グラフィカルモデルの推定 －パラメータ推定と構造学習

Kenji Fukumizu
The Institute of Statistical Mathematics
計算推論科学概論 II（2010年度，後期）

Working with Graphical Models

- Determining structure
- Structure given by modeling e.g. Mixture model, HMM
- Structure learning
- Parameter estimation
- Parameter given by some knowledge
- Parameter estimation with data such as MLE or Bayesian estimation \rightarrow Part 4

structure
\rightarrow Part 4
$p\left(X_{c} \mid X_{a}\right)$

$X_{c} \backslash X_{a}$	1	2	3	
1	0.2	0.3	0.4	
2	0.8	0.7	0.6	
parameter				

- Inference
- Computation of posterior and marginal probabilities (Already seen in Part 3.)

Parameter Estimation

Statistical Estimation

- Estimation from data

Statistical model with a parameter: $\quad p(X \mid \theta) \quad \theta$: parameter
I.i.d. Data: $D=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$

- Maximum likelihood estimation

$$
\hat{\theta}=\arg \max _{\theta} L(\theta), \quad L(\theta)=\prod_{i=1}^{N} p\left(X_{i} \mid \theta\right)
$$

or

$$
\hat{\theta}=\arg \max _{\theta} \ell(\theta)
$$

$$
\ell(\theta)=\log L(\theta)=\sum_{i=1}^{N} \log p\left(X_{i} \mid \theta\right)
$$

Log likelihood function

Statistical Estimation

- Bayesian estimation
- Distribution of the parameter θ is estimated

Prior probability $p(\theta) \rightarrow$ posterior probability $p(\theta \mid D)$
Bayes' rule (Bayes' thoerem)

$$
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{p(D)}=\frac{\prod_{i=1}^{N} p\left(X_{i} \mid \theta\right) p(\theta)}{\int \prod_{i=1}^{N} p\left(X_{i} \mid \theta\right) p(\theta) d \theta}
$$

- Maximum a posteriori (MAP) estimation

$$
\hat{\theta}_{M A P}=\arg \max _{\theta} p(\theta \mid D)
$$

Contingency Table（分割表）

－ML estimation for discrete variables

$$
\begin{aligned}
& X_{a} \in\{1, \ldots, M\} \quad X_{b} \in\{1, \ldots, L\} \\
& D=\left(X_{a}^{(1)}, X_{b}^{(1)}\right), \ldots,\left(X_{a}^{(N)}, X_{b}^{(N)}\right) \quad \text { i.i.d. sample }
\end{aligned}
$$

$\mathrm{X}_{\mathrm{b}} \backslash \mathrm{X}_{\mathrm{a}}$	1	2	3	
1	12	18	4	
2	6	9	14	
N_{i} ：Number of counts				

$p\left(X_{a}, X_{b}\right)$

$X_{b} \backslash X_{a}$	1	2	3
1	p_{11}	p_{12}	p_{13}
2	p_{21}	p_{22}	p_{22}

Estimation of probabilities

ML estimator

$$
\hat{p}_{i j}=\frac{N_{i j}}{N}
$$

Bayesian Estimation: Discrete Case

- Bayesian estimation for discrete variables

Model: $p\left(X_{a}, X_{b} \mid \theta\right)$

$$
p\left(X_{a}=i, X_{b}=j \mid \theta\right)=\theta_{i j}, \quad \theta=\left(\theta_{i j}\right) \in \Delta_{M L-1}
$$

Prior: $\pi(\theta)$ on $\Delta_{M L-1}$

$$
\Delta_{K-1} \equiv\left\{\theta \in \mathbf{R}^{K} \mid \theta_{i} \geq 0(\forall i), \sum_{i=1}^{K} \theta_{i}=1\right\}
$$

Likelihood: $\quad p(D \mid \theta)=\prod_{n=1}^{N} p\left(X_{a}^{(n)}, X_{b}^{(n)} \mid \theta\right)=\prod_{i, j} \theta_{i j}^{N_{i j}} \quad$ Multinomial
Bayesian estimation:

$$
p(\theta \mid D)=\frac{p(D, \theta)}{p(D)}=\frac{p(D \mid \theta) \pi(\theta)}{\int_{\Delta} p(D \mid \theta) \pi(\theta) d \theta}=\frac{\prod_{i, j} \theta_{i j}^{N_{i j}} \pi(\theta)}{\int_{\Delta} \theta_{i j}^{N_{i j}} \pi(\theta) d \theta}
$$

This integral is difficult to compute in general.

Dirichlet Distribution

- Dirichlet distribution
- Density function of K-dimensional Dirichlet distribution

$$
\begin{array}{r}
\operatorname{Dir}\left(\theta \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{\Gamma\left(\sum_{j=1}^{K} \alpha_{j}\right)}{\prod_{j=1}^{K} \Gamma\left(\alpha_{j}\right)} \prod_{j=1}^{K} \theta_{j}^{\alpha_{j}-1} \propto \prod_{j=1}^{K} \theta_{j}^{\alpha_{j}-1} \\
\text { on } \quad \Delta_{K-1}=\left\{\theta \in \mathrm{R}^{K} \mid \theta_{j} \geq 0, \sum_{j=1}^{K} \theta_{j}=1\right\}
\end{array}
$$

where

$$
\begin{aligned}
& \left(\alpha_{1}, \ldots, \alpha_{K}\right) \text { : parameter }\left(\alpha_{j}>0\right) \\
& \Gamma(\alpha): \text { Gamma function } \quad \Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma(\alpha)=(\alpha-1) \Gamma(\alpha-1) \quad \text { for } \alpha>1 \\
& \Gamma(n)=(n-1)!\text { for a positive integer } n .
\end{aligned}
$$

Dirichlet Distribution

$$
\alpha=(6,2,2)
$$

$$
\alpha=(2,3,4)
$$

- Expectation

$$
E\left[\theta_{i}\right]=\frac{\alpha_{i}}{\sum_{j=1}^{K} \alpha_{j}} \quad[\text { Exercise }]
$$

- The mean point is proportional to the vector α.
- The mean point is a stable point (i.e. differential $=0$), and it may be either maximum or minimum.

Dirichlet Distribution

$\operatorname{Dir}\left(\theta \mid \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$

$$
K=3 . \quad a=b(1,1,1) \text { from } b=0.3 \text { to 2.0. }
$$

Bayesian Inference with Dirichlet Prior

- Dirichlet distribution works as a prior to multinomial distribution. Posterior is also Dirichlet -- conjugate prior Data: $\quad D=\left(X^{(1)}, \ldots, X^{(N)}\right) \quad N_{k}:=\left|\left\{i \mid X^{(i)}=k\right\}\right| \quad(k=1, \ldots, K)$ Posterior:

$$
\begin{array}{r}
p(\theta \mid D)=\frac{p(D \mid \theta) \operatorname{Dir}(\theta \mid \alpha)}{\int_{\Delta} p(D \mid \theta) \operatorname{Dir}(\theta \mid \alpha) d \theta}=\frac{\prod_{k} \theta_{k}^{N_{k}} \operatorname{Dir}(\theta \mid \alpha)}{\int_{\Delta} \theta_{k}^{N_{k}} \operatorname{Dir}(\theta \mid \alpha) d \theta}=\underline{\operatorname{Dir}(\theta \mid \widetilde{\alpha})} \\
\widetilde{\alpha}=\left(N_{1}+\alpha_{1}, \ldots, N_{K}+\alpha_{K}\right) \\
\alpha \text { works as a prior count. }
\end{array}
$$

- MAP estimator

$$
\hat{\theta}_{M A P}=\frac{\widetilde{\alpha}_{i}}{\sum_{j=1}^{K} \widetilde{\alpha}_{j}}=\frac{N_{i}+\alpha_{i}}{N+\alpha_{1}+\cdots \alpha_{K}}
$$

Bayesian Inference with Dirichlet Prior

Proof.

$$
p(\theta \mid D) \propto \prod_{j=1}^{K} \theta_{j}^{N_{j}} \operatorname{Dir}(\theta \mid \alpha) \propto \prod_{j=1}^{K} \theta_{j}^{N_{j}+\alpha_{j}-1}
$$

By the normalization, the right hand side must be $\operatorname{Dir}(\theta \mid \widetilde{\alpha})$.

EM Algorithm
 for Models with Hidden Variables

ML Estimation with Hidden Variable

- Statistical model with hidden variables
- Suppose we can assume hidden (unobservable) variables in addition to observable variables.

$$
\begin{array}{ll}
p(X, Z \mid \theta) & \begin{array}{l}
X: \text { observable variable } \\
\text { Z: hidden variable } \\
\\
\\
\\
\text { parameter }
\end{array}
\end{array}
$$

- We have data only for observable variables: $D=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ The ML estimation must be done with X

$$
\sum_{n=1}^{N} \log p\left(X_{n} \mid \theta\right)=\sum_{n=1}^{N} \log \left(\sum_{Z_{n}} p\left(X_{n}, Z_{n} \mid \theta\right)\right)
$$

But, this maximization is often difficult.

- Probability of (X, Z) is sometimes easier to handle than that of X.

ML Estimation with Hidden Variable

- Example: Gaussian mixture model

With hidden variable: $\quad p(X, Z \mid \theta)=p(Z \mid \pi) \phi\left(x \mid \mu_{j}, \Sigma_{j}\right)$

Z takes values in $\{1, \ldots, \mathrm{~K}\}$: component

$$
\theta=\left(\pi, \mu_{1}, \Sigma_{1}, \ldots, \mu_{K}, \Sigma_{K}\right)
$$

Marginal of $X: \quad p(x \mid \theta)=\sum_{j=1}^{K} \pi_{j} \phi\left(x \mid \mu_{j}, \Sigma_{j}\right)$

- ML estimation

$$
\max _{\theta} \sum_{n=1}^{N} \log p\left(X_{n} \mid \theta\right)=\max _{\theta} \sum_{n=1}^{N} \log \left(\sum_{j=1}^{K} \pi_{j} \phi\left(X_{n} \mid \mu_{j}, \Sigma_{j}\right)\right)
$$

π_{j} and $\left(\mu_{j}, \Sigma_{j}\right)$ are coupled \rightarrow difficult to solve analytically.

Estimation with Complete Data

- Complete data
- Suppose Z_{1}, \ldots, Z_{N} were known.

$$
D_{c}=\left\{\left(X_{1}, Z_{1}\right), \ldots,\left(X_{N}, Z_{N}\right)\right\} \quad: \text { complete data }
$$

ML estimation with D_{c} is often easier than estimation with D.

$$
\max \ell_{c}\left(D_{c} \mid \theta\right)
$$

where

$$
\ell_{c}\left(D_{c} \mid \theta\right)=\sum_{n=1}^{N} \log p\left(X_{n}, Z_{n} \mid \theta\right) \quad \text { Complete log likelihood }
$$

Estimation with Complete Data

- Example: Mixture of Gaussian

Redefine the hidden variable Z by K dimensional binary vector:

$$
p(X, Z \mid \theta)=\prod_{a=1}^{K}\left\{\pi_{a} \phi\left(x \mid \mu_{a}, \Sigma_{a}\right)\right\}^{Z_{a}}
$$

$$
Z=\left(Z_{1}, \ldots, Z_{K}\right) \text { takes values in }
$$

$$
\{(1,0,0, \ldots, 0),(0,1,0, \ldots, 0), \cdots \quad(0,0,0, \ldots, 1)\} \quad K \text { class }
$$

Note: $p(X \mid \theta)=\sum_{Z} p(X, Z \mid \theta)=\sum_{a=1}^{K} \pi_{a} \phi\left(x \mid \mu_{a}, \Sigma_{a}\right)$

Estimation with Complete Data

ML estimation with complete data:

$$
\begin{aligned}
\sum_{n=1}^{N} \log p\left(X_{n}, Z_{n} \mid \theta\right) & =\sum_{n=1}^{N} \log \left(\prod_{i=1}^{K}\left\{\pi_{i} \phi\left(X_{n} \mid \mu_{i}, \Sigma_{i}\right)\right\}^{Z_{i}^{n}}\right) \\
& =\sum_{n=1}^{N} \sum_{i=1}^{K} Z_{i}^{n}\left\{\log \pi_{i}+\log \phi\left(X_{n} \mid \mu_{i}, \Sigma_{i}\right)\right\}
\end{aligned}
$$

π_{j} and $\left(\mu_{j}, \Sigma_{j}\right)$ are decoupled \rightarrow they can be maximized separately.

$$
\left\{\begin{array}{lll}
\max _{\pi} \sum_{n=1}^{N} \sum_{i=1}^{K} Z_{i}^{n} \log \pi_{i} \quad \text { subj. to } & \sum_{i=1}^{K} \pi_{i}=1 & \text { Maximization } \\
\max _{\mu, \Sigma} \sum_{n=1}^{N} \sum_{i=1}^{K} Z_{i}^{n} \log \phi\left(X_{n} \mid \mu_{i}, \Sigma_{i}\right) & \text { is easy. }
\end{array}\right.
$$

But, the complete data is not available in practice!

Expected Complete Log Likelihood

- Use expected complete log likelihood instead of complete log likelihood.
- Complete log likelihood

$$
\ell_{c}\left(D_{c} \mid \theta\right)=\sum_{n=1}^{N} \log p\left(X_{n}, Z_{n} \mid \theta\right)
$$

- Expected complete log likelihood
- Suppose we have a current guess $\hat{\theta}^{(t)}$

Use expectation w.r.t. $p\left(Z_{n} \mid X_{n}, \hat{\theta}^{(t)}\right)$

$$
\left\langle\ell_{c}\left(D_{c} \mid \theta\right)\right\rangle_{\hat{\theta}^{(t)}}=\sum_{n=1}^{N} \sum_{Z_{n}} p\left(Z_{n} \mid X_{n}, \hat{\theta}^{(t)}\right) \log p\left(X_{n}, Z_{n} \mid \theta\right)
$$

Maximize θ of $\left\langle\ell_{c}\left(D_{c} \mid \theta\right)\right\rangle_{\hat{\theta}^{(t)}}$

EM Algorithm

Initialization
Initialize $\theta=\theta^{0}$ by some method.

$$
t=0 .
$$

Repeat the following steps until stopping criterion is satisfied.

E-step

Compute the expected complete log likelihood $\left\langle\ell_{c}\left(D_{c} \mid \theta\right)\right\rangle_{\hat{\theta}^{(t)}}$ M-step

Maximize θ of $\left\langle\ell_{c}\left(D_{c} \mid \theta\right)\right\rangle_{\hat{\theta}^{(t)}}$

$$
\hat{\theta}^{(t+1)}=\arg \max _{\theta}\left\langle\ell_{c}\left(D_{c} \mid \theta\right)\right\rangle_{\hat{\theta}^{(t)}}
$$

- Computational difficulty of M-step depends on the model.

EM Algorithm for Gaussian Mixture

- Complete log likelihood

$$
\ell_{c}\left(D_{c} \mid \theta\right)=\sum_{n=1}^{N} \sum_{i=1}^{K} Z_{i}^{n}\left\{\log \pi_{i}+\log \phi\left(X_{n} \mid \mu_{i}, \Sigma_{i}\right)\right\}
$$

- Expected complete log likelihood

$$
\begin{array}{r}
\tau_{i}^{n(t)}=E\left[Z_{i}^{n} \mid X_{n}, \hat{\theta}^{(t)}\right]=p\left(Z_{i}^{n}=1 \mid X_{n}, \hat{\theta}^{(t)}\right)=\frac{p\left(X_{n}, Z_{i}^{n}=1 \mid \hat{\theta}^{(t)}\right)}{p\left(X_{n} \mid \hat{\theta}^{(t)}\right)} \\
=\frac{\hat{\pi}_{i}^{(t)} \phi\left(X_{n} \mid \hat{\mu}_{i}^{(t)}, \hat{\Sigma}_{i}^{(t)}\right)}{\sum_{j=1}^{K} \hat{\pi}_{j}^{(t)} \phi\left(X_{n} \mid \hat{\mu}_{j}^{(t)}, \hat{\Sigma}_{j}^{(t)}\right)} \quad \begin{array}{l}
\text { Ratio of contribution of } X_{n} \\
\text { to the } i \text {-th component. }
\end{array}
\end{array}
$$

- E-step

$$
\left\langle\ell\left(D_{c} \mid \theta\right)\right\rangle_{\hat{\theta}^{(t)}}=\sum_{n=1}^{N} \sum_{i=1}^{K} \tau_{i}^{n(t)}\left\{\log \pi_{i}+\log \phi\left(X_{n} \mid \mu_{i}, \Sigma_{i}\right)\right\}
$$

EM Algorithm for Gaussian Mixture

- M-step

$$
\begin{aligned}
& \hat{\pi}_{i}^{(t+1)}=\frac{1}{N} \sum_{n=1}^{N} \tau_{i}^{n(t)} \\
& \hat{\mu}_{i}^{(t+1)}=\frac{\sum_{n=1}^{N} \tau_{i}^{n(t)} X_{n}}{\sum_{n=1}^{N} \tau_{i}^{n(t)} \quad \text { weighted mean }} \\
& \hat{\Sigma}_{i}^{(t+1)}=\frac{\sum_{n=1}^{N} \tau_{i}^{n(t)}\left(X_{n}-\hat{\mu}_{i}^{(t)}\right)\left(X_{n}-\hat{\mu}_{i}^{(t)}\right)^{T}}{\sum_{n=1}^{N} \tau_{i}^{n(t)}} \quad \begin{array}{ll}
& \text { weighted } \\
\text { covariance matrix }
\end{array}
\end{aligned}
$$

(Proof omitted. Exercise)

EM Algorithm for Gaussian Mixture

- Meaning of τ
$Z_{n}{ }^{i}$ (if observed)

$$
\tau_{n}^{i(t)}=E\left[Z_{n}^{i} \mid X_{n}, \hat{\theta}^{(t)}\right]
$$

1	i			
	1	2	3	K
	0	1	0	0
2	0	0	0	1
n 3	1	0	0	0
	幺			!
N	0	0	0	1

	1	2	3	K	$\stackrel{\operatorname{sum}}{\Rightarrow} 1$
1	0.1	0.7	0	0.2	
2	0.2	0.1	0.2	0.5	$\Rightarrow 1$
n 3	0.8	0.1	0.05	0.05	$\square 1$
	!			!	
N	0.13	0.11	0.06	0.7	$\rightarrow 1$

Properties of EM Algorithm

- EM converges quickly for many problems.
- Monotonic increase of likelihood of X is guaranteed (discussed later).
- EM may be trapped by local optima.
- The solution depends strongly on the initial state.
- EM algorithm can be applied to any model with hidden variables. Missing value, etc.

Demonstration

- Web site for Gaussian mixture demo:
http://staff.aist.go.jp/s.akaho/MixtureEMj.html

Theoretical Justification of EM

Theoretical Justification of EM

- EM as likelihood maximization

The goal is to maximize the (incomplete) log likelihood, not the expected complete log likelihood.
$q(Z \mid X)$: arbitrary p.d.f. of Z, may depend on X.
Define an auxiliary function $L(q, \theta)$ by

$$
L(q, \theta)=\sum_{Z} q(Z \mid X) \log \frac{p(X, Z \mid \theta)}{q(Z \mid X)}
$$

Theorem 1

$$
\begin{array}{ll}
\text { E-step: } & q^{(t+1)}=\underset{q}{\arg \max } L\left(q, \hat{\theta}^{(t)}\right) \quad \text { (and compute }\left\langle\ell_{c}\left(D_{c} \mid \theta\right)\right\rangle_{\left.q^{(t+1)}\right)} \\
\text { M-step: } & \hat{\theta}^{(t+1)}=\underset{\theta}{\arg \max } L\left(q^{(t+1)}, \theta\right)
\end{array}
$$

Alternating optimization w.r.t. q and θ.

Theoretical Justification of EM

Proposition 1 (L and likelihood of X)
For any $q(Z \mid X)$ and θ, the log likelihood of X is decomposed as

$$
\ell(X \mid \theta)=L(q, \theta)+K L(q(Z \mid X) \| p(Z \mid X, \theta))
$$

In particular,

$$
\ell(X \mid \theta) \geq L(q, \theta) \quad \text { for all } q \text { and } \theta
$$

and the equality holds if and only if $q=p(Z \mid X, \theta)$.

Proof) $\quad \ell(\theta \mid X)-L(q, \theta)$

$$
\begin{aligned}
& =\sum_{Z} q(Z \mid X) \log p(X \mid \theta)-\sum_{Z} q(Z \mid X) \log \frac{p(X, Z \mid \theta)}{q(Z \mid X)} \\
& =\sum_{Z} q(Z \mid X) \log \frac{p(X \mid \theta) q(Z \mid X)}{p(X, Z \mid \theta)} \\
& =\sum_{Z} q(Z \mid X) \log \frac{q(Z \mid X)}{p(Z \mid X, \theta)}
\end{aligned}
$$

Theoretical Justification of EM

Proposition 2 (L and expected complete likelihood)

$$
L(q, \theta)=\left\langle\ell_{c}(X, Z \mid \theta)\right\rangle_{q}-\sum_{Z} q(Z \mid X) \log q(Z \mid X)
$$

proof)

$$
\begin{aligned}
\langle\ell(X, Z \mid \theta)\rangle_{q} & =\sum_{Z} q(Z \mid X) \log p(X, Z \mid \theta) \\
& =\sum_{Z} q(Z \mid X) \log \frac{p(X, Z \mid \theta) q(Z \mid X)}{q(Z \mid X)} \\
& =\sum_{Z} q(Z \mid X) \log \frac{p(X, Z \mid \theta)}{q(Z \mid X)}+\sum_{Z} q(Z \mid X) \log q(Z \mid X) \\
& =L(q, \theta)+\sum_{Z} q(Z \mid X) \log q(Z \mid X)
\end{aligned}
$$

Theoretical Justification of EM

- Proof of Theorem 1
- E-step:

From Proposition 1,

$$
\ell\left(X \mid \hat{\theta}^{(t)}\right)=L\left(q, \hat{\theta}^{(t)}\right)+K L\left(q(Z \mid X) \| p\left(Z \mid X, \hat{\theta}^{(t)}\right)\right)
$$

independent of $q \quad$ maximize $\Leftrightarrow \quad$ minimize

$$
\Rightarrow \quad p\left(Z \mid X, \hat{\theta}^{(t)}\right)=\arg \max L\left(q, \hat{\theta}^{(t)}\right)
$$

- M-step:

From Proposition 2,

$$
L\left(q^{(t+1)}, \theta\right)=\left\langle\ell_{c}(X, Z \mid \theta)\right\rangle_{p\left(Z \mid X, \hat{\theta}^{(t)}\right)}-(\text { const. w.r.t. } \theta)
$$

M -step is

$$
\max _{\theta} L\left(q^{(t+1)}, \theta\right)
$$

Theoretical Justification of EM

- Monotonic increase of likelihood by EM

Theorem

$$
\ell\left(X \mid \hat{\theta}^{(t)}\right) \leq \ell\left(X \mid \hat{\theta}^{(t+1)}\right) \quad \text { for all } t
$$

Proof)

$$
\begin{aligned}
\ell\left(X \mid \hat{\theta}^{(t)}\right) & =L\left(q^{(t+1)}, \hat{\theta}^{(t)}\right) & & (\text { E-step, Prop.1) } \\
& \leq L\left(q^{(t+1)}, \hat{\theta}^{(t+1)}\right) & & (\mathrm{M} \text {-step) } \\
& \leq \ell\left(X \mid \hat{\theta}^{(t+1)}\right) & & (\text { Prop.1) }
\end{aligned}
$$

Remarks on EM Algorithm

- EM always increases the likelihood of observable variables, but there are no theoretical guarantees of global maximization.
In general, it can converge only to a local maximum.
- There is a sufficient condition of convergence by Wu (1983).
- Practically, EM converges very quickly.
- For Gaussian mixture model,
- If the mean and variance are its parameters, the likelihood function can take an arbitrary large value. There is no global maximum of likelihood.
- EM often finds a reasonable local optimum by a good choice of initialization.
- The results depend much on the initialization.
- Further readings:
- The EM Algorithm and Extensions (McLachlan \& Krishnan 1997)
- Finite Mixture Models (McLachlan \& Peel 2000)

EM Algorithm for Hidden Markov Model

Maximum Likelihood for HMM

- Parametric model of Gaussian HMM

$$
\begin{aligned}
& p(X, Y)=p\left(X_{0}\right) \prod_{t=0}^{T-1} p\left(X_{t+1} \mid X_{t}\right) \prod_{t=0}^{T} p\left(Y_{t} \mid X_{t}\right) \\
& p\left(X_{0}=j\right)=\pi_{j} \quad \text { initial probability } \\
& p\left(X_{t+1}=j \mid X_{t}=i\right)=A_{i j} \quad \text { transition matrix (time invariant) } \\
& p\left(Y_{t} \mid X_{t}=j\right)=\phi\left(y_{t} ; \mu_{j}, \Sigma_{j}\right) \text { Gaussian with mean } \mu_{j} \text { and covariance } \Sigma_{j} \\
& \text { parameter: } \theta=\left(\pi,\left(A_{i j}\right), \mu_{1}, \ldots, \mu_{K}, \Sigma_{1}, \ldots, \Sigma_{K}\right) \\
& p(Y \mid \theta)=\sum_{X_{0}} \cdots \sum_{X_{T}} \pi_{X_{0}} \prod_{t=0}^{T-1} A_{X_{t-1} X_{t}} \prod_{t=0}^{T} \phi\left(y_{t} \mid \mu_{X_{t}}, \Sigma_{X_{t}}\right)
\end{aligned}
$$

$\max \log p(Y \mid \theta)$ is difficult.

EM for HMM

- Complete likelihood

$$
\begin{aligned}
& \ell_{c}(Y, X \mid \theta)=\log p(Y, X \mid \theta) \\
& =\log \left(\pi_{X_{0}} \prod_{t=0}^{T-1} A_{X_{t} X_{t+1}} \prod_{t=0}^{T} \phi\left(Y_{t} \mid \mu_{X_{t}}, \Sigma_{X_{t}}\right)\right) \quad \log \left(\Pi_{t} \alpha_{t}\right) \text { is easy. } \\
& =\log \pi_{X_{0}}+\sum_{t=0}^{T-1} A_{X_{t} X_{t+1}} \\
& \quad+\sum_{t=0}^{T}\left\{-\frac{1}{2}\left(Y_{t}-\mu_{X_{t}}\right)^{T} \Sigma_{X_{t}}^{-1}\left(Y_{t}-\mu_{X_{t}}\right)-\frac{1}{2} \log \operatorname{det} \Sigma_{X_{t}}-\frac{m}{2} \log (2 \pi)\right\} \\
& =\sum_{j=1}^{K} \delta_{j X_{0}} \log \pi_{j}+\sum_{i, j=1}^{K} \sum_{t=0}^{T-1} \delta_{j X_{t+1}} \delta_{i X_{t}} A_{i j} \\
& \quad+\sum_{j=1}^{K} \sum_{t=0}^{T} \delta_{j X_{t}}\left\{-\frac{1}{2}\left(Y_{t}-\mu_{j}\right)^{T} \Sigma_{j}^{-1}\left(Y_{t}-\mu_{j}\right)-\frac{1}{2} \log \operatorname{det} \Sigma_{j}-\frac{m}{2} \log (2 \pi)\right\}
\end{aligned}
$$

EM for HMM

- Expected complete likelihood

Suppose we already have an estimate $\hat{\theta}^{(n)} \quad(n$: index for iteration)

$$
\left\langle\ell_{c}(Y, X \mid \theta)\right\rangle_{\hat{\theta}^{(n)}}=\sum_{X} p\left(X \mid Y, \hat{\theta}^{(n)}\right) \log p(Y, X \mid \theta)
$$

It requires

$$
\begin{gathered}
\left\langle\delta_{j X_{t}}\right\rangle_{\hat{\theta}^{(n)}}=\sum_{X_{t}=1}^{K} p\left(X_{t} \mid Y, \hat{\theta}^{(n)}\right) \delta_{j X_{t}}=p\left(X_{t}=j \mid Y, \hat{\theta}^{(n)}\right) \equiv \gamma_{t}^{j(n)} \\
\left\langle\delta_{i X_{t}} \delta_{j X_{t+1}}\right\rangle_{\hat{\theta}^{(n)}}=\sum_{X_{t}=1}^{K} \sum_{X_{t+1}=1}^{K} p\left(X_{t}, X_{t+1} \mid Y, \hat{\theta}^{(n)}\right) \delta_{i X_{t}} \delta_{j X_{t+1}} \\
=p\left(X_{t}=i, X_{t+1}=j \mid Y, \hat{\theta}^{(n)}\right) \equiv \xi_{t, t+1}^{i, j(n)}
\end{gathered}
$$

$\gamma_{t}^{j(n)}=p\left(X_{t}=j \mid Y, \hat{\theta}^{(n)}\right)$ and $\xi_{t, t+1}^{i, j(n)}=p\left(X_{t}=i, X_{t+1}=j \mid Y, \hat{\theta}^{(n)}\right)$
can be computed by the forward-backward algorithm.

EM for HMM - Baum-Welch Algorithm

- E-step
- Forward-backward to compute $\gamma_{t}^{j(n)}$ and $\xi_{t, t+1}^{i, j(n)}$.
- Expected complete log likelihood

$$
\begin{aligned}
\left\langle\ell_{c}(Y, X \mid \theta)\right\rangle_{\hat{\theta}^{(n)}} & =\sum_{j=1}^{K} \gamma_{0}^{j(n)} \log \pi_{j}+\sum_{i, j=1}^{K} \sum_{t=0}^{T-1} \xi_{t, t+1}^{i, j(n)} A_{i j} \\
& +\sum_{j=1}^{K} \sum_{t=0}^{T} \gamma_{t}^{j(n)}\left\{-\frac{1}{2}\left(Y_{t}-\mu_{j}\right)^{T} \Sigma_{j}^{-1}\left(Y_{t}-\mu_{j}\right)-\frac{1}{2} \log \operatorname{det} \Sigma_{j}-\frac{m}{2} \log (2 \pi)\right\}
\end{aligned}
$$

- M-step

$$
\begin{aligned}
& \hat{\mu}_{i}^{(n+1)}=\frac{\sum_{t=0}^{T-1} \gamma_{t}^{i(n)} Y_{t}}{\sum_{t=0}^{T-1} \gamma_{t}^{(n)}}, \quad \hat{\Sigma}_{i}^{(n+1)}=\frac{\sum_{t=0}^{T-1} \gamma_{t}^{(n)}\left(Y_{t}-\mu_{i}^{(n+1)}\right)\left(Y_{t}-\mu_{i}^{(n+1)}\right)^{T}}{\sum_{t=0}^{T-1} \gamma_{t}^{i(n)}}
\end{aligned}
$$

c.f. EM for Gaussian mixture

Summary: Parameter learning

- Discrete variables without hidden variables
- Maximum likelihood estimation is easy by frequencies.
- Bayesian estimation is often done with Dirichlet prior.
- Discrete variables with hidden variables
- Maximum likelihood estimation can be done with EM algorithm.
- Bayesian approach \rightarrow computational difficulty.

Some technique is needed, e.g. variational method.

Structure Learning

Working with Graphical Models

- Determining structure
- Structure given by modeling e.g. Mixture model, HMM
- Structure learning
- Parameter estimation
- Parameter given by some knowledge
- Parameter estimation with data such as MLE or Bayesian estimation \rightarrow Part 4

structure
\rightarrow Part 4
$p\left(X_{c} \mid X_{a}\right)$

$X_{c} \backslash X_{a}$	1	2	3	
1	0.2	0.3	0.4	
2	0.8	0.7	0.6	
parameter				

- Inference
- Computation of posterior and marginal probabilities (Already seen in Part 3.)

How to determine a network?

- Prior knowledge

A graphical model may be given by the prior knowledge on the problem.
e.g.1) Diagnosis system

The problem is to estimate the probabilities (parameters).

- Structure learning

If it is difficult to assume an appropriate model, the graph structure must be learned from data.

Structure Learning

Variables: X_{1}, \ldots, X_{m}
Data: $\left(X_{1}{ }^{(1)}, \ldots, X_{m}{ }^{(1)}\right), \ldots,\left(X_{1}{ }^{(N)}, \ldots, X_{m}{ }^{(N)}\right)$
Output of structure learning $=$ a directed $/$ undirected graph associated with the probability of $\left(X_{1}, \ldots, X_{m}\right)$.

Difficulty: the number of possible directed graphs $=3^{m(m-1) / 2}$
The search space is very large.

Learning of Directed Graph

- Score-based method
- Use a global score to match a graph and data.
- Problem: Optimization in huge search space.
- Able to use informative prior on graphs.
- Usually, discrete variables are assumed.
- Often referred to as Bayesian structure learning.
- Constraint-based method
- Determine the conditional independence of the underlying probability by statistical tests.
- Problem: Many statistical tests are required.
- Often referred to as causal learning.

Score-based Structure Learning: Example

Discrete variables: X_{1}, \ldots, X_{m}
Data: $D=\left\{\left(X_{1}{ }^{(1)}, \ldots, X_{m}{ }^{(1)}\right), \ldots,\left(X_{1}{ }^{(N)}, \ldots, X_{m}{ }^{(N)}\right)\right\}$

- Model:

When a directed graph G is specified, multinomial distribution is assumed with Dirichlet prior.

$$
\begin{aligned}
p(X \mid \theta) & =\prod_{b=1}^{m} p\left(X_{b} \mid X_{p a(b)}, \theta_{b}\right) \\
\theta_{b} & =\left(\theta_{b, i}^{j}\right) \quad i: \text { multi-index for } p a(b) \\
\theta_{b, i}^{j} & =P\left(X_{b}=j \mid X_{p a(b)}=i\right) \quad \theta_{b, i}^{j} \geq 0, \sum_{j=1}^{K_{b}} \theta_{b, i}^{j}=1 . \\
p(D \mid \theta) & =\prod_{n=1}^{N} \prod_{b=1}^{m} p\left(X_{b}^{(n)} \mid X_{p a(b)}^{(n)}, \theta_{b}\right)
\end{aligned}
$$

Dirichlet prior:

$$
\theta_{b, i}=\left(\theta_{b, i}^{1}, \ldots, \theta_{b, i}^{K_{b}}\right) \sim \operatorname{Dir}\left(\theta_{b, i} \mid \alpha_{b, i}^{1}, \ldots, \alpha_{b, i}^{K_{b}}\right)=\frac{\Gamma\left(\sum_{j} \alpha_{b, i}^{j}\right)}{\prod_{j} \Gamma\left(\alpha_{b, i}^{j}\right) \prod_{j=1}^{K_{b}}\left(\theta_{b, i}^{j}\right)^{\alpha_{b, i}^{j}-1}}
$$

Score-based Structure Learning: Example

- Marginal likelihood:

Score $(G) \equiv$ Log Marginal Likelihood of G.

$$
\begin{aligned}
& =\log \int P(D \mid \theta, G) p(\theta \mid G, \alpha) d \theta \quad \alpha=\left(\alpha_{b, i}^{j}\right) \\
& =\log \int \prod_{b=1}^{m} \prod_{i=1}^{\# p a(b)} \prod_{j=1}^{K_{b}}\left(\theta_{b, i}^{j}\right)^{N_{b, i}^{j}} \frac{\Gamma\left(\sum_{j} \alpha_{b, i}^{j}\right)}{\prod_{j} \Gamma\left(\alpha_{b, i}^{j}\right) \prod_{j=1}^{K_{b}}\left(\theta_{b, i}^{j}\right)^{\alpha_{b, i}^{j}-1} d \theta_{b, i}} \begin{array}{r}
=\sum_{b=1}^{m} \sum_{i=1}^{\# p a(b)}\left[\log \Gamma\left(\sum_{j} \alpha_{b, i}^{j}\right)-\sum_{j=1}^{K_{b}} \log \Gamma\left(\alpha_{b, i}^{j}\right)\right] \\
\left.-\log \Gamma\left(\sum_{j} \widetilde{\alpha}_{b, i}^{j}\right)+\sum_{j=1}^{K_{b}} \log \Gamma\left(\widetilde{\alpha}_{b, i}^{j}\right)\right]
\end{array},
\end{aligned}
$$

$$
\text { where } \quad \widetilde{\alpha}_{b, i}^{j}=N_{b, i}^{j}+\alpha_{b, i}^{j}
$$

$$
N_{b, i}^{j}: \text { number of data s.t. } X_{b}=j \text { and } X_{p a(b)}=i
$$

Score-based Structure Learning

- Prior to the models

We can use a prior distribution $P(G)$ on the graphs.

$$
\text { Score }(G)=\log P(D \mid G)+\log P(G)
$$

- Optimization over the graphs The space is very huge \rightarrow greedy search.

Start from a graph G, and repeat the following process:
Update the graph by deleting, inserting, or reversing an edge.
Accept the new graph G^{\prime} if $\operatorname{Score}\left(G^{\prime}\right)>\operatorname{Score}(G)$.

- Many others
- Score by MDL (minimum description length) / BIC (Bayesian information criterion)
- MCMC, etc.

See D. Heckerman "A tutorial on learning with Bayesian networks" in Learning in Graphical Models (M. Jordan ed. 1998).

Marginal Likelihood / ABIC

- Bayesian method for model selection

Maximum a posteriori model given data

$$
\hat{G}=\arg \max P(G \mid D)
$$

Note:

$$
P(G \mid D)=\frac{P(D \mid G) P(G)}{P(D)} \propto P(D \mid G) P(G) \quad \text { as a function of model }
$$

$$
\hat{G}=\arg \max [\log P(D \mid G)+\log P(G)]
$$

If $P(G)$ is uniform over the models,

$$
\begin{array}{rlrl}
\hat{G} & =\arg \max \log P(D \mid G) \quad & \quad \text { Marginal log likelihood } \\
& =\arg \max \log \int P(D \mid \theta, G) P(\theta \mid G) d \theta \quad \begin{array}{r}
\text { (ABIC: Akaike's Bayesian } \\
\text { information criterion) }
\end{array}
\end{array}
$$

Mini-Summary on score-based method

- Use a global score to match a graph and data.

Marginal log likelihood (ABIC), MDL, etc.

- Optimization in huge search space.

Some techniques are needed. e.g. greedy search.

- Able to use informative prior on graphs.
- Usually, discrete or Gaussian variables are assumed.

For non-Gaussian continuous variables, we need some techniques such as discretization.

- Also known as Bayesian structure learning

Causal Learning

- Directed graph as causal graph
- A directed graph can be regarded as the expression of causal relationships among variables.

Causal direction $=$ Edge-direction

$$
\begin{aligned}
p(X)=p & \left(X_{a}\right) p\left(X_{b}\right) p\left(X_{c} \mid X_{a}, X_{b}\right) \\
& \times p\left(X_{d} \mid X_{b}, X_{c}\right) p\left(X_{e} \mid X_{c}, X_{d}\right)
\end{aligned}
$$

- Causal learning: learning of the directed graph from data.

Causal Leaning from Data

- With manipulation - intervention

manipulate observation
X is a cause of Y ?
Easier. (do-calculus, Pearl 1995)
- No manipulation / with temporal information

$$
\begin{aligned}
& X(t) \quad Y(t) \quad \text { : observed time series } \\
& X(1), \ldots, X(t) \text { are a cause of } Y(t+1) ?
\end{aligned}
$$

- No manipulation / no temporal information

Causal inference is harder.

Addendum: Causality and Correlation

- Correlation (dependence) and causality

Do not confuse causality with dependence (or correlation)!
Example)
A study shows:
Young children who sleep with the light on are much more likely to develop myopia in later life. (Nature 1999)

light on short-sight (Nature 2000)

Causal Learning without Manipulation

- Difficulty of causal inference from nonexperimental data
- Widely accepted view till 80's

Causal inference is impossible without manipulating some variables.
e.g.) "No causation without manipulation" (Holland 1986, JASA)

- Temporal information is very helpful, but not decisive. e.g.) The barometer falls before it rains, but it does not cause the rain.
- Many philosophical discussions, but not discussed here. See Pearl (2009) and the references therein.

Causal Learning without Manipulation

- Why is it possible?
- DAG of chain $X-Z-Y$

- This is the only detectable directed graph of three variables.
- The following structures cannot be distinguished from the probability.

Causal Learning without Manipulation

- Fundamental assumptions
- Causal Markov condition

The probability generating data is associated with a DAG.

$$
\begin{aligned}
& p(X)=\prod_{i=1}^{n} p\left(X_{i} \mid \mathrm{pa}(i)\right) \\
& p(X)=p\left(X_{a}\right) p\left(X_{b}\right) p\left(X_{c} \mid X_{a}, X_{b}\right) p\left(X_{d} \mid X_{c}\right)
\end{aligned}
$$

- Causal Faithfulness Condition The inferred DAG (causal structure) must express all the independence relations.

unfaithful
This includes the true probability as a special case, but the structure does not express $a \Perp b$
true

Constraint-based Causal Learning

- IC algorithm (Verma\&Pearl 90)

Input - V: set of variables, D : dataset of the variables.

Output - Partial DAG (specifies an equivalence class, directed partially)

1. For each $(a, b) \in V \times V(a \neq b)$, search for $S_{a b} \subset V \backslash\{a, b\}$ such that

$$
X_{a} \Perp X_{b} \mid S_{a b}
$$

Construct an undirected graph (skeleton) by making an edge between a and b if and only if no set $S_{a b}$ can be found.
2. For each nonadjacent pair (a, b) with $a-c-b$, direct the edges by $a \rightarrow c \leftarrow b$ if $c \notin S_{a b}$
3. Orient as many of undirected edges as possible on condition that neither new v-structures nor directed cycles are created.

- Implemented in PC algorithm (Spirtes \& Glymour) efficiently.

Constraint-based Causal Learning

- Example

True structure

The output from each step of IC algorithm

$$
\begin{array}{rr}
\qquad \begin{aligned}
S_{a d} & =\{b, c\} \\
S_{a e} & =\{d\} \\
S_{b c} & =\{a\}
\end{aligned} & \text { For }(b, c), d \notin S_{b c} \\
S_{b e}=S_{c e}=\{d\} & \\
\text { For other pairs, } & \text { Direction of some edges } \\
S \text { does not exist. } & \text { may be left undetermined. }
\end{array}
$$

Mini-summary on constraint-based method

- Determine the conditional independence of the underlying probability by statistical tests.
- Many statistical tests are required.
- Problems:
- Errors in statistical tests.
- Computational costs.
- Multiple comparison - difficult to set critical regions
- Effects of hidden variables are important to consider (not discussed here).
- Often discussed in the context of causal learning.

Summary：Structure learning

－Two major approaches
－Score－based Bayesian structure learning
There are many methods how to define score function．
Marginal likelihood，MDL，etc．
－Constraint－based causal learning
Testing conditional independence．
－More recent approach
－Sparse network by Lasso Meinshausen and Buhlmann［Ann．Statist． 34 （2006）1436－1462］
－Further readings
D．Heckerman．A tutorial on learning with Bayesian networks．in Learning in Graphical Models．（ed．M．Jordan）pp．301－354．MIT Press（1999）
This book contains various advanced topics．
J．Pearl．Causality．2nd ed．Cambridge University Press（2009）
宮川雅巳「統計的因果推論」朝倉書店（2004）
宮川雅巳 「グラフィカルモデリング」朝倉書店（1997）

