

Kenji Fukumizu The Institute of Statistical Mathematics 計算推論科学概論 II (2010年度,後期)

Working with Graphical Models

 (\mathbf{a})

structure

- Determining structure
 - Structure given by modeling e.g. Mixture model, HMM
 - Structure learning

Parameter estimation

- Parameter given by some knowledge
- Parameter estimation with data such as MLE or Bayesian estimation

 \rightarrow Part 4

 \rightarrow Part 4

parameter

Inference

 Computation of posterior and marginal probabilities (Already seen in Part 3.)

Parameter Estimation

Statistical Estimation

Estimation from data

Statistical model with a parameter: $p(X | \theta) = \theta$: parameter

I.i.d. Data: $D = (X_1, X_2, ..., X_N)$

Maximum likelihood estimation

$$\hat{\theta} = \arg \max_{\theta} L(\theta),$$

$$L(\theta) = \prod_{i=1}^{N} p(X_i | \theta)$$

Likelihood function

or

$$\hat{\theta} = \arg \max_{\theta} \ell(\theta)$$

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{N} \log p(X_i | \theta)$$

Log likelihood function

• •

Statistical Estimation

- Bayesian estimation
 - Distribution of the parameter θ is estimated

Prior probability $p(\theta) \rightarrow \text{posterior}$ probability $p(\theta | D)$ Bayes' rule (Bayes' theorem)

$$p(\theta \mid D) = \frac{p(D \mid \theta) p(\theta)}{p(D)} = \frac{\prod_{i=1}^{N} p(X_i \mid \theta) p(\theta)}{\int \prod_{i=1}^{N} p(X_i \mid \theta) p(\theta) d\theta}$$

Maximum a posteriori (MAP) estimation

$$\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta \mid D)$$

Contingency Table (分割表)

ML estimation for discrete variables

$$X_a \in \{1, ..., M\}$$
 $X_b \in \{1, ..., L\}$

 $D = (X_a^{(1)}, X_b^{(1)}), \dots, (X_a^{(N)}, X_b^{(N)})$ i.i.d. sample

$X_{b} X_{a}$	1	2	3
1	12	18	4
2	6	9	14

 N_{ij} : Number of counts

p(X_a, X_b)

$X_{b} X_{a}$	1	2	3
1	р ₁₁	р ₁₂	р ₁₃
2	р ₂₁	р ₂₂	р ₂₂

Estimation of probabilities

ML estimator
$$\hat{p}_{ij} = \frac{N_{ij}}{N}$$

Bayesian Estimation: Discrete Case

Bayesian estimation for discrete variables

Model:
$$p(X_a, X_b | \theta)$$

 $p(X_a = i, X_b = j | \theta) = \theta_{ij}, \quad \theta = (\theta_{ij}) \in \Delta_{ML-1}$
 $\Delta_{K-1} \equiv \{\theta \in \mathbf{R}^K | \theta_i \ge 0 \ (\forall i), \sum_{i=1}^K \theta_i = 1\}$
Prior: $\pi(\theta)$ on Δ_{ML-1}

Likelihood: $p(D | \theta) = \prod_{n=1}^{N} p(X_a^{(n)}, X_b^{(n)} | \theta) = \prod_{i,j} \theta_{ij}^{N_{ij}}$ Multinomial

Bayesian estimation:

$$p(\theta \mid D) = \frac{p(D,\theta)}{p(D)} = \frac{p(D \mid \theta)\pi(\theta)}{\int_{\Delta} p(D \mid \theta)\pi(\theta)d\theta} = \frac{\prod_{i,j} \theta_{ij}^{N_{ij}}\pi(\theta)}{\int_{\Delta} \theta_{ij}^{N_{ij}}\pi(\theta)d\theta}$$

This integral is difficult to compute in general.

Dirichlet Distribution

Dirichlet distribution

Density function of K-dimensional Dirichlet distribution

$$\operatorname{Dir}(\theta \,|\, \alpha_1, \dots, \alpha_K) = \frac{\Gamma(\sum_{j=1}^K \alpha_j)}{\prod_{j=1}^K \Gamma(\alpha_j)} \prod_{j=1}^K \theta_j^{\alpha_j - 1} \quad \propto \prod_{j=1}^K \theta_j^{\alpha_j - 1}$$

on
$$\Delta_{K-1} = \{ \theta \in \mathbb{R}^K \mid \theta_j \ge 0, \sum_{j=1}^K \theta_j = 1 \}$$

where

]

$$(\alpha_1, ..., \alpha_K)$$
: parameter $(\alpha_j > 0)$
 $\Gamma(\alpha)$: Gamma function $\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$

$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$
 for $\alpha > 1$
 $\Gamma(n) = (n-1)!$ for a positive integer *n*.

- The mean point is proportional to the vector α .
- The mean point is a stable point (i.e. differential = 0), and it may be either maximum or minimum.

Dirichlet Distribution

K=3. $\alpha = b(1, 1, 1)$ from *b*=0.3 to 2.0.

Bayesian Inference with Dirichlet Prior

Dirichlet distribution works as a prior to multinomial distribution.
 Posterior is also Dirichlet -- conjugate prior

Data: $D = (X^{(1)}, ..., X^{(N)})$ $N_k := \left| \{i \mid X^{(i)} = k\} \right|$ (k = 1, ..., K)

Posterior:

$$p(\theta \mid D) = \frac{p(D \mid \theta)\mathsf{Dir}(\theta \mid \alpha)}{\int_{\Delta} p(D \mid \theta)\mathsf{Dir}(\theta \mid \alpha)d\theta} = \frac{\prod_{k} \theta_{k}^{N_{k}}\mathsf{Dir}(\theta \mid \alpha)}{\int_{\Delta} \theta_{k}^{N_{k}}\mathsf{Dir}(\theta \mid \alpha)d\theta} = \frac{\mathsf{Dir}(\theta \mid \widetilde{\alpha})}{\mathsf{Dir}(\theta \mid \alpha)d\theta}$$
$$\widetilde{\alpha} = (N_{1} + \alpha_{1}, \dots, N_{K} + \alpha_{K})$$

 α works as a prior count.

MAP estimator $\hat{\theta}_{MAP} = \frac{\widetilde{\alpha}_i}{\sum_{j=1}^K \widetilde{\alpha}_j} = \frac{N_i + \alpha_i}{N + \alpha_1 + \cdots + \alpha_K}$

Bayesian Inference with Dirichlet Prior

Proof.

$$p(\theta \mid D) \propto \prod_{j=1}^{K} \theta_j^{N_j} \operatorname{Dir}(\theta \mid \alpha) \propto \prod_{j=1}^{K} \theta_j^{N_j + \alpha_j - 1}$$

By the normalization, the right hand side must be $\text{Dir}(\theta | \tilde{\alpha})$.

EM Algorithm for Models with Hidden Variables

ML Estimation with Hidden Variable

- Statistical model with hidden variables
 - Suppose we can assume hidden (unobservable) variables in addition to observable variables.

 $p(X, Z | \theta)$ X: observable variable Z: hidden variable $\theta: parameter$

• We have data only for observable variables: $D = (X_1, X_2, ..., X_N)$ The ML estimation must be done with *X*

$$\sum_{n=1}^{N} \log p(X_n \mid \theta) = \sum_{n=1}^{N} \log \left(\sum_{Z_n} p(X_n, Z_n \mid \theta) \right)$$

But, this maximization is often difficult.

• Probability of (X, Z) is sometimes easier to handle than that of X.

ML Estimation with Hidden Variable

Example: Gaussian mixture model

With hidden variable: $p(X, Z | \theta) = p(Z | \pi)\phi(x | \mu_j, \Sigma_j)$

Z takes values in {1,...,K}: component

$$\theta = (\pi, \mu_1, \Sigma_1, \dots, \mu_K, \Sigma_K)$$

Marginal of X:
$$p(x | \theta) = \sum_{j=1}^{K} \pi_j \phi(x | \mu_j, \Sigma_j)$$

ML estimation

(Z)

$$\max_{\theta} \sum_{n=1}^{N} \log p(X_n \mid \theta) = \max_{\theta} \sum_{n=1}^{N} \log \left(\sum_{j=1}^{K} \pi_j \phi(X_n \mid \mu_j, \Sigma_j) \right)$$

 π_i and (μ_i, Σ_i) are coupled \rightarrow difficult to solve analytically.

Estimation with Complete Data

Complete data

• Suppose $Z_1, ..., Z_N$ were known. $D_c = \{(X_1, Z_1), ..., (X_N, Z_N)\}$: complete data

ML estimation with D_c is often easier than estimation with D.

$$\max \ell_c(D_c \mid \theta),$$

where

$$\ell_c(D_c \mid \theta) = \sum_{n=1}^N \log p(X_n, Z_n \mid \theta)$$
 Complete log likelihood

Estimation with Complete Data

Example: Mixture of Gaussian

Redefine the hidden variable Z by K dimensional binary vector:

$$p(X, Z \mid \theta) = \prod_{a=1}^{K} \{ \pi_a \phi(x \mid \mu_a, \Sigma_a) \}^{Z_a}$$

 $Z = (Z_1, ..., Z_K) \text{ takes values in}$ $\{ (1, 0, 0, ..., 0), (0, 1, 0, ..., 0), \cdots (0, 0, 0, ..., 1) \} K \text{ class}$

Note:
$$p(X \mid \theta) = \sum_{Z} p(X, Z \mid \theta) = \sum_{a=1}^{K} \pi_a \phi(x \mid \mu_a, \Sigma_a)$$

Estimation with Complete Data

ML estimation with complete data:

$$\sum_{n=1}^{N} \log p(X_n, Z_n \mid \theta) = \sum_{n=1}^{N} \log \left(\prod_{i=1}^{K} \{ \pi_i \phi(X_n \mid \mu_i, \Sigma_i) \}^{Z_i^n} \right)$$
$$= \sum_{n=1}^{N} \sum_{i=1}^{K} Z_i^n \{ \log \pi_i + \log \phi(X_n \mid \mu_i, \Sigma_i) \}^{Z_i^n}$$

 π_j and (μ_j, Σ_j) are decoupled \rightarrow they can be maximized separately.

$$\begin{cases} \max_{\pi} \sum_{n=1}^{N} \sum_{i=1}^{K} Z_{i}^{n} \log \pi_{i} & \text{subj. to} & \sum_{i=1}^{K} \pi_{i} = 1 \\ \max_{\mu, \Sigma} \sum_{n=1}^{N} \sum_{i=1}^{K} Z_{i}^{n} \log \phi(X_{n} \mid \mu_{i}, \Sigma_{i}) & \text{is easy.} \end{cases} \end{cases}$$

But, the complete data is not available in practice!

Expected Complete Log Likelihood

- Use expected complete log likelihood instead of complete log likelihood.
- Complete log likelihood

$$\ell_c(D_c \mid \theta) = \sum_{n=1}^N \log p(X_n, Z_n \mid \theta)$$

- Expected complete log likelihood
 - Suppose we have a current guess $\hat{\theta}^{(t)}$ Use expectation w.r.t. $p(Z_n | X_n, \hat{\theta}^{(t)})$

$$\left\langle \ell_c(D_c \mid \theta) \right\rangle_{\hat{\theta}^{(t)}} = \sum_{n=1}^N \sum_{Z_n} p(Z_n \mid X_n, \hat{\theta}^{(t)}) \log p(X_n, Z_n \mid \theta)$$

Maximize heta of $\langle \ell_c(D_c \mid \theta)
angle_{\hat{ heta}^{(t)}}$

EM Algorithm

Initialization

Initialize $\theta = \theta^{(0)}$ by some method.

t = 0.

Repeat the following steps until stopping criterion is satisfied.

E-step

Compute the expected complete log likelihood $\langle \ell_c(D_c | \theta) \rangle_{\hat{\theta}^{(t)}}$ M-step

Maximize θ of $\langle \ell_c(D_c | \theta) \rangle_{\hat{\theta}^{(t)}}$

 $\hat{\theta}^{(t+1)} = \arg \max_{\theta} \langle \ell_c(D_c \mid \theta) \rangle_{\hat{\theta}^{(t)}}$

Computational difficulty of M-step depends on the model.

EM Algorithm for Gaussian Mixture

• Complete log likelihood

$$\ell_c(D_c \mid \theta) = \sum_{n=1}^N \sum_{i=1}^K Z_i^n \{ \log \pi_i + \log \phi(X_n \mid \mu_i, \Sigma_i) \}$$

Expected complete log likelihood

$$\begin{aligned} \tau_i^{n(t)} &= E[Z_i^n \mid X_n, \hat{\theta}^{(t)}] = p(Z_i^n = 1 \mid X_n, \hat{\theta}^{(t)}) = \frac{p(X_n, Z_i^n = 1 \mid \hat{\theta}^{(t)})}{p(X_n \mid \hat{\theta}^{(t)})} \\ &= \frac{\hat{\pi}_i^{(t)} \phi(X_n \mid \hat{\mu}_i^{(t)}, \hat{\Sigma}_i^{(t)})}{\sum_{j=1}^K \hat{\pi}_j^{(t)} \phi(X_n \mid \hat{\mu}_j^{(t)}, \hat{\Sigma}_j^{(t)})} \end{aligned}$$
 Ratio of contribution of X_n to the *i*-th component.

E-step

$$\left\langle \ell(D_c \mid \theta) \right\rangle_{\hat{\theta}^{(t)}} = \sum_{n=1}^{N} \sum_{i=1}^{K} \frac{\tau_i^{n(t)}}{\sum_{i=1}^{K} \tau_i^{n(t)}} \left\{ \log \pi_i + \log \phi(X_n \mid \mu_i, \Sigma_i) \right\}$$

EM Algorithm for Gaussian Mixture

M-step

$$\hat{\pi}_{i}^{(t+1)} = \frac{1}{N} \sum_{n=1}^{N} \tau_{i}^{n(t)}$$

$$\hat{\mu}_{i}^{(t+1)} = \frac{\sum_{n=1}^{N} \tau_{i}^{n(t)} X_{n}}{\sum_{n=1}^{N} \tau_{i}^{n(t)}} \quad \text{weigh}$$

$$\hat{\mu}_{i}^{(t+1)} = \frac{\sum_{n=1}^{N} \tau_{i}^{n(t)} X_{n}}{\sum_{n=1}^{N} \tau_{i}^{n(t)}} \quad \text{weigh}$$

eighted mean

$$\hat{\Sigma}_{i}^{(t+1)} = \frac{\sum_{n=1}^{N} \tau_{i}^{n(t)} (X_{n} - \hat{\mu}_{i}^{(t)}) (X_{n} - \hat{\mu}_{i}^{(t)})^{T}}{\sum_{n=1}^{N} \tau_{i}^{n(t)}}$$

weighted covariance matrix

(Proof omitted. Exercise)

EM Algorithm for Gaussian Mixture

• Meaning of τ

Properties of EM Algorithm

- □ EM converges quickly for many problems.
- □ Monotonic increase of likelihood of *X* is guaranteed (discussed later).
- EM may be trapped by local optima.
- The solution depends strongly on the initial state.
- EM algorithm can be applied to any model with hidden variables.
 Missing value, etc.

Demonstration

Web site for Gaussian mixture demo:

http://staff.aist.go.jp/s.akaho/MixtureEMj.html

EM as likelihood maximization

The goal is to maximize the (incomplete) log likelihood, not the expected complete log likelihood.

 $q(Z \mid X)$: arbitrary p.d.f. of Z, may depend on X. Define an auxiliary function $L(q, \theta)$ by

$$L(q,\theta) = \sum_{Z} q(Z \mid X) \log \frac{p(X,Z \mid \theta)}{q(Z \mid X)}$$

Theorem 1

E-step:
$$q^{(t+1)} = \underset{q}{\operatorname{arg\,max}} L(q, \hat{\theta}^{(t)})$$
 (and compute $\langle \ell_c(D_c \mid \theta) \rangle_{q^{(t+1)}}$)
M-step: $\hat{\theta}^{(t+1)} = \underset{\theta}{\operatorname{arg\,max}} L(q^{(t+1)}, \theta)$

Alternating optimization w.r.t. q and θ .

<u>Proposition 1 (L and likelihood of X)</u>

For any $q(Z \mid X)$ and θ , the log likelihood of X is decomposed as

$$\ell(X \mid \theta) = L(q, \theta) + KL(q(Z \mid X) \parallel p(Z \mid X, \theta))$$

In particular,

 $\ell(X \mid \theta) \ge L(q, \theta)$ for all q and θ ,

and the equality holds if and only if $q = p(Z | X, \theta)$.

Proof)
$$\ell(\theta \mid X) - L(q, \theta)$$

= $\sum_{Z} q(Z \mid X) \log p(X \mid \theta) - \sum_{Z} q(Z \mid X) \log \frac{p(X, Z \mid \theta)}{q(Z \mid X)}$
= $\sum_{Z} q(Z \mid X) \log \frac{p(X \mid \theta)q(Z \mid X)}{p(X, Z \mid \theta)}$
= $\sum_{Z} q(Z \mid X) \log \frac{q(Z \mid X)}{p(Z \mid X, \theta)}$

Proposition 2 (L and expected complete likelihood)

$$L(q,\theta) = \left\langle \ell_c(X,Z \mid \theta) \right\rangle_q - \sum_Z q(Z \mid X) \log q(Z \mid X)$$

proof)

$$\begin{aligned} \left\langle \ell(X, Z \mid \theta) \right\rangle_{q} &= \sum_{Z} q(Z \mid X) \log p(X, Z \mid \theta) \\ &= \sum_{Z} q(Z \mid X) \log \frac{p(X, Z \mid \theta) q(Z \mid X)}{q(Z \mid X)} \\ &= \sum_{Z} q(Z \mid X) \log \frac{p(X, Z \mid \theta)}{q(Z \mid X)} + \sum_{Z} q(Z \mid X) \log q(Z \mid X) \\ &= L(q, \theta) + \sum_{Z} q(Z \mid X) \log q(Z \mid X) \end{aligned}$$

Proof of Theorem 1

• E-step:

From Proposition 1,

$$\mathcal{E}(X \mid \hat{\theta}^{(t)}) = L(q, \hat{\theta}^{(t)}) + KL(q(Z \mid X) \parallel p(Z \mid X, \hat{\theta}^{(t)}))$$

independent of q maximize \Leftrightarrow minimize

$$p(Z \mid X, \hat{\theta}^{(t)}) = \arg\max_{q} L(q, \hat{\theta}^{(t)})$$

M-step:

From Proposition 2,

$$L(q^{(t+1)},\theta) = \left\langle \ell_c(X,Z \mid \theta) \right\rangle_{p(Z\mid X,\hat{\theta}^{(t)})} - (\text{const. w.r.t. }\theta)$$

M-step is

$$\max_{\theta} L(q^{(t+1)}, \theta)$$

Monotonic increase of likelihood by EM

<u>Theorem</u>

$$\ell(X \mid \hat{\theta}^{(t)}) \leq \ell(X \mid \hat{\theta}^{(t+1)}) \quad \text{for all } t$$
.

Proof)

$$\ell(X \mid \hat{\theta}^{(t)}) = L(q^{(t+1)}, \hat{\theta}^{(t)}) \qquad (\text{E-step, Prop.1})$$
$$\leq L(q^{(t+1)}, \hat{\theta}^{(t+1)}) \qquad (\text{M-step})$$
$$\leq \ell(X \mid \hat{\theta}^{(t+1)}) \qquad (\text{Prop.1})$$

Remarks on EM Algorithm

- EM always increases the likelihood of observable variables, but there are no theoretical guarantees of global maximization.
 In general, it can converge only to a local maximum.
- □ There is a sufficient condition of convergence by Wu (1983).
- Practically, EM converges very quickly.
- For Gaussian mixture model,
 - If the mean and variance are its parameters, the likelihood function can take an arbitrary large value. There is no global maximum of likelihood.
 - EM often finds a reasonable local optimum by a good choice of initialization.
 - The results depend much on the initialization.
- Further readings:
 - The EM Algorithm and Extensions (McLachlan & Krishnan 1997)
 - Finite Mixture Models (McLachlan & Peel 2000)

EM Algorithm for Hidden Markov Model

Maximum Likelihood for HMM

Parametric model of Gaussian HMM X₀ X₁ X₂

$$p(X,Y) = p(X_0) \prod_{t=0}^{T-1} p(X_{t+1} | X_t) \prod_{t=0}^{T} p(Y_t | X_t)$$

$$p(X_0 = j) = \pi_j$$
 initial probability $Y_0 = Y_1 = Y_2$

$$p(X_{t+1} = j | X_t = i) = A_{ij}$$
 transition matrix (time invariant)

$$p(Y_t | X_t = j) = \phi(y_t; \mu_j, \Sigma_j)$$
 Gaussian with mean μ_j and covariance Σ_j

parameter: $\theta = (\pi, (A_{ij}), \mu_1, ..., \mu_K, \Sigma_1, ..., \Sigma_K)$

$$p(Y \mid \theta) = \sum_{X_0} \cdots \sum_{X_T} \pi_{X_0} \prod_{t=0}^{T-1} A_{X_{t-1}X_t} \prod_{t=0}^T \phi(y_t \mid \mu_{X_t}, \Sigma_{X_t})$$

max log $p(Y \mid \theta)$ is difficult.

 X_{T}

EM for HMM

Complete likelihood

$$\ell_{c}(Y, X \mid \theta) = \log p(Y, X \mid \theta)$$

$$= \log \left(\pi_{X_{0}} \prod_{t=0}^{T-1} A_{X_{t}X_{t+1}} \prod_{t=0}^{T} \phi(Y_{t} \mid \mu_{X_{t}}, \Sigma_{X_{t}}) \right) \log \left(\prod_{t} \alpha_{t} \right) \text{ is easy.}$$

$$= \log \pi_{X_{0}} + \sum_{t=0}^{T-1} A_{X_{t}X_{t+1}}$$

$$+ \sum_{t=0}^{T} \left\{ -\frac{1}{2} (Y_{t} - \mu_{X_{t}})^{T} \Sigma_{X_{t}}^{-1} (Y_{t} - \mu_{X_{t}}) - \frac{1}{2} \log \det \Sigma_{X_{t}} - \frac{m}{2} \log(2\pi) \right\}$$

$$= \sum_{j=1}^{K} \delta_{jX_{0}} \log \pi_{j} + \sum_{i,j=1}^{K} \sum_{t=0}^{T-1} \delta_{jX_{t+1}} \delta_{iX_{t}} A_{ij}$$

$$+ \sum_{j=1}^{K} \sum_{t=0}^{T} \delta_{jX_{t}} \left\{ -\frac{1}{2} (Y_{t} - \mu_{j})^{T} \Sigma_{j}^{-1} (Y_{t} - \mu_{j}) - \frac{1}{2} \log \det \Sigma_{j} - \frac{m}{2} \log(2\pi) \right\}$$

$$35$$

EM for HMM

Expected complete likelihood

Suppose we already have an estimate $\hat{\theta}^{(n)}$ (*n*: index for iteration) $\langle \ell_c(Y, X \mid \theta) \rangle_{\hat{\theta}^{(n)}} = \sum_X p(X \mid Y, \hat{\theta}^{(n)}) \log p(Y, X \mid \theta)$

It requires

$$\left\langle \delta_{jX_{t}} \right\rangle_{\hat{\theta}^{(n)}} = \sum_{X_{t}=1}^{K} p(X_{t} | Y, \hat{\theta}^{(n)}) \delta_{jX_{t}} = p(X_{t} = j | Y, \hat{\theta}^{(n)}) \equiv \gamma_{t}^{j(n)}$$

$$\left\langle \delta_{iX_{t}} \delta_{jX_{t+1}} \right\rangle_{\hat{\theta}^{(n)}} = \sum_{X_{t}=1}^{K} \sum_{X_{t+1}=1}^{K} p(X_{t}, X_{t+1} | Y, \hat{\theta}^{(n)}) \delta_{iX_{t}} \delta_{jX_{t+1}}$$

$$= p(X_{t} = i, X_{t+1} = j | Y, \hat{\theta}^{(n)}) \equiv \xi_{t,t+1}^{i,j(n)}$$

$$\gamma_t^{j(n)} = p(X_t = j | Y, \hat{\theta}^{(n)})$$
 and $\xi_{t,t+1}^{i,j(n)} = p(X_t = i, X_{t+1} = j | Y, \hat{\theta}^{(n)})$
can be computed by the forward-backward algorithm.

EM for HMM – Baum-Welch Algorithm

- E-step
 - Forward-backward to compute $\gamma_t^{j(n)}$ and $\xi_{t,t+1}^{i,j(n)}$.
 - Expected complete log likelihood

$$\left\langle \ell_{c}(Y, X \mid \theta) \right\rangle_{\hat{\theta}^{(n)}} = \sum_{j=1}^{K} \gamma_{0}^{j(n)} \log \pi_{j} + \sum_{i, j=1}^{K} \sum_{t=0}^{T-1} \xi_{t, t+1}^{i, j(n)} A_{ij}$$

$$+ \sum_{j=1}^{K} \sum_{t=0}^{T} \gamma_{t}^{j(n)} \left\{ -\frac{1}{2} (Y_{t} - \mu_{j})^{T} \Sigma_{j}^{-1} (Y_{t} - \mu_{j}) - \frac{1}{2} \log \det \Sigma_{j} - \frac{m}{2} \log(2\pi) \right\}$$

Summary: Parameter learning

- Discrete variables without hidden variables
 - Maximum likelihood estimation is easy by frequencies.
 - Bayesian estimation is often done with Dirichlet prior.
- Discrete variables with hidden variables
 - Maximum likelihood estimation can be done with EM algorithm.
 - Bayesian approach → computational difficulty.
 Some technique is needed, *e.g. variational method*.

Structure Learning

Working with Graphical Models

 (\mathbf{a})

Determining structure

- Structure given by modeling e.g. Mixture model, HMM
- Structure learning

Parameter estimation

- Parameter given by some knowledge
- Parameter estimation with data such as MLE or Bayesian estimation

 \rightarrow Part 4

$X_{\underline{c}} X_{\underline{a}})$				
	$X_c \setminus X_a$	1	2	3
	1	0.2	0.3	0.4
	2	0.8	0.7	0.6

parameter

Inference

 Computation of posterior and marginal probabilities (Already seen in Part 3.)

How to determine a network?

Prior knowledge

A graphical model may be given by the prior knowledge on the problem. e.g.1) Diagnosis system

The problem is to estimate the probabilities (parameters).

Structure learning

If it is difficult to assume an appropriate model, the graph structure must be *learned* from data.

Structure Learning

Variables: $X_1, ..., X_m$ Data: $(X_1^{(1)}, ..., X_m^{(1)}), ..., (X_1^{(N)}, ..., X_m^{(N)})$ Output of structure learning = a directed / undirected graph associated with the probability of $(X_1, ..., X_m)$.

Difficulty: the number of possible directed graphs = $3^{m(m-1)/2}$ The search space is very large.

Learning of Directed Graph

Score-based method

- □ Use a global score to match a graph and data.
- Problem: Optimization in huge search space.
- □ Able to use informative prior on graphs.
- Usually, discrete variables are assumed.
- Often referred to as Bayesian structure learning.

Constraint-based method

- Determine the conditional independence of the underlying probability by statistical tests.
- Problem: Many statistical tests are required.
- Often referred to as causal learning.

Score-based Structure Learning: Example

Discrete variables: $X_1, ..., X_m$ Data: $D = \{(X_1^{(1)}, ..., X_m^{(1)}), ..., (X_1^{(N)}, ..., X_m^{(N)})\}$

Model:

When a directed graph G is specified, multinomial distribution is assumed with Dirichlet prior.

$$p(X \mid \theta) = \prod_{b=1}^{m} p(X_b \mid X_{pa(b)}, \theta_b)$$

$$\theta_b = (\theta_{b,i}^j) \quad i: \text{ multi-index for } pa(b)$$

$$\theta_{b,i}^j = P(X_b = j \mid X_{pa(b)} = i) \quad \theta_{b,i}^j \ge 0, \sum_{j=1}^{K_b} \theta_{b,i}^j = 1.$$

$$p(D \mid \theta) = \prod_{n=1}^{N} \prod_{b=1}^{m} p(X_b^{(n)} \mid X_{pa(b)}^{(n)}, \theta_b)$$

Dirichlet prior:

$$\theta_{b,i} = (\theta_{b,i}^1, \dots, \theta_{b,i}^{K_b}) \sim \operatorname{Dir}(\theta_{b,i} \mid \alpha_{b,i}^1, \dots, \alpha_{b,i}^{K_b}) = \frac{\Gamma(\sum_j \alpha_{b,i}^j)}{\prod_j \Gamma(\alpha_{b,i}^j)} \prod_{j=1}^{K_b} (\theta_{b,i}^j)^{\alpha_{b,i}^j - 1}$$

$$44$$

Score-based Structure Learning: Example

Marginal likelihood:

 $Score(G) \equiv Log Marginal Likelihood of G.$ $= \log \int P(D | \theta, G) p(\theta | G, \alpha) d\theta$ $\alpha = (\alpha_{b i}^{J})$ $= \log \int \prod_{b=1}^{m} \prod_{i=1}^{\#pa(b)} \prod_{i=1}^{K_{b}} (\theta_{b,i}^{j})^{N_{b,i}^{j}} \frac{\Gamma(\sum_{j} \alpha_{b,i}^{j})}{\prod_{i} \Gamma(\alpha_{b,i}^{j})} \prod_{i=1}^{K_{b}} (\theta_{b,i}^{j})^{\alpha_{b,i}^{j}-1} d\theta_{b,i}$ $= \sum_{k=1}^{m} \sum_{i=1}^{\#pa(b)} \left| \log \Gamma(\sum_{j} \alpha_{b,i}^{j}) - \sum_{i=1}^{K_{b}} \log \Gamma(\alpha_{b,i}^{j}) \right|$ $-\log\Gamma(\sum_{j}\widetilde{\alpha}_{b,i}^{j}) + \sum_{i=1}^{K_{b}}\log\Gamma(\widetilde{\alpha}_{b,i}^{j})$ where $\widetilde{\alpha}_{h\,i}^{\,j} = N_{h\,i}^{\,j} + \alpha_{h\,i}^{\,j}$ $N_{b,i}^{j}$: number of data s.t. $X_{b} = j$ and $X_{pa(b)} = i$. 45

Score-based Structure Learning

• Prior to the models

We can use a prior distribution P(G) on the graphs.

 $Score(G) = \log P(D | G) + \log P(G)$

Optimization over the graphs

The space is very huge \rightarrow greedy search.

Start from a graph G, and repeat the following process:

Update the graph by deleting, inserting, or reversing an edge. Accept the new graph G' if Score(G') > Score(G).

- Many others
 - Score by MDL (minimum description length) / BIC (Bayesian information criterion)
 - MCMC,

etc.

See D. Heckerman "A tutorial on learning with Bayesian networks" in *Learning in Graphical Models* (M. Jordan ed. 1998). 46

Marginal Likelihood / ABIC

Bayesian method for model selection

Maximum a posteriori model given data

 $\hat{G} = \arg \max P(G \mid D)$

Note:

$$P(G \mid D) = \frac{P(D \mid G)P(G)}{P(D)} \propto P(D \mid G)P(G) \text{ as a function of model}$$

 $\hat{G} = \arg \max \left[\log P(D \mid G) + \log P(G) \right]$

If P(G) is uniform over the models,

$$\hat{G} = \arg \max \log P(D | G) \qquad \qquad \text{Marginal log likelihood} \\ = \arg \max \log \int P(D | \theta, G) P(\theta | G) d\theta \qquad \qquad \text{(ABIC: Akaike's Bayesian} \\ \text{information criterion)}$$

Mini-Summary on score-based method

- Use a global score to match a graph and data.
 Marginal log likelihood (ABIC), MDL, etc.
- Optimization in huge search space.
 Some techniques are needed. e.g. greedy search.
- □ Able to use informative prior on graphs.
- Usually, discrete or Gaussian variables are assumed.
 For non-Gaussian continuous variables, we need some techniques such as discretization.
- Also known as Bayesian structure learning

Causal Learning

Directed graph as causal graph

 A directed graph can be regarded as the expression of causal relationships among variables.

Causal direction = Edge-direction

$$p(X) = p(X_a)p(X_b)p(X_c | X_a, X_b)$$

$$\times p(X_d | X_b, X_c)p(X_e | X_c, X_d)$$

Causal learning: learning of the directed graph from data.

Causal Leaning from Data

With manipulation – intervention

X is a cause of Y?

Easier. (do-calculus, Pearl 1995)

No manipulation / with temporal information

X(t) Y(t) : observed time series

X(1), ..., X(t) are a cause of Y(t+1)?

No manipulation / no temporal information

Causal inference is harder.

Addendum: Causality and Correlation

Correlation (dependence) and causality

Do not confuse causality with dependence (or correlation)!

Example)

A study shows:

Young children who sleep with the light on are much more likely to develop myopia in later life. (*Nature* 1999)

Parental myopia

Hidden common cause

Causal Learning without Manipulation

- Difficulty of causal inference from nonexperimental data
 - Widely accepted view till 80's
 - Causal inference is impossible without manipulating some variables.
 - e.g.) "No causation without manipulation" (Holland 1986, JASA)
 - Temporal information is very helpful, but not decisive.
 e.g.) The barometer falls before it rains, but it does not cause the rain.
 - Many philosophical discussions, but not discussed here.
 See Pearl (2009) and the references therein.

Causal Learning without Manipulation

- This is the only detectable directed graph of three variables.
- The following structures cannot be distinguished from the probability.

Causal Learning without Manipulation

Fundamental assumptions

Causal Markov condition

The probability generating data is associated with a DAG.

$$p(X) = \prod_{i=1}^{n} p(X_i | \operatorname{pa}(i))$$

$$p(X) = p(X_a) p(X_b) p(X_c | X_a, X_b) p(X_d | X_c)$$

Causal Faithfulness Condition

The inferred DAG (causal structure) must express all the independence relations.

This includes the true probability as a special case, but the structure does not express $a \coprod b$

Constraint-based Causal Learning

IC algorithm (Verma&Pearl 90)

Input – V: set of variables, D: dataset of the variables. Output – Partial DAG (specifies an equivalence class, directed partially)

1. For each $(a,b) \in V \times V$ $(a \neq b)$, search for $S_{ab} \subset V \setminus \{a,b\}$ such that $X_a \coprod X_b \mid S_{ab}$

Construct an undirected graph (skeleton) by making an edge between a and b if and only if no set S_{ab} can be found.

- 2. For each nonadjacent pair (a,b) with a c b, direct the edges by $a \rightarrow c \leftarrow b$ if $c \notin S_{ab}$
- 3. Orient as many of undirected edges as possible on condition that neither new v-structures nor directed cycles are created.
- Implemented in PC algorithm (Spirtes & Glymour) efficiently.

Constraint-based Causal Learning

Example

 $S_{ad} = \{b, c\}$ $S_{ae} = \{d\}$ $S_{bc} = \{a\}$ $S_{be} = S_{ce} = \{d\}$ For other pairs, S does not exist.

For (b,c), $d \notin S_{bc}$

Direction of some edges may be left undetermined.

Mini-summary on constraint-based method

- Determine the conditional independence of the underlying probability by statistical tests.
- Many statistical tests are required.
 - Problems:
 - Errors in statistical tests.
 - Computational costs.
 - Multiple comparison difficult to set critical regions
- Effects of hidden variables are important to consider (not discussed here).
- Often discussed in the context of causal learning.

Summary: Structure learning

- Two major approaches
 - Score-based Bayesian structure learning
 - There are many methods how to define score function. Marginal likelihood, MDL, etc.
 - Constraint-based causal learning
 Testing conditional independence.
- More recent approach
 - Sparse network by Lasso
 Meinshausen and Buhlmann [*Ann. Statist.* 34 (2006) 1436–1462]
- Further readings
 - D. Heckerman. A tutorial on learning with Bayesian networks. in *Learning in Graphical Models*. (ed. M.Jordan) pp.301-354. MIT Press (1999)

This book contains various advanced topics.

J. Pearl. Causality. 2nd ed. Cambridge University Press (2009)

宮川雅巳「統計的因果推論」朝倉書店(2004)

宮川雅巳「グラフィカルモデリング」 朝倉書店(1997)