible for large n. For a fixed a ≥ 0, we form a
q-simplex [xi0 · · ·xiq ] as a subset

{
xi0 , . . . ,xiq

}
of X that satisfies dM (xij ,xik) ≤ 2a for

all j, k = 0, . . . , q. The set of these simplices forms a simplicial complex, called the Rips
complex of X with parameter a, denoted by Rips(X; a). Similarly, the Rips complex also
forms a filtration Rips(X). In general, Dq(Rips(X)) is not the same as Dq(X) (see Figure
3). In experiments in this paper, all persistence diagrams are computed by a ball model
filtration, which is equivalent to the Čech complex filtration, and we do not use the Rips
complex filtration. We remark that, however, there are also applications of Rips complexes
(e.g., sensor networks (de Silva and Ghrist, 2007)), and our kernel method and stability
results shown in Proposition 8 and Proposition 10 can be applied not only the ball model
filtration but also any filtrations including the Rips complex filtration.

X Xa Čech(X; a) Rips(X; a)

' 6'

Figure 3: A point set X, the union of balls Xa, the Čech complex Čech(X; a) and the
Rips complex Rips(X; a). There are two rings in Xa and Čech(X; a). However,
Rips(X; a) has only one ring because there is a 2-simplex.

2.1.4 sub-level sets

Another popular way of constructing a filtration is to use sub-level sets. This is useful
when data is given in the from of a function like a gray-scale image on a two dimensional
region. Let M be a topological space and f : M → R be a continuous map. Then,
we define a sub-level set by Sub(f ; a) := f−1((−∞, a]) for a ∈ R and its filtration by
Sub(f) := {Sub(f ; a) | a ∈ R}. Here, f : M → R is said to be tame if Hq(Sub(f)) is tame.

For a finite set X = {x1, . . . ,xn} in a metric space (M,dM ), we define the distance
function distX : M → R by

distX(x) := min
xi∈X

dM (x,xi).

6. Precisely, they are homotopy equivalent.
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Then, we can see Sub(distX ; a) =
∪

xi∈X B(xi; a) and Dq(Sub(distX)) = Dq(X). This

means that the ball model is a special case of the sub-level set, and the Čech complex and
the sub-level set with the distance function distX give the same persistence diagram.

2.2 Stability of persistence diagrams

When we consider data analysis based on persistence diagrams, it is useful to introduce a
distance measure among persistence diagrams for describing their relations. In introducing
a distance measure, it is desirable that, as a representation of data, the mapping from data
to a persistence diagram is continuous with respect to the distance. In many cases, data
involve noise or stochasticity, and thus the persistence diagrams should be stable under
perturbation of data.

The bottleneck distance dW∞ between two persistence diagrams D and E is defined by

dW∞(D,E) := inf
γ

sup
x∈D∪∆

∥x− γ(x)∥∞ ,

where ∆ := {(a, a) | a ∈ R} is the diagonal set with infinite multiplicity and γ ranges
over all multi-bijections7 from D ∪ ∆ to E ∪ ∆. Here, for z = (z1, z2) ∈ R2, ∥z∥∞ denotes
max{|z1|, |z2|}. We note that there always exists such a multi-bijection γ because the
cardinalities of D ∪ ∆ and E ∪ ∆ are equal by considering the diagonal set ∆ with infinite
multiplicity. For sets X and Y in a metric space (M,dM ), let us recall the Hausdorff distance
dH given by

dH(X,Y ) := max

{
sup
x∈X

inf
y∈Y

dM (x,y), sup
y∈Y

inf
x∈X

dM (x,y)

}
.

Then, the bottleneck distance satisfies the following stability property.

Proposition 2 (Chazal et al. (2014); Cohen-Steiner et al. (2007)) Let X and Y be
finite subsets in a metric space (M,dM ). Then the persistence diagrams satisfy

dW∞(Dq(X), Dq(Y )) ≤ dH(X,Y ).

Proposition 2 provides a geometric intuition of the stability of persistence diagrams.
Assume that two point sets X and Y are close to each other with ε = dH(X,Y ). If there
is a generator (b, d) ∈ Dq(Y ), then we can find at least one generator in X which is born
in (b− ε, b + ε) and dies in (d− ε, d + ε) (see Figure 4). Thus, the stability guarantees the
similarity of two persistence diagrams, and hence we can infer the true topological features
from the persistence diagrams given by noisy observation (see also Fasy et al. (2014)).

For 1 ≤ p < ∞, the p-Wasserstein distance dWp , which is also used as a distance between
two persistence diagrams D and E, is defined by

dWp(D,E) = inf
γ

( ∑
x∈D∪∆

∥x− γ(x)∥p∞

) 1
p

,

where γ ranges over all multi-bijections from D ∪∆ to E ∪∆. Here, we define the degree-p
total persistence of D by Persp(D) :=

∑
x∈D pers(x)p for 1 ≤ p < ∞.

7. A multi-bijection is a bijective map between two multi-sets counted with their multiplicity.
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Figure 4: Two point sets X and Y (left) and their persistence diagrams (right). The green
region is an ε-neighborhood of Dq(Y ) and all generators in Dq(X) are in the
ε-neighborhood.

Proposition 3 (Cohen-Steiner et al. (2010)) Let 1 ≤ p′ ≤ p < ∞, and D and E be
persistence diagrams whose degree-p′ total persistences are bounded from above. Then,

dWp(D,E) ≤
(

Persp′(D) + Persp′(E)

2

) 1
p

dW∞(D,E)
1− p′

p .

For a persistence diagram D, its degree-p total persistence is bounded from above by
card (D) × maxx∈D pers(x)p, where card (D) denotes the number of generators in D. How-
ever, this bound may be weak because, in general, card (D) cannot be bounded from above.
In particular, if data set has noise, the persistence diagram often has many generators close
to the diagonal. Thus, it is desirable that the total persistence is bounded from above
independently of card (D). In the case of persistence diagrams obtained from a ball model
filtration, we have the following upper bound (see Appendix B for the proof):

Lemma 4 Let M be a triangulable compact subspace in Rd, X be a finite subset of M , and
p > d. Then,

Persp(Dq(X)) ≤ p

p− d
CMdiam(M)p−d,

where CM is a constant depending only on M .

Hence, we have the following by combining Proposition 3 and Lemma 4.

Corollary 5 Let M be a triangulable compact subspace in Rd, X,Y be finite subsets of M ,
and p ≥ p′ > d. Then

dWp(Dq(X), Dq(Y )) ≤
(

p′

p′ − d
CMdiam(M)p

′−d

) 1
p

dW∞(Dq(X), Dq(Y ))
1− p′

p

≤
(

p′

p′ − d
CMdiam(M)p

′−d

) 1
p

dH(X,Y )
1− p′

p

where CM is a constant depending only on M .
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2.3 Kernel methods for representing signed measures

As a preliminary to our proposal of vector representation for persistence diagrams, we briefly
summarize a method for embedding signed measures with a positive definite kernel.

Let Ω be a set and k : Ω × Ω → R be a positive definite kernel on Ω, i.e., k is symmet-
ric, and for any number of points x1, . . . , xn in Ω, the Gram matrix (k(xi, xj))i,j=1,...,n is

nonnegative definite. A popular example of positive definite kernel on Rd is the Gaussian

kernel kG(x, y) = e−
∥x−y∥2

2σ2 (σ > 0), where ∥·∥ is the Euclidean norm in Rd. From the
Moore-Aronszajn theorem, it is also known that every positive definite kernel k on Ω is
uniquely associated with a reproducing kernel Hilbert space Hk (RKHS).

We use a positive definite kernel to represent persistence diagrams by following the idea
of the kernel mean embedding of distributions (Muandet et al., 2017; Smola et al., 2007;
Sriperumbudur et al., 2011). Let Ω be a locally compact Hausdorff space, Mb(Ω) be the
space of all finite signed Radon measures8 on Ω, and k be a bounded measurable kernel
on Ω. Since

∫
∥k(·, x)∥Hk

dµ(x) is finite, the integral
∫
k(·, x)dµ(x) is well-defined as the

Bochner integral (Diestel and Uhl Jr, 1977). Here, we define a mapping from Mb(Ω) to Hk

by

Ek : Mb(Ω) → Hk, µ 7→
∫

k(·, x)dµ(x). (2)

For a locally compact Hausdorff space Ω, let C0(Ω) denote the space of continuous
functions vanishing at infinity9. A kernel k on Ω is said to be C0-kernel if k(·, x) ∈ C0(Ω)
for any x ∈ Ω. If k is C0-kernel, the associated RKHS Hk is a subspace of C0(Ω). A
C0-kernel k is called C0-universal if Hk is dense in C0(Ω). It is known that the Gaussian
kernel kG is C0-universal on Rd (Sriperumbudur et al., 2011). When k is C0-universal, the
vector Ek(µ) in the RKHS uniquely determines the finite signed measure µ, and thus serves
as a representation of µ. We summarize the property as follows:

Proposition 6 (Sriperumbudur et al. (2011)) Let Ω be a locally compact Hausdorff
space. If k is C0-universal on Ω, the mapping Ek is injective. Thus,

dk(µ, ν) = ∥Ek(µ) − Ek(ν)∥Hk

defines a distance on Mb(Ω).

3. Kernel methods for persistence diagrams

We propose a positive definite kernel for persistence diagrams, called the persistence weighted
Gaussian kernel (PWGK), to embed the persistence diagrams into an RKHS. This vectoriza-
tion of persistence diagrams enables us to apply any kernel methods to persistence diagrams
and explicitly control the effect of persistence. We show the stability theorem with respect
to the distance defined by the embedding and discuss the efficient and precise approximate
computation of the PWGK.

8. A Radon measure µ on Ω is a Borel measure on Ω satisfying (i) µ(C) < ∞ for any compact subset C ⊂ Ω,
and (ii) µ(B) = sup{µ(C) | C ⊂ B, C:compact} for any B in the Borel σ-algebra of Ω.

9. A function f is said to vanish at infinity if for any ε > 0 there is a compact set K ⊂ Ω such that
supx∈Kc |f(x)| ≤ ε.
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3.1 Vectorization of persistence diagrams

We propose a method for vectorizing persistence diagrams using the kernel embedding (2) by
regarding a persistence diagram as a discrete measure. In vectorizing persistence diagrams,
it is desirable to have flexibility to discount the effect of generators close to the diagonal,
since they often tend to be caused by noise. To this goal, we explain slightly different two
ways of embeddings, which turn out to give the same inner product for two persistence
diagrams.

First, for a persistence diagram D, we introduce a measure µw
D :=

∑
x∈D w(x)δx with a

weight w(x) > 0 for each generator x ∈ D (Figure 5), where δx is the Dirac delta measure
at x. By appropriately choosing w(x), the measure µw

D can discount the effect of generators
close to the diagonal. A concrete choice of w(x) will be discussed later.

Birth

D
ea
th

Birth

D
ea
th

Birth

D
ea
th

D

Figure 5: Unweighted (left) and weighted (right) measures.

As discussed in Section 2.3, given a C0-universal kernel k above the diagonal R2
ad =

{(b, d) ∈ R2 | b < d}, the measure µw
D can be embedded as an element of the RKHS Hk via

µw
D 7→ Ek(µw

D) :=
∑
x∈D

w(x)k(·, x). (3)

From the injectivity in Proposition 6, this mapping identifies a persistence diagram; in other
words, it does not lose any information about persistence diagrams. Hence, Ek(µw

D) ∈ Hk

serves as a vector representation of the persistence diagram.
As the second construction, let

kw(x, y) := w(x)w(y)k(x, y)

be the weighted kernel with the same weight function as above10. Then the mapping

Ekw : µD 7→
∑
x∈D

w(x)w(·)k(·, x) ∈ Hkw (4)

also defines a vectorization of persistence diagrams. The first construction may be more
intuitive by directly weighting a measure, while the second one is also practically useful

10. From the facts that the product of positive definite kernels are also a positive definite kernel and f(x, y) =
w(x)w(y) is a positive definite kernel, kw is actually a positive definite kernel.

11
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since all the parameter tuning is reduced to kernel choice. We note that the inner products
introduced by two RKHS vectors (3) and (4) are the same:

⟨Ek(µw
D), Ek(µw

E)⟩Hk
= ⟨Ekw(µD), Ekw(µE)⟩Hkw

.

In addition, these two RKHS vectors (3) and (4) are essentially equivalent, as seen from the
next proposition:

Proposition 7 Let k be C0-universal on R2
ad and w be a positive function on R2

ad. Then
the following mapping

Hk → Hkw , f 7→ wf

defines an isomorphism between the RKHSs. Under this isomorphism, Ek(µw
D) and Ekw(µD)

are identified.

Proof Let H̃ := {wf : R2
ad → R | f ∈ Hk} and define its inner product by

⟨wf,wg⟩H̃ := ⟨f, g⟩Hk
.

Then, it is easy to see that H̃ is a Hilbert space and the mapping f 7→ wf gives an
isomorphism between H̃ and Hk of the Hilbert spaces. In fact, we can show that H̃ is the
same as Hkw . To see this, it is sufficient to check that kw is a reproducing kernel of H̃ from
the uniqueness property of a reproducing kernel for an RKHS. The reproducing property is
proven from

⟨wf, kw(·, x)⟩H̃ = ⟨f, w(x)k(·, x)⟩Hk
= w(x)f(x) = (wf)(x).

The second assertion is obvious.

3.2 Stability with respect to the kernel embedding

Given a data set X, we compute the persistence diagram Dq(X) and vectorize it as an ele-
ment Ek(µw

Dq(X)) of the RKHS. Then, for practical applications, this map X 7→ Ek(µw
Dq(X))

should be stable with respect to perturbations to the data as discussed in Section 2.2.

Let D and E be persistence diagrams and γ : D ∪ ∆ → E ∪ ∆ be any multi-bijection.
Here, we partition D (resp. ∆) into D1 and D2 (resp. ∆1 and ∆2) such as

γ(D1) ⊂ R2
ad, γ(D2) ⊂ ∆, γ(∆1) ⊂ R2

ad, γ(∆2) ⊂ ∆.

12
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Then D1 ∪ ∆1 and E are bijective under γ. Now, let a weight function w be zero on the
diagonal ∆. Then, the norm of the difference between RKHS vectors is calculated as follows:

∥Ek(µw
D) − Ek(µw

E)∥Hk

=

∥∥∥∥∥∥
∑
x∈D

w(x)k(·, x) −
∑
y∈E

w(y)k(·, y)

∥∥∥∥∥∥
Hk

=

∥∥∥∥∥∥
∑
x∈D

w(x)k(·, x) −
∑

x∈D1∪∆1

w(γ(x))k(·, γ(x))

∥∥∥∥∥∥
Hk

=

∥∥∥∥∥∥
∑

x∈D∪∆1

(
w(x)k(·, x) − w(γ(x))k(·, γ(x))

)
+
∑
x∈D2

w(γ(x))k(·, γ(x))

∥∥∥∥∥∥
Hk

=

∥∥∥∥∥∥
∑

x∈D∪∆1

(
w(x)k(·, x) − w(γ(x))k(·, γ(x))

)∥∥∥∥∥∥
Hk

=

∥∥∥∥∥∥
∑
x∈D

w(x)

(
k(·, x) − k(·, γ(x))

)
+

∑
x∈D∪∆1

(
w(x) − w(γ(x))

)
k(·, γ(x))

∥∥∥∥∥∥
Hk

≤
∑
x∈D

w(x) ∥k(·, x) − k(·, γ(x))∥Hk
+

∑
x∈D∪∆1

|w(x) − w(γ(x))| ∥k(·, γ(x))∥Hk
.

Here, let k be a C0-universal kernel and satisfy the following:

(K) There exist constants Bk, Lk > 0 such that

∥k(·, x)∥Hk
≤ Bk, ∥k(·, x) − k(·, y)∥Hk

≤ Lk ∥x− y∥∞ (x, y ∈ R2).

Then, we have

∥Ek(µw
D) − Ek(µw

E)∥Hk
≤ Lk

∑
x∈D

w(x) ∥x− γ(x)∥∞ + Bk

∑
x∈D∪∆1

|w(x) − w(γ(x))| . (5)

In this sequel, we consider the Gaussian kernel kG(x, y) = e−
∥x−y∥2

2σ2 (σ > 0) for a C0-

universal kernel satisfying (K) by BkG = 1 and LkG =
√
2
σ (Lemma 16 in Appendix C). Note

that the Laplace kernel k(x, y) = e−α
∑

i|xi−yi| (α > 0) also satisfies (K) by Bk = 1 and
Lk = 4α.

For a weight function, we consider the following assumption:

(W1) For any persistence diagrams D and E, and any multi-bijection γ : D∪∆ → E ∪∆,
there exist constants B1, L1 > 0 such that∑

x∈D
|w(x)| ≤ B1,

∑
x∈D∪∆

|w(x) − w(γ(x))| ≤ L1 sup
x∈D∪∆

∥x− γ(x)∥∞ . (6)

13
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If the weight function w satisfies (W1), from Equation (5), we have

∥Ek(µw
D) − Ek(µw

E)∥Hk
≤ (LkB1 + BkL1) sup

x∈D∪∆
∥x− γ(x)∥∞ .

Since this inequality holds for any multi-bijection γ, we obtain the bottleneck stability.

Proposition 8 Let D and E be persistence diagrams, a C0-universal kernel k satisfy (K),
and a weight function w satisfy (W1). Then,

∥Ek(µw
D) − Ek(µw

E)∥Hk
≤ (LkB1 + BkL1) dW∞(D,E).

In this paper, among many choices, we propose to use a weight function

warc(x) = arctan(Cpers(x)p) (C > 0, p ∈ Z>0).

This is a bounded and increasing function of pers(x). The corresponding positive definite
kernel is

kPWG(x, y) = warc(x)warc(y)e−
∥x−y∥2

2σ2 . (7)

We call it persistence weighted Gaussian kernel (PWGK). This function warc gives a small
(resp. large) weight on a noisy (resp. essential) generator. In addition, by appropriately
adjusting the parameters C and p in warc, we can control the effect of the persistence. In
order to check whether warc satisfies (W1), we first have∑

x∈D
|warc(x)| ≤ CPersp(D) (8)

from the fact warc(x) ≤ Cpers(x)p (x ∈ R2), and∑
x∈D∪∆

|warc(x) − warc(γ(x))|

≤ 2pC
∑

x∈D∪∆1

max{pers(x)p−1,pers(γ(x))p−1} ∥x− γ(x)∥∞ (Lemma 18 in Appendix C)

≤ 2pC (Persp−1(D ∪ ∆) + Persp−1(γ(D ∪ ∆))) sup
x∈D∪∆

∥x− γ(x)∥∞

≤ 2pC (Persp−1(D) + Persp−1(E)) sup
x∈D∪∆

∥x− γ(x)∥∞ . (9)

Although total persistences in Equation (8) and Equation (9) are not constant, by restrict-
ing a class of persistence diagrams to that of a ball model filtration, warc satisfies (W1).
Therefore, we obtain the bottleneck stability for PWGK:

Theorem 9 Let M be a triangulable compact subspace in Rd, X,Y ⊂ M be finite subsets,
p > d + 1, and a C0-universal kernel k satisfy (K). Then,∥∥∥Ek(µwarc

Dq(X)) − Ek(µwarc

Dq(Y ))
∥∥∥
Hk

≤ Lk,arcdW∞(Dq(X), Dq(Y )),

where Lk,arc is a constant independent of X and Y .

14
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Proof From Lemma 4, for p− 1 > d, there exists a constant CM > 0 such that

Persp(Dq(X)) ≤ p

p− d
CMdiam(M)p−d,

Persp−1(Dq(X)), Persp−1(Dq(Y )) ≤ p− 1

p− 1 − d
CMdiam(M)p−1−d.

Thus, from Equation (8) and Equation (9), we obtain the constants in (W1) as

B1 :=
p

p− d
CCMdiam(M)p−d, L1 :=

4p(p− 1)

p− 1 − d
CCMdiam(M)p−1−d,

and the statement is proven from Proposition 8. Note that

Lk,arc := LkB1 + BkL1

=

(
πLk

2

p

p− d
diam(M) + Bk

4p(p− 1)

p− 1 − d

)
CCMdiam(M)p−1−d,

is actually a constant independent of X and Y .

Let Pfinite(M) be the set of finite subsets in a triangulable compact subspace M ⊂ Rd.
Since the constant LkG,arc is independent of X and Y , Proposition 2 and Theorem 9 conclude
that the map

Pfinite(M) → HkG , X 7→ EkG(µwarc

Dq(X))

is Lipschitz continuous. Note again that this implies a desirable stability property of the
PWGK with the ball model: small perturbation of data points in terms of the Hausdorff
distance causes only small perturbation of the persistence diagrams in terms of the RKHS
distance with the PWGK. Note also that the RKHS of the PWGK is infinite dimensional.
This can be seen from Proposition 7 and the fact that the Gaussian kernel defines an infinite
dimensional RKHS on R2

ad.
As the most relevant work to the PWGK, the persistence scale-space kernel (PSSK,

Reininghaus et al. (2015))11 provides another kernel method for vectorization of persistence
diagrams and its stability result is shown with respect to 1-Wasserstein distance. However,
to the best of our knowledge, 1-Wasserstein stability with respect to the Hausdorff distance
is not shown, that is, for point sets X and Y , dW1(Dq(X), Dq(Y )) is not estimated by
dH(X,Y ) such as Proposition 2 or Corollary 5. Furthermore, it is shown (Reininghaus et al.,
2015, Theorem 3) that the PSSK does not satisfy the stability with respect to p-Wasserstein
distance for p > 1, including the bottleneck distance dW∞ , and hence it is not ensured that
results obtained from the PSSK are stable under perturbation of data points in terms of
the Hausdorff distance. On the other hand, since the PWGK has the desirable stability
(Theorem 9), it is one of the advantages of our method over the previous research.

For completeness of theoretical discussions, we will show some mathematical results
on the the stability with respect to 1-Wasserstein distance for PWGK along the line of
Reininghaus et al. (2015). Now, we consider the following assumption (W2) which is weaker
than (W1).

11. See Section 4.1.1.
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(W2) For any x, y ∈ R2, there exist constants B2, L2 > 0 such that

|w(x)| ≤ B2, |w(x) − w(y)| ≤ L2 ∥x− y∥∞ . (10)

Proposition 10 Let D and E be persistence diagrams, a C0-universal kernel k satisfy (K),
and a weight function w satisfy (W2). Then,

∥Ek(µw
D) − Ek(µw

E)∥Hk
≤ (LkB2 + BkL2) dW1(D,E).

Proof From Equation (5), we have

∥Ek(µw
D) − Ek(µw

E)∥Hk
≤ Lk

∑
x∈D

w(x) ∥x− γ(x)∥∞ + Bk

∑
x∈D∪∆1

|w(x) − w(γ(x))|

≤ LkB2

∑
x∈D

∥x− γ(x)∥∞ + BkL2

∑
x∈D∪∆1

∥x− γ(x)∥∞

Since this inequality holds for any multi-bijection γ, the statement is proven.

Here, we remark the relation between a weight function and stability. As a weight
function, we also consider the following two natural weight functions

wpers(x) :=


0 (pers(x) < 0)
1
Lpers(x) (0 ≤ pers(x) ≤ L)

1 (pers(x) > L)

, (11)

wone(x) ≡ 1,

where L > 0 is a parameter. Similar to warc, a piecewise linear weighting function wpers gives
a weight to a generator dependent on its persistence, but it does not satisfy satisfies (W1)
since

∑
x∈D wpers(x) = 1

LPers1(D), which is not a constant. For an unweighted function
wone, it also does not satisfy (W1) since

∑
x∈D wone(x) = card (D). Thus, it is still unknown

whether the bottleneck distance stability holds for wpers or wone. On the other hand, since
wpers and wone satisfy (W2)12, the 1-Wasserstein stability holds for these weight functions.
Regarding warc, we proposed it to satisfy (W1) with restriction to the class of persistence
diagrams, and obtained the bottleneck stability. For p = 1, warc satisfies (W2) by B2 = π

2
and L2 = 2C without any assumptions on persistence diagrams.

Corollary 11 Let D and E be persistence diagrams and a C0-universal kernel k satisfy
(K). Then,

∥∥Ek(µ
wpers

D ) − Ek(µ
wpers

E )
∥∥
Hk

≤
(
Lk +

2Bk

L

)
dW1(D,E),∥∥Ek(µwone

D ) − Ek(µwone
E )

∥∥
Hk

≤ LkdW1(D,E),∥∥Ek(µwarc
D ) − Ek(µwarc

E )
∥∥
Hk

≤
(
πLk

2
+ 2BkC

)
dW1(D,E) (p = 1 in warc).

12. Regarding wpers, L2 in (W2) is given by 2
L
. See Lemma 17 in Appendix C
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For p > 1, in general, warc does not satisfy (W2) since Ctp is not Lipschitz continuous with
respect to t ∈ R. Similar to Theorem 9, by restricting to the class of persistence diagrams,
we have the 1-Wasserstein stability:

Corollary 12 Let M be a triangulable compact subspace in Rd, X,Y ⊂ M be finite subsets,
p > d + 1, and a C0-universal kernel k satisfy (K). Then,∥∥∥Ek(µwarc

Dq(X)) − Ek(µwarc

Dq(Y ))
∥∥∥
Hk

≤
(
πLk

2
+ Bk

4p(p− 1)

p− 1 − d
CCMdiam(M)p−1−d

)
dW1(Dq(X), Dq(Y )),

for some constant CM > 0.

Proof For any multi-bijection γ : Dq(X) ∪ ∆ → Dq(Y ) ∪ ∆, we have∑
x∈Dq(X)∪∆

|warc(x) − warc(γ(x))|

≤ 2pC (Persp−1(Dq(X)) + Persp−1(Dq(Y ))) sup
x∈Dq(X)∪∆

∥x− γ(x)∥∞ (from Equation (8))

≤ 4p(p− 1)

p− 1 − d
CCMdiam(M)p−1−d

∑
x∈Dq(X)∪∆

∥x− γ(x)∥∞

From Equation (5) and arctan(t) ≤ π
2 (t ∈ R), the statement is proven.

3.3 Kernel methods on RKHS

Once persistence diagrams are represented as RKHS vectors, we can apply any kernel meth-
ods to those vectors by defining a kernel over the vector representation. In a similar way to
the standard vectors, the simplest choice is to consider the inner product as a linear kernel

KL(D,E; k,w) := ⟨Ek(µw
D), Ek(µw

E)⟩Hk
=
∑
x∈D

∑
y∈E

w(x)w(y)k(x, y) (12)

on the RKHS and we call it the (k,w)-linear kernel.
If k is a C0-universal kernel and w is strictly positive on R2

ad, from Proposition 6,
∥Ek(µw

D) − Ek(µw
E)∥Hk

defines a distance on the persistence diagrams and it is computed
as √

KL(D,D; k,w) + KL(E,E; k,w) − 2KL(D,E; k,w).

Then, we can also consider a nonlinear kernel

KG(D,E; k,w) = exp

(
− 1

2τ2
∥Ek(µw

D) − Ek(µw
E)∥2Hk

)
(τ > 0) (13)

on the RKHS and we call it the (k,w)-Gaussian kernel.
In this paper, if there is no confusion, we also refer to the (kG, warc)-Gaussian kernel as

the PWGK. Muandet et al. (2012) observed better performance with nonlinear kernels for
some complex tasks and this is one of the reasons that we will use the Gaussian kernel on
the RKHS.
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3.4 Computation of Gram matrix

Let D = {Dℓ | ℓ = 1, . . . , n} be a collection of persistence diagrams. In many practical
applications, the number of generators in a persistence diagram can be large, while n is
often relatively small; in Section 4.4, for example, the number of generators is about 30000,
while n = 80.

If the persistence diagrams contain at most m points, each element of the Gram matrix

(KG(Di, Dj ; kG, w))i,j=1,...,n involves O(m2) evaluations of e−
∥x−y∥2

2σ2 , resulting the complex-
ity O(m2n2) for obtaining the Gram matrix. Hence, reducing computational cost with
respect to m is an important issue.

We solve this computational issue by using the random Fourier features (Rahimi and Recht,
2007). To be more precise, let z1, . . . , zMrff

be random variables from the 2-dimensional
normal distribution N((0, 0), σ−2I) where I is the identity matrix. This method approx-

imates e−
∥x−y∥2

2σ2 by 1
Mrff

∑Mrff
a=1 e

√
−1zTa x(e

√
−1zTa y)∗, where ∗ denotes the complex conju-

gate. Then,
∑

x∈Di

∑
y∈Dj

w(x)w(y)kG(x, y) is approximated by 1
Mrff

∑Mrff
a=1 B

a
i (Ba

j )∗, where

Ba
ℓ =

∑
x∈Dℓ

w(x)e
√
−1zTa x. As a result, the computational complexity of the approximated

Gram matrix is O(mnMrff + n2Mrff), which is linear to m. In Section 4.3 and Section 4.4,
we set Mrff = 105. For the convergence rate of this approximation with respect to Mrff ,
please see Appendix D.

We note that the approximation by the random Fourier features can be sensitive to
the choice of σ. If σ is much smaller than ∥x− y∥, the relative error can be large. For

example, in the case of x = (1, 2), y = (1, 2.1) and σ = 0.01, e−
∥x−y∥2

2σ2 is about 10−22 while
we observed the approximated value can be about 10−4 with Mrff = 105. As a whole, these
m2 errors may cause a critical error to the statistical analysis. Moreover, if σ is largely

deviated from the ensemble ∥x− y∥ for x ∈ Di, y ∈ Dj , then most values e−
∥x−y∥2

2σ2 become
close to 0 or 1.

In order to obtain a good approximation and extract meaningful values, the choice
of parameters is important. For unsupervised case, we follow the heuristics proposed in
Gretton et al. (2007) and set

σ = median{σ(Dℓ) | ℓ = 1, . . . , n}, where σ(D) = median{∥xi − xj∥ | xi, xj ∈ D, i < j},

so that σ takes close values to many ∥x− y∥. For the parameter C, we also set

C = (median{pers(Dℓ) | ℓ = 1, . . . , n})−p, where pers(D) = median{pers(xi) | xi ∈ D}.

Similarly, the parameter τ in the (k,w)-Gaussian kernel is defined by

median

{∥∥∥Ek(µw
Di

) − Ek(µw
Dj

)
∥∥∥
Hk

∣∣∣∣ 1 ≤ i < j ≤ n

}
. (14)

For supervised learning such as SVM, we use the cross-validation (CV) approach and do
not use the random Fourier features in Section 4.2 and Section 4.5.
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4. Experiments

In this section, we apply the kernel method of the PWGK to synthesized and real data,
and compare the performance between the PWGK and other statistical methods of persis-
tence diagrams. All persistence diagrams are obtained from the ball model filtrations and
computed by CGAL (Da et al., 2015) and PHAT (Bauer et al., 2014). With respect to the
dimension of persistence diagrams, we use 2-dimensional persistence diagrams in Section
4.3 and 1-dimensional ones in other parts.

4.1 Comparison to previous works

4.1.1 Persistence scale-space kernel

The most relevant work to our method is the one proposed by Reininghaus et al. (2015).
Inspired by the heat equation, they propose a positive definite kernel called persistence
scale-space kernel (PSSK) KPSS on the persistence diagrams:

KPSS(D,E) = ⟨Φt(D),Φt(E)⟩L2(R2) =
1

8πt

∑
x∈D

∑
y∈E

e−
∥x−y∥2

8t − e−
∥x−ȳ∥2

8t , (15)

where Φt(D)(x) = 1
4πt

∑
y∈D e−

∥x−y∥2
4t − e−

∥x−ȳ∥2
4t and ȳ := (y2, y1) for y = (y1, y2). We note

that Φt(D) also takes zero on the diagonal by subtracting the Gaussian kernels for y and ȳ.

In fact, we can verify that the (k,w)-linear kernel contains the PSSK. Let D̃ := D ∪D∗

where D∗ = {(d, b) ∈ R2 | (b, d) ∈ D}. Then, Φt(D) can also be expressed as

Φt(D) =
1

4πt

∑
y∈D̃

wPSS(y)kG(·, y) where wPSS(y) =


1, y2 > y1

0, y ∈ ∆

−1, y2 < y1
,

which is equal to 1
4πtEkG(µwPSS

D̃
). Furthermore, the inner product in HkG is

KL(D̃, Ẽ; kG, wPSS) = ⟨EkG(µwPSS

D̃
), EkG(µwPSS

Ẽ
)⟩HkG

= 2
∑
x∈D

∑
y∈E

kG(x, y) − kG(x, ȳ). (16)

By scaling the variance parameter σ in the Gaussian kernel kG and multiplying by an
appropriate scalar, Equation (15) is the same as Equation (16). Thus, the PSSK can also
be approximated by the random Fourier features. When we apply the random Fourier
features for the PSSK, we set σ̃ = median{σ(D̃ℓ) | ℓ = 1, · · · , n} as before and t = σ̃2

4 .

While both methods discount noisy generators, the PWGK has the following advantages
over the PSSK. (i) The PWGK can control the effect of the persistence by C and p in warc

independently of the bandwidth parameter σ in the Gaussian factor, while in the PSSK
only one parameter t cannot adjust the global bandwidth and the effect of persistence
simultaneously. (ii) The PSSK does not satisfy the stability with respect to the bottleneck
distance (see also remarks after Theorem 9).

19



G. Kusano, K. Fukumizu and Y. Hiraoka

4.1.2 Persistence landscape

The persistence landscape (Bubenik, 2015) is a well-known approach in TDA for vectoriza-
tion of persistence diagrams. For a persistence diagram D, the persistence landscape λD is
defined by

λD(k, t) = k-th largest value of min{t− bi, di − t}+,

where c+ denotes max{c, 0}, and it is a vector in the Hilbert space L2(N × R). Here, we
define a positive definite kernel of persistence landscapes as a linear kernel on L2(N× R):

KPL(D,E) := ⟨λD, λE⟩L2(N×R) =

∫
R

∑
k=1

λD(k, t)λE(k, t)dt. (17)

Since a persistence landscape does not have any parameters, we do not need to consider the
parameter tuning. However, the integral computation is required and it causes much com-
putational time. Let D = {Dℓ | ℓ = 1, . . . , n} be a collection of persistence diagrams which
contain at most m points. Since λDi(k, t) ≡ 0 for any k > m, t ∈ R, i = 1, · · · , n, calculating
{λDi(k, t) | k ∈ Z≥0}, which needs sorting, is in O(m logm) (see also Bubenik and D lotko
(2017)). For a fixed t, we can calculate (

∑
k=1 λDi(k, t)λDj (k, t))i,j=1,··· ,n in O(nm logm +

n2m), and the Gram matrix (KPL(Di, Dj))i,j=1,··· ,n in O(Mint(nm logm + n2m)), where
Mint is the number of partitions in the integral interval. Theoretically speaking, this im-
plies that it takes more time to calculate the Gram matrix of KPL than the PWGK and
the PSSK by the random Fourier features.

4.1.3 Persistence image

As a finite dimensional vector representation of a persistence diagram, a persistence image
is proposed in Adams et al. (2017). First, we prepare a differentiable probability density
function ϕx : R2 → R with mean x and a weight function w : R2

ad → R. For a persistence
diagram D, the corresponding persistence surface is defined by

ρD(z) :=
∑
x∈D

w(x)ϕx(z). (18)

Then, for fixed points a0 < · · · < aM (ai ∈ R), the persistence image13 PI(D) is defined
by an M ×M matrix whose (i, j)-element is assigned to the integral of ρD over the pixel
Pi,j := (ai−1, ai] × (aj−1, aj ], i.e.,

PI(D)i,j :=

∫
Pi,j

ρD(z)dz.

Since the persistence image can be regarded as an M2-dimensional vector, we define a vector
PIV(D) ∈ RM2

by

PIV(D)i+M(j−1) := PI(D)i,j , (19)

13. Adams et al. (2017) use a persistence diagram in birth-persistence coordinates. That is, by a linear
transformation T (b, d) = (b, d− b), a persistence diagram D is transformed into T (D). In this paper, in
order to compare with the persistence image and the PWGK, we use birth-death coordinates.
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and, in this paper, call it the persistence image vector.

In Adams et al. (2017), they use the 2-dimensional Gaussian distribution 1
2πσ2kG(x, z)

as ϕx(z) and a piecewise linear weighting function wpers(x). In this paper, for a collection
of persistence diagrams D = {Dℓ | ℓ = 1, . . . , n}, we set a parameter L in Equation (11) as

L = max{L(Dℓ) | ℓ = 1, · · · , n}, where L(D) = max{di | (bi, di) ∈ D}.

For points a0 < · · · < aM of a pixel Pi,j = (ai−1, ai] × (aj−1, aj ], we set aM = L and
ai = i

M aM for 0 ≤ i ≤ M14.

Here, by choosing ϕx and w in the proposed way, we define a positive definite kernel of
persistence image vector as a linear kernel on RM2

:

KPI(D,E) := ⟨PIV(D),PIV(E)⟩RM2

=

M∑
i,j=1

PI(D)i,jPI(E)i,j

=
1

(2πσ2)2

∑
x∈D

∑
y∈E

wpers(x)wpers(y)

M∑
i,j=1

∫
Pi,j

kG(x, z)dz

∫
Pi,j

kG(y, z)dz. (20)

If we choose ϕx(z) as a (normalized) positive definite kernel k(x, z), the corresponding
persistence surface ρD (18) is the same as the RKHS vector Ek(µw

D). Thus, it may be
expected that the persistence image and the PWGK show similar performance for data
analysis. However, there are several differences between the persistence image and the
PWGK. (i) Underlying vector spaces are different: the PWGK vector Ek(µw

D) is always in
the RKHS and the corresponding persistence surface ρD is in Lp(R2) with appropriate con-
ditions. Hence, the inner product structures are also different15. (ii) Regarding the mapping
from a persistence diagram to the corresponding persistence surface, the injectivity is not
discussed in the original paper (Adams et al., 2017). On the other hand, from Proposition
6, we can easily check the injectivity of the RKHS vector Ek(µw

D) due to its construction
based on kernel method. (iii) It is also shown that the persistence image has a stability
result with respect to 1-Wasserstein distance, but it does not satisfy the bottleneck stability
(Remark 1 in Adams et al. (2017)) or the Haussdorff stability as noted after Theorem 9.
This instability is considered to be caused by the norm of the persistence image, which is
different from the RKHS. (iv) The computational complexity of a persistence image does
not depend on the number of generators in a persistence diagram, but instead, it depends on
the number of pixels M2. Precisely, the Gram matrix (KPI(Di, Dj))i,j=1,··· ,n is calculated

14. Here, we set a0 = 0 because all generators in the ball model filtrations are born after b = 0.
15. Since the persistence image vector PIV(D) (19) is a discretization of ρD, the inner product (20) can be

also seen as a discretization of L2 inner product of the corresponding persistence surfaces

⟨ρD, ρE⟩L2(R2) =
1

(2πσ2)2

∑
x∈D

∑
y∈E

wpers(x)wpers(y)

∫
R2

kG(x, z)kG(y, z)dz.

Furthermore, since
∫
R2 e

− ∥x−z∥2

2σ2 e
− ∥y−z∥2

2σ2 dz ∝ e
− ∥x−y∥2

4σ2 , KPI(D,E) is also a discretization of the inner
product of the RKHS vectors KL(D,E; kG, warc) by scaling the variance parameter σ in kG. However,
this is a special case, and it is not always to be true for any positive definite kernel.
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in O(n2M2). We can reduce the computational time of the persistence image by choosing a
small mesh size M . However, some situations need a fine mesh (i.e., a large mesh size), and
thus, we have to be careful with the choice of mesh size. In Section 4.2.2, we will discuss
the effect of the mesh size on the classification performance of the persistence image.

4.2 Classification with synthesized data

We compare the performance among the PWGK, the PSSK, the persistence landscape, and
the persistence image for a simple binary classification task with SVMs.

4.2.1 Synthesized data

In this experiment, we design data sets so that important generators close to the diagonal
must be taken into account to solve the classification task.

Let S1(x, y, r,N) be a set composed of N points sampled with equal distance from a
circle in 2-dimensional Euclidean space with radius r centered at (x, y). When we compute
the persistence diagram of S1(x, y, r,N) for N > 3, there always exists a generator whose
birth time is approximately πr

N (here we use sin θ ≈ θ for small θ) and death time is r
(Figure 6).

𝑟

𝑏

𝑟

𝑟
𝑏 = 𝜋𝑟/𝑁

Birth Death

Figure 6: Birth and death of the generator for S1(x, y, r,N).

In order to add randomness on S1(x, y, r,N), we extend it into R3 and change S1(x, y, r,N)
to S1

z (x, y, r,N) and S̃1
z (x, y, r,N) as follows:

S1
z (x, y, r,N) := {(z1, z2, z3) | (z1, z2) ∈ S1(x, y, r,N), z3 is uniformly sampled from [0, 0.01]}

S̃1
z (x, y, r,N) := S1

z (x + W 2
x , y + W 2

y , r + W 2
r , ⌈N + 2WN⌉),

where Wx,Wy ∼ N(0, 2)16, Wr,WN ∼ N(0, 1) and ⌈c⌉ is the smallest integer greater than or
equal to c. Then, we add S2 := S1

z (x2, y2, r2, N2) to S1 := S̃1
z (x1, y1, r1, N1) with probability

0.5 and use it as the synthesized data.

16. N(µ, σ2) is the 1-dimensional normal distribution with mean µ and variance σ2.
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In this paper, we choose parameters by

r1 = 1 + 8W 2 (W ∼ N(0, 1)),

x1 = y1 = 1.5r1,

N1 : a random integer with equal probability in (⌈πr
2
⌉, 4πr),

and set (x2, y2, r2, N2) as (0, 0, 0.2, 10) (Figure 7).

Figure 7: Examples of synthesized data. Left: S2 exists. Right: S2 does not exist.

For the binary classification, we introduce the following labels:

z0 = 1 if there exists a generator (b, d) in the persistence diagram such that b ≤ 1 and d ≥ 4.

z1 = 1 if S2 exists.

The class label of the data set is then given by XOR(z0, z1). By this construction, identi-
fying z0 requires relatively smooth function in the area of long lifetimes, while classifying
the existing of z1 needs delicate control of the resolution around the diagonal.

4.2.2 SVM results

SVMs are trained from persistence diagrams given by 100 data sets, and evaluated with 100
independent test data sets. As a positive definite kernel k, we choose the Gaussian kernel
kG and the linear kernel kL(x, y) := ⟨x, y⟩R2 . For a weight function w, we use the proposed
function warc(x) = arctan(Cpers(x)p), the piecewise linear weighting function wpers(x), and
an unweighted function wone(x) ≡ 1. The hyper-parameters (σ,C) in the PWGK and t in
the PSSK are chosen by the 10-fold cross-validation, and the degree p in warc(x) is set as
1, 5, 10. For KPSS and KPL, while they originally consider only the inner product, we also
apply the Gaussian kernels on RKHS following Equation (13). Since KPI can be seen as a
discretization of the (kG, wpers)-linear kernel, we also construct another kernel of persistence
image by replacing wpers with warc, which is considered as a discretization of the PWGK.
In order to check whether the persistence image with warc is an appropriate discretization
of the PWGK, we try several mesh size M = 20, 50, 100.

In Table 1, we can see that the PWGK △ and the Gaussian kernel on the persistence
image with warc and large mesh size □100 show higher classification rates (85% accuracy)
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Table 1: Results of SVMs with the (k,w)-linear/Gaussian kernel, the PSSK, the persis-
tence landscape, and the persistence image. Average classification rates (%) and
standard deviations for 100 test data sets are shown.

Linear Gaussian

PWGK
kernel weight

warc (p = 1) 75.7 ± 2.31 85.8 ± 5.19 (PWGK)
warc (p = 5) 75.8 ± 2.47 (△) 85.6 ± 5.01 (PWGK, □)

kG warc (p = 10) 76.0 ± 2.39 86.0 ± 4.98 (PWGK)
wpers 49.3 ± 2.72 52.3 ± 6.60
wone 53.8 ± 4.76 55.1 ± 8.42

warc (p = 5) 49.3 ± 6.92 51.8 ± 3.52
kL wpers 51.0 ± 6.84 55.7 ± 8.68

wone 50.5 ± 6.90 53.0 ± 4.89

PWGK with Persistence image
M = 20 warc (p = 5) 48.8 ± 3.75 (△20) 52.0 ± 5.65 (□20)
M = 50 warc (p = 5) 49.2 ± 5.77 (△50) 51.8 ± 7.23 (□50)
M = 100 warc (p = 5) 75.0 ± 2.20 (△100) 85.8 ± 4.15 (□100)

PSSK 50.5 ± 5.60 (KPSS) 53.6 ± 6.69

Persistence landscape 50.6 ± 5.92 (KPL) 48.8 ± 4.25

Persistence image
M = 20 wpers 51.1 ± 4.38 (KPI) 51.7 ± 6.86
M = 50 wpers 49.0 ± 6.14 (KPI) 52.3 ± 7.21
M = 100 wpers 54.5 ± 8.76 (KPI) 52.1 ± 6.70
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than the other methods (KPSS : 50%, KPL : 50%, and KPI : 55%). Although the (kG, wpers)-
Gaussian kernel and the persistence image with the original weight wpers discount noisy
generators, the classification rates are close the chance level. These unfavorable results
must be caused by the difficulty in handling the local and global locations of generators
simultaneously. While the result of the persistence image with a large mesh size is similar
to that of the PWGK (e.g., □ and □100), a small mesh size gives bad approximation results
(e.g., □ and □50). The reason is because a small mesh size makes rough pixels, and S2 itself
and noisy generators are treated in some rough pixel. On the other hand, we remark that
a large mesh size M needs much computational time.

We observe that the classification accuracies are not sensitive to p. Thus, in the rest
of this paper, we set p = 5 because the assumption p > d + 1 in Theorem 9 ensures the
continuity in the kernel embedding of persistence diagrams and all data points are obtained
from R3.

4.3 Analysis of granular system

We apply the PWGK, the PSSK, the persistence landscape, and the persistence image to
persistence diagrams obtained by experimental data in a granular packing system (Francois et al.,
2013). In this example, a partially crystallized packing with 150, 000 monosized beads (di-
ameter = 1mm, polydispersity = 0.025mm) in a container is obtained by experiments, where
the configuration of the beads is imaged by means of X-ray Computed Tomography. One of
the fundamental interests in the study of granular packings is to understand the transition
from random packings to crystallized packings. In particular, the maximum packing density
ϕ∗ that random packings can attain is still a controversial issue (e.g., see Torquato et al.
(2000)). Here, we apply the change point analysis to detect ϕ∗.

In oder to observe configurations of various densities, we divide the original full system
into 35 cubical subsets containing approximately 4000 beads. The data are provided by
the authors of the paper (Francois et al., 2013). The packing densities of the subsets range
from ϕ = 0.590 to ϕ = 0.730. Saadatfar et al. (2017) computed a persistence diagram for
each subset by taking the beads configuration as a finite subset in R3, and found that the
persistence diagrams characterize different configurations in random packings (small ϕ) and
crystallized packings (large ϕ). Hence, it is expected that the change point analysis applied
to these persistence diagrams can detect the maximum packing density ϕ∗ as a transition
from the random to crystallized packings.

Our strategy is to regard the maximum packing density as the change point and detect
it from a collection D = {Dℓ | ℓ = 1, . . . , n} (n = 35) of persistence diagrams made by
beads configurations of granular systems, where ℓ is the index of the packing densities listed
in the increasing order. As a statistical quantity for the change point detection, we use the
kernel Fisher discriminant ratio (Harchaoui et al., 2009) defined by

KFDRn,ℓ,γ(D) =
ℓ(n− ℓ)

n

∥∥∥∥∥
(
ℓ

n
Σ̂1:ℓ +

n− ℓ

n
Σ̂ℓ+1:n + γI

)− 1
2

(µ̂ℓ+1:n − µ̂1:ℓ)

∥∥∥∥∥
HK

, (21)
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where the empirical mean element µ̂i:j and the empirical covariance operator Σ̂i:j with data
Di through Dj (i < j) are given by

µ̂i:j =
1

j − i + 1

j∑
ℓ=i

K(·, Dℓ),

Σ̂i:j =
1

j − i + 1

j∑
ℓ=i

(K(·, Dℓ) − µ̂i:j) ⊗ (K(·, Dℓ) − µ̂i:j)

respectively, and γ is a regularization parameter (in this paper we set γ = 10−3). The index
ℓ achieving the maximum of KFDRn,ℓ,γ(D) corresponds to the estimated change point. In
Figure 8, all the four methods detect ℓ = 23 as the sharp maximizer of the KFDR. This
result indicates that the maximum packing density ϕ∗ exists in the interval [0.604, 0.653]
and supports the traditional observation ϕ∗ ≈ 0.636 (Anonymous, 1972).

Figure 8: The KFDR graphs of the PWGK, the PSSK, the persistence landscape, and the
persistence image.

We also apply kernel principal component analysis (KPCA) to the same collection of
the 35 persistence diagrams. Figure 9 shows the 2-dimensional KPCA plots where each
blue cross (resp. red circle) indicates the persistence diagram of random packing (resp.
crystallized packing). We can see clear two-cluster structure corresponding to two physical
states.

4.4 Analysis of SiO2

When we rapidly cool down the liquid state of SiO2, it avoids the usual crystallization
and changes into a glass state. Understanding the liquid-glass transition is an important
issue for the current physics and industrial applications (Greaves and Sen, 2007). Glass is an
amorphous solid, which does not have a clear structure in the configuration of molecules, but
it is also known that the medium distance structure such as rings have important influence
on the physical properties of the material. It is thus promising to apply the persistent
homology to express the topological and geometrical structure of the glass configuration. For
estimating the glass transition temperature by simulations, a traditional physical method is
to prepare atomic configurations of SiO2 for a certain range of temperatures by molecular
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Persistence landscape Persistence imagePSSKPWGK

Figure 9: The KPCA plots of the PWGK (contribution rate: 92.9%), the PSSK (99.7%),
the persistence landscape (83.8%), and the persistence image (98.7%).

dynamics simulations, and then draw the temperature-enthalpy graph. The graph consists
of two lines in high and low temperatures with slightly different slopes which correspond
to the liquid and the glass states, respectively, and the glass transition temperature is
conventionally estimated as an interval of the transient region combining these two lines
(e.g., see Elliott (1990)). However, since the slopes of two lines are close to each other,
determining the interval is a subtle problem. Usually only the rough estimate of the interval
is available. Hence, we apply our framework of topological data analysis with kernels to
detect the glass transition temperature.

Let {Dℓ | ℓ = 1, . . . , 80} be a collection of the persistence diagrams made by atomic con-
figurations of SiO2 and sorted by the decreasing order of the temperature. The same data
was used in the previous works by Hiraoka et al. (2016); Nakamura et al. (2015). The inter-
val of the glass transition temperature T estimated by the conventional method explained
above is 2000K ≤ T ≤ 3500K, which corresponds to 35 ≤ ℓ ≤ 50.

Figure 10: The KFDR graphs of the PWGK (left), the PSSK (center) and the persistence
image (right).

In Figure 10, the KFDR plots show that the change point is estimated as ℓ = 39 by the
PWGK, ℓ = 33 by the PSSK, and ℓ = 33 by the persistence image. For the persistence
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landscape, we cannot obtain the KFDR or the KPCA results with reasonable computational
time.

Persistence imagePSSKPWGK

Figure 11: The 2-dimensional and 3-dimensional KPCA plots of the PWGK (contribution
rates for 2-dimension: 81.7%, 3-dimension: 92.1%), the PSSK (97.2%, 99.3%)
and the persistence image (99.9%, 99.9%).

As we see from the 2-dimensional plots given by KPCA (Figure 11), the PWGK presents
sharp change of the gradients between before (blue cross) and after (red circle) the change
point determined by the KFDR. This matches with the analysis in physics that expects a
sharp change of slope in the temperature-enthalpy plane. This strongly suggests that the
glass transition occurs at the detected change point. On the other hand, in the results of
PSSK and persistence images we cannot observe a sharp change of the gradients at the
boundary of the estimated two phases. We also remark that clearer structures are observed
in the 3-dimensional KPCA plots of the PWGK.

4.5 Protein classification

We apply the PWGK to two classification tasks studied in Cang et al. (2015). They intro-
duced the molecular topological fingerprint (MTF) as a feature vector constructed from the
persistent homology, and used it for the input to the SVM. The MTF is given by the 13-
dimensional vector whose elements consist of the persistences of some specific generators17

in persistence diagrams. We compare the performance between the PWGK and the MTF
method under the same setting of the SVM reported in Cang et al. (2015).

17. The MTF method is not a general method for persistence diagrams because some elements of the MTF
vector are specialized for protein data, e.g., the ninth element of the MTF vector is defined by the
number of Betti 1 bars that locate at [4.5, 5.5]Å, divided by the number of atoms. For the details, see
Cang et al. (2015).
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Table 2: CV classification rates (%) of SVMs with the PWGK and the MTF (cited from
Cang et al. (2015)).

Protein-Drug Hemoglobin

PWGK 100 88.90
MTF (nbd) 93.91 / (bd) 98.31 84.50

The first task is a protein-drug binding problem, where the binding and non-binding of
drug to the M2 channel protein of the influenza A virus is to be classified. For each of the
two forms, 15 data were obtained by NMR experiments, and 10 data are used for training
and the remaining for testing. We randomly generate 100 ways of partitions and calculate
the average classification rates.

In the second problem, the taut and relaxed forms of hemoglobin are to be classified.
For each form, 9 data were collected by the X-ray crystallography. We select one data
from each class for testing and use the remaining for training. All the 81 combinations are
performed to calculate the CV classification rates.

The results of the two problems are shown in Table 2. We can see that the PWGK
achieves better performance than the MTF in both problems.

5. Conclusion and Discussions

One of the contributions of this paper is to introduce a kernel framework to topological data
analysis with persistence diagrams. We applied the kernel embedding approach to vectorize
the persistence diagrams, which enables us to utilize any standard kernel methods for data
analysis. Another contribution is to propose a kernel specific to persistence diagrams, that
is called persistence weighted Gaussian kernel (PWGK). As a significant advantage, our
kernel enables one to control the effect of persistence in data analysis. We have also proven
the stability property with respect to the distance in the Hilbert space. Furthermore, we
have analyzed the synthesized and real data by using the proposed kernel. The change
point detection, the principal component analysis, and the support vector machine derived
meaningful results for the tasks. From the viewpoint of computations, our kernel can utilize
an efficient approximation to compute the Gram matrix.

One of the main theoretical results of this paper is the bottleneck stability of the PWGK
(Theorem 9). It is obtained by restricting the class of persistence diagrams to that obtained
from ball model filtrations. The reason of this restriction is because the total persistence
can be bounded from above independent of the persistence diagram. Thus, one direction
to extend this work is to examine the boundedness condition about the total persistence of
other persistence diagrams, for example obtained from Rips complexes or sub-level sets.

Another direction to extend this work is to generalize the class of weight functions. The
reason of the choice of warc is mainly for the stability property, but in principle, we can apply
any weight function to data analysis. Even if we do not concern about stability properties,
which weight function is practically good for data analysis? Suppose generators close to
the diagonal are sometimes seen as important features. Then, our statistical framework can
treat such small generators as significant ones by a weight function which has large weight
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close to the diagonal, while other statistical methods for persistence diagrams always see
small generators as noisy ones. In addition, the weight function becomes better when it is
constructed to satisfy the assumption (W1) or (W2), which implies the stability property.
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Appendix A. Topological tools

This section summarizes some topological tools used in the paper. To study topological
properties algebraically, simplicial complexes are often considered as basic objects. We
start with a brief explanation of simplicial complexes, and gradually increase the generality
from simplicial homology to singular and persistent homology. For more details, see Hatcher
(2002).

A.1 Simplicial complex

We first introduce a combinatorial geometric model called simplicial complex to define
homology. Let P = {1, . . . , n} be a finite set (not necessarily points in a metric space).
A simplicial complex with the vertex set P is defined by a collection S of subsets in P
satisfying the following properties:

1. {i} ∈ S for i = 1, . . . , n, and

2. if σ ∈ S and τ ⊂ σ, then τ ∈ S.

Each subset σ with q + 1 vertices is called a q-simplex. We denote the set of q-simplices
by Sq. A subcollection T ⊂ S which also becomes a simplicial complex (with possibly less
vertices) is called a subcomplex of S.

We can visually deal with a simplicial complex S as a polyhedron by pasting simplices in
S into a Euclidean space. The simplicial complex obtained in this way is called a geometric
realization, and its polyhedron is denoted by |S|. In this context, the simplices with small
q correspond to points (q = 0), edges (q = 1), triangles (q = 2), and tetrahedra (q = 3).

Example 1 Figure 12 shows two polyhedra of simplicial complexes

S = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},
T = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

1 2

3

1 2

3

Figure 12: The polyhedra of the simplicial complexes S (left) and T (right).

A.2 Homology

A.2.1 Simplicial homology

The procedure to define homology is summarized as follows:

1. Given a simplicial complex S, build a chain complex C∗(S). This is an algebraization
of S characterizing the boundary.
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2. Define homology by quotienting out certain subspaces in C∗(S) characterized by the
boundary.

We begin with the procedure 1 by assigning orderings on simplices. When we deal with
a q-simplex σ = {i0, . . . , iq} as an ordered set, there are (q + 1)! orderings on σ. For q > 0,
we define an equivalence relation ij0 , . . . , ijq ∼ iℓ0 , . . . , iℓq on two orderings of σ such that
they are mapped to each other by even permutations. By definition, two equivalence classes
exist, and each of them is called an oriented simplex. An oriented simplex is denoted by
⟨ij0 , . . . , ijq⟩, and its opposite orientation is expressed by adding the minus −⟨ij0 , . . . , ijq⟩.
We write ⟨σ⟩ = ⟨ij0 , . . . , ijq⟩ for the equivalence class including ij0 < · · · < ijq . For q = 0,
we suppose that we have only one orientation for each vertex.

Let K be a field. We construct a K-vector space Cq(S) as

Cq(S) = SpanK{⟨σ⟩ | σ ∈ Sq}

for Sq ̸= ∅ and Cq(S) = 0 for Sq = ∅. Here, SpanK(A) for a set A is a vector space over
K such that the elements of A formally form a basis of the vector space. Furthermore, we
define a linear map called the boundary map ∂q : Cq(S) → Cq−1(S) by the linear extension
of

∂q⟨i0, . . . , iq⟩ =

q∑
ℓ=0

(−1)ℓ⟨i0, . . . , îℓ, . . . , iq⟩, (22)

where îℓ means the removal of the vertex iℓ. We can regard the linear map ∂q as algebraically
capturing the (q − 1)-dimensional boundary of a q-dimensional object. For example, the
image of the linear map ∂2 of a basis ⟨1, 2, 3⟩ in the vector space C2(S) is given by

∂2⟨1, 2, 3⟩ = ⟨2, 3⟩ − ⟨1, 3⟩ + ⟨1, 2⟩ = ⟨1, 2⟩ + ⟨2, 3⟩ + ⟨3, 1⟩ (23)

as linear combinations of bases in the vector space C1(S). The above sentence is written
only in the language of linear algebra and there is no meaning of + or − in Equation
(23) except for its vector space structure. On the other hand, the geometric realization of
∂2⟨1, 2, 3⟩ is a boundary of ⟨1, 2, 3⟩ in a geometric sense (see Figure 12). In this way, we
analyze geometric properties of a simplicial complex algebraically.

In practice, by arranging some orderings of the oriented q- and (q−1)- simplices, we can
represent the boundary map as a matrix Mq = (Mσ,τ )σ∈Sq−1,τ∈Sq with the entry Mσ,τ =
0,±1 given by the coefficient in Equation (23). For the simplicial complex S in Example 1,
the matrix representations M1 and M2 of the boundary maps are given by

M2 =

 1
1

−1

 , M1 =

 −1 0 −1
1 −1 0
0 1 1

 (24)

Here, the 1-simplices (resp. 0-simplices) are ordered by ⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩ (resp. ⟨1⟩, ⟨2⟩,
⟨3⟩).

We call a sequence of the vector spaces and linear maps

· · · // Cq+1(S)
∂q+1 // Cq(S)

∂q // Cq−1(S) // · · ·
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the chain complex of S. As an easy exercise, we can show ∂q ◦ ∂q+1 = 0. Hence, the
subspaces Zq(S) = ker∂q and Bq(S) = im∂q+1 satisfy Bq(S) ⊂ Zq(S). Then, the q-th
(simplicial) homology is defined by taking the quotient space

Hq(S) = Zq(S)/Bq(S).

Note that Hq(S) is a K-vector space, and the dimension can be considered in a standard
way. Intuitively, the dimension of Hq(S) counts the number of q-dimensional holes in S
and each generator of the vector space Hq(S) corresponds to these holes. We remark that
the homology as a vector space is independent of the orientations of simplices. For q = 0,
each generator of H0(S) corresponds to a path-connected component of S. This can be seen
from the fact that any two vertices are in the same equivalence class modulo the boundary
B0(S) if and only if they are connected by a path.

For a subcomplex T of S, the inclusion map ρ : T ↪→ S naturally induces a linear map in
homology ρq : Hq(T ) → Hq(S). Namely, an element [c] ∈ Hq(T ) is mapped to [c] ∈ Hq(S),
where the equivalence class [c] is taken in each vector space.

For example, the simplicial complex S in Example 1 has

Z1(S) = SpanK [ 1 1 −1 ]T = B1(S)

from (24). Hence H1(S) = 0, meaning that there are no 1-dimensional hole (ring) in S. On
the other hand, since Z1(T ) = Z1(S) and B1(T ) = 0, we have H1(T ) ∼= K, meaning that
T consists of one ring. Hence, the induced linear map ρ1 : H1(T ) → H1(S) means that the
ring in T disappears in S under T ↪→ S.

A topological space X is called triangulable if there exists a geometric realization of a
simplicial complex S whose polyhedron is homeomorphic18 to X. For such a triangulable
topological space, the homology is defined by Hq(X) = Hq(S). This is well-defined, since a
different geometric realization provides an isomorphic homology.

A.2.2 Singular homology

We here extend the homology to general topological spaces. Let e0, . . . , eq be the standard
basis of Rq+1 (i.e., ei = (0, . . . , 0, 1, 0, . . . , 0), 1 at (i + 1)-th position, and 0 otherwise), and
set

∆q =

{
q∑

i=0

λiei

∣∣∣∣∣
q∑

i=0

λi = 1, λi ≥ 0

}
,

∆ℓ
q =

{
q∑

i=0

λiei

∣∣∣∣∣
q∑

i=0

λi = 1, λi ≥ 0, λℓ = 0

}
.

We also denote the inclusion by ιℓq : ∆ℓ
q ↪→ ∆q.

For a topological space X, a continuous map σ : ∆q → X is called a singular q-simplex,
and let Xq be the set of q-simplices. We construct a K-vector space Cq(X) as

Cq(X) = SpanK{σ | σ ∈ Xq}.

18. A continuous map f : X → Y is said to be homeomorphic if f : X → Y is bijective and the inverse
f−1 : Y → X is also continuous.
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The boundary map ∂q : Cq(X) → Cq−1(X) is defined by the linear extension of

∂qσ =

q∑
ℓ=0

(−1)ℓσ ◦ ιℓq.

Even in this setting, we can show that ∂q ◦ ∂q+1 = 0, and hence the subspaces Zq(X) =
ker∂q and Bq(X) = im∂q+1 satisfy Bq(X) ⊂ Zq(X). Then, the q-th (singular) homology is
similarly defined by

Hq(X) = Zq(X)/Bq(X).

It is known that, for a triangulable topological space, the homology of this definition is
isomorphic to that defined in A.2.1. From this reason, we hereafter identify simplicial and
singular homology.

The induced linear map in homology for an inclusion pair of topological space Y ⊂ X
is similarly defined as in A.2.1.

Appendix B. Total persistence

Let (M,dM ) be a triangulable compact metric space. For a Lipschitz function f : M → R,
we define the degree-p total persistence over t by

Persp(Dq(Sub(f)), t) =
∑

x∈Dq(Sub(f))
pers(x)>t

pers(x)p

for 0 ≤ t ≤ Amp(f), where Amp(f) := maxx∈M f(x)−minx∈M f(x) is the amplitude of f .
Let S be a triangulated simplicial complex of M by a homeomorphism ϑ : |S| → M . The
diameter of a simplex σ ∈ S and the mesh of the triangulation S are defined by diam(σ) =
maxx,y∈σ dM (ϑ(x), ϑ(y)) and mesh(S) = maxσ∈S diam(σ), respectively. Furthermore, let
us set N(r) = minmesh(S)≤r card (S). Then, the degree-p total persistence over t is bounded
from above as follows:

Lemma 13 (Cohen-Steiner et al. (2010)) Let M be a triangulable compact metric space
and f : M → R be a tame Lipschitz function. Then, Persp(Dq(Sub(f)), t) is bounded from
above by

tpN

(
t

Lip(f)

)
+ p

∫ Amp(f)

ε=t
N

(
ε

Lip(f)

)
εp−1dε,

where Lip(f) is the Lipschitz constant of f .

For a compact triangulable subspace M in Rd, the number of d-cubes with length r > 0
covering M is bounded from above by O( 1

rd
), and hence there exists some constant CM

depending only on M such that N(r) ≤ CM

rd
.

For p > d, we can find the upper bounds for the both terms as follows:

tpN

(
t

Lip(f)

)
≤ tpCM

Lip(f)d

td
→ 0 (t → 0)
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and

p

∫ Amp(f)

ε=t
N

(
ε

Lip(f)

)
εp−1dε ≤ p

p− d
CMLip(f)dAmp(f)p−d.

Then, the upper bound of the total persistence Persp(Dq(Sub(f))) = Persp(Dq(Sub(f)), 0)
is given as follows:

Lemma 14 Let M be a triangulable compact subspace in Rd and p > d. For any Lipschitz
function f : M → R,

Persp(Dq(Sub(f))) ≤ p

p− d
CMLip(f)dAmp(f)p−d,

where CM is a constant depending only on M .

In the case of a finite subset X ⊂ Rd, there always exists an R-ball M containing X
for some R > 0, which is a triangulable compact subspace in Rd. Moreover, by estimating
Lip(distX)dAmp(distX)p−d, we show Lemma 4 as a corollary of Lemma 14:
Proof [Lemma 4] The Lipschitz constant of distX is 1, because, for any x,y ∈ M ,

distX(x) − distX(y) = min
xi∈X

dM (x,xi) − min
xi∈X

dM (y,xi)

≤ min
xi∈X

(dM (x,y) + dM (y,xi)) − min
xi∈X

dM (y,xi)

= dM (x,y).

Moreover,
Amp(distX) ≤ diam(M) := max

xi,xj∈M
dM (xi,xj),

because minx∈M distX(x) = 0 and maxx∈M distX(x) ≤ diam(M). Thus, for some constant
CM depending only on M , we have

Persp(Dq(X)) = Persp(Dq(Sub(distX)))

≤ p

p− d
CMLip(distX)dAmp(distX)p−d

≤ p

p− d
CMdiam(M)p−d.

For a persistence diagram D = {x1, . . . , xn}, we construct a n-dimensional vector

v(D) := (pers(x1), . . . , pers(xn)) .

Then, the degree-p total persistence is represented as

Persp(D) = ∥v(D)∥pp ,

where ∥·∥p denotes the ℓp-norm of Rn. Since ∥v∥q ≤ ∥v∥p (v ∈ Rn, 1 ≤ p ≤ q < ∞), we
have

Persq(D)
1
q = ∥v(D)∥q ≤ ∥v(D)∥p = Persp(D)

1
p .

Proposition 15 If 1 ≤ p ≤ q < ∞ and Persp(D) is bounded from above, Persq(D) is also
bounded from above.
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Appendix C. Lemmata for Section 3.2

Lemma 16 For any x, y ∈ R2, ∥kG(·, x) − kG(·, y)∥HkG
≤

√
2
σ ∥x− y∥∞.

Proof

∥kG(·, x) − kG(·, y)∥2HkG
= kG(x, x) + kG(y, y) − 2kG(x, y)

= 1 + 1 − 2e−
∥x−y∥2

2σ2

= 2

(
1 − e−

∥x−y∥2

2σ2

)
≤ 1

σ2
∥x− y∥2 (25)

≤ 2

σ2
∥x− y∥2∞ . (26)

We have used the fact 1− e−t ≤ t (t ∈ R) in Equation (25) and ∥x∥2 ≤ 2 ∥x∥2∞ (x ∈ R2) in
Equation (26).

Lemma 17 For any x, y ∈ R2, the difference of persistences |pers(x) − pers(y)| is less than
or equal to 2 ∥x− y∥∞.

Proof For x = (x1, x2), y = (y1, y2), we have

|pers(x) − pers(y)| = |(x2 − x1) − (y2 − y1)|
≤ |x2 − y2| + |x1 − y1|
≤ 2 ∥x− y∥∞ .

Lemma 18 For any x, y ∈ R2, we have

|warc(x) − warc(y)| ≤ 2pC max{pers(x)p−1, pers(y)p−1} ∥x− y∥∞ .

Proof

|warc(x) − warc(y)|
= |arctan(Cpers(x)p) − arctan(Cpers(y)p)| (27)

≤ C |pers(x)p − pers(y)p|
≤ C |pers(x) − pers(y)| pmax{pers(x)p−1,pers(y)p−1} (28)

≤ 2pC max{pers(x)p−1,pers(y)p−1} ∥x− y∥∞ . (29)
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We have used the fact that the Lipschitz constant of arctan is 1 in Equation (27),

sp − tp = (s− t)(sp−1 + sp−2t + · · · + tp−1)

≤ (s− t)pmax{sp−1, tp−1}

for any s, t > 0 in Equation (28), and Lemma 17 in Equation (29).

Appendix D. The number of the random Fourier features

Let M be a compact subset of R2 and δ > 0 be a positive number, then it is known
(Rahimi and Recht, 2007) that

sup
x,y∈M

∣∣∣∣∣Re

(
1

Mrff

Mrff∑
a=1

ξza(x)ξza(y)∗

)
− e−

∥x−y∥2

2σ2

∣∣∣∣∣ ≤ δ

where ξza(x) = e
√
−1zTa x and Mrff = Ω( 2

δ2
log

√
2diam(M)

σδ ). For a collection D = {Dℓ |
ℓ = 1, . . . , n} of persistence diagrams, the absolute error between the (kG, w)-linear kernel
KL(Di, Dj ; kG, w) and its random Fourier feature approximation is given by∣∣∣∣∣∣

∑
x∈Di

∑
y∈Dj

w(x)w(y)Re

(
1

Mrff

Mrff∑
a=1

ξza(x)ξza(y)∗

)
−
∑
x∈Di

∑
y∈Dj

w(x)w(y)e−
∥x−y∥2

2σ2

∣∣∣∣∣∣
≤
∑
x∈Di

w(x)
∑
y∈Dj

w(y)

∣∣∣∣∣Re

(
1

Mrff

Mrff∑
a=1

ξza(x)ξza(y)∗

)
− e−

∥x−y∥2

2σ2

∣∣∣∣∣ . (30)

In order to make the Equation (30) bounded by an arbitrary ε > 0, Mrff is given by

Ω(
2W 2

i,j

ε2
log

√
2Wi,jdiam(M)

σε ) where Wi,j :=
∑

x∈Di
w(x)

∑
y∈Dj

w(y). In this case, we can

define the subset M by
∪n

ℓ=1Dℓ. When we calculate several Ki,j := KL(Di, Dj ; kG, w) of
Section 4.3 without approximation19, we observed Ki,j ≈ 108. Since the true values are
huge, we consider 5% relative error for Equation (30) and set ε := 0.05Ki,j . Then,

2W 2
i,j

ε2
log

√
2Wi,jdiam(M)

σε
=

800W 2
i,j

K2
i,j

log
20
√

2Wi,jdiam(M)

σKi,j
=: Mi,j .

In Section 4.3 and Section 4.4, we observed
Wi,j

Ki,j
≈ 2.5 and diam(M)

σ ≈ 10 from several

computation without approximation, and Mi,j ≈ 800 · (2.5)2 log(20
√

2 · 3 · 10) ≈ 3 · 104.
Thus, the approximation (30) with Mrff = 105, which is used in our experiments, gives 95%
accuracy in the sense of the relative error.

19. Even though a single Ki,j can be computed in several hours on MacBook Pro, 2.6 GHz Intel Core i5,
8 GB 1600 MHz DDR3, the total 1

2
n(n − 1) computations of Ki,j for the Gram matrix cause huge

computational time.
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