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Working with Graphical Modelsg p

 Determining structure ba Determining structure 
 Structure given by modeling 

e.g. Mixture model, HMM 

b

c
d

eg ,
 Structure learning  Part 4

Parameter estimation

e
structure

 Parameter estimation
 Parameter given by some knowledge
 Parameter estimation with data
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ac XX \

 Parameter estimation with data 
such as MLE or Bayesian estimation

 Part 4

1 0.2 0.3 0.4
2 0.8 0.7 0.6

parameter
 Inference

 Computation of posterior and marginal probabilities   

parameter
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(Already seen in Part 3.)



Parameter Estimation

33



Statistical Estimation

 Estimation from data
Statistical model with a parameter:

I.i.d. Data:

)|( Xp : parameter
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 Maximum likelihood estimation
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Statistical Estimation

 Bayesian estimation
 Distribution of the parameter  is estimated

Prior probability p()   posterior probability p( D) 
Bayes’ rule (Bayes’ thoerem)
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 Maximum a posteriori (MAP) estimation
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Contingency Table （分割表）g y （分割表）

 ML estimation for discrete variables ba

c
d

e
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Bayesian Estimation: Discrete Casey

 Bayesian estimation for discrete variables
Model:

)|( jXiXp      
)|,( ba XXp

Prior:   on 
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This integral is difficult to compute in general.
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This integral is difficult to compute in general.



Dirichlet Distribution

 Dirichlet distribution
 Density function of K-dimensional Dirichlet distribution
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Dirichlet Distribution

 = (6,2,2)  = (3,7,5)

 = (2,3,4)  = (6,2,6)
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 [Exercise]

 The mean point is proportional to the vector . 

 The mean point is a stable point (i e differential = 0)
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 The mean point is a stable point (i.e. differential = 0), 
and it may be either maximum or minimum. 



Dirichlet Distribution

),,|( 321 Dir

K=3.   α = b(1, 1, 1) from b=0.3 to 2.0.
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Bayesian Inference with Dirichlet Priory

 Dirichlet distribution works as a prior to multinomial distribution.
P t i i l Di i hl t j t iPosterior is also Dirichlet   -- conjugate prior

Data: ),,( )()1( NXXD  ),,1(}|{: )( KkkXiN i
k 

Posterior:
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Bayesian Inference with Dirichlet Priory

Proof.
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EM Al ithEM Algorithm 
for Models with Hidden Variables
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ML Estimation with Hidden Variable
 Statistical model with hidden variables

 Suppose we can assume hidden (unobservable) variables in 
addition to observable variables.

X: observable variableX: observable variable
Z: hidden variable
: parameter

)|,( ZXp

 We have data only for observable variables:
The ML estimation must be done with X
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But, this maximization is often difficult.

 n Zn n11
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 Probability of (X, Z) is sometimes easier to handle than that of X.



ML Estimation with Hidden Variable
 Example: Gaussian mixture model

),|()|()|,( jjxZpZXp  

Z takes values in {1,...,K}: component

With hidden variable:
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Estimation with Complete Datap

 Complete data
 Suppose Z1, ..., ZN were known. 

: complete data)},(,),,{( 11 NNc ZXZXD 

ML estimation with Dc is often easier than estimation with D. 
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N
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Estimation with Complete Datap

 Example: Mixture of Gaussian

Redefine the hidden variable Z by K dimensional binary vector: 

 



K
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Z
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Z = (Z1,...,ZK) takes values in

{ (1 0 0 0) (0 1 0 0) (0 0 0 1) }… K class{ (1,0,0,…,0), (0,1,0,…,0), (0,0,0,…,1) } K class

 ZXpXp )|()|( Note:   K x )|( 
Z
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Estimation with Complete Datap
ML estimation with complete data:
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Expected Complete Log Likelihoodp p g
 Use expected complete log likelihood instead of complete log 

likelihoodlikelihood.

 Complete log likelihood
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n
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EM Algorithmg
Initialization

I iti li  b th dInitialize  = by some method.
t = 0.

Repeat the following steps until stopping criterion is satisfied.
E-step

Compute the expected complete log likelihood )|(D Compute the expected complete log likelihood
M-step

Maximize  of

)(ˆ)|( tcc D 

)(ˆ)|( tcc D  cc 
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tcc
t D 

 

 Computational difficulty of M-step depends on the model.
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EM Algorithm for Gaussian Mixtureg
 Complete log likelihood
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EM Algorithm for Gaussian Mixtureg
 M-step
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(Proof omitted Exercise)(Proof omitted.  Exercise)
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EM Algorithm for Gaussian Mixtureg

 Meaning of 
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Properties of EM Algorithmp g

 EM converges quickly for many problems EM converges quickly for many problems.

 Monotonic increase of likelihood of X is guaranteed (discussed later).

 EM may be trapped by local optima.

 The solution depends strongly on the initial state.

 EM algorithm can be applied to any model with hidden variables.
Missing value, etc. 
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Demonstration

 Web site for Gaussian mixture demo:
http://staff aist go jp/s akaho/MixtureEMj htmlhttp://staff.aist.go.jp/s.akaho/MixtureEMj.html
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Theoretical Justification of EM
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Theoretical Justification of EMJ

 EM as likelihood maximization
The goal is to maximize the (incomplete) log likelihood, not the 

expected complete log likelihood.

:  arbitrary p.d.f. of Z, may depend on X.
Define an auxiliary function L(q,) by 

)|( XZq

)|( ZX  .
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  tt qLM-step:  
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Alternating optimization w.r.t. q and . 



Theoretical Justification of EMJ

Proposition 1 (L and likelihood of X)Proposition 1 (L and likelihood of X)
For any q(Z | X) and , the log likelihood of X is decomposed as  
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),()|(  qLX 
In particular, 

for all q and , 

Proof) )()|(  LX

and the equality holds if and only if ).,|( XZpq 

Proof) ),()|(  qLX 

 
ZZ XZq

ZXpXZqXpXZq
)|(

)|,(log)|()|(log)|( 
= 1

)|,(
)|()|(log)|(




ZXp
XZqXpXZq

Z


)|( XZ

= 1

28),|(
)|(log)|(
XZp

XZqXZq
Z




Theoretical Justification of EMJ

Proposition 2 (L and expected complete likelihood) 
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Theoretical Justification of EMJ

 Proof of Theorem 1
 E-step: 

From Proposition 1, 
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Theoretical Justification of EMJ

 Monotonic increase of likelihood by EM

Theorem
ˆˆ )ˆ|()ˆ|( )1()(  tt XX   for all t . 

)ˆ,()ˆ|( )()1()( ttt qLX   (E-step, Prop.1)
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Remarks on EM Algorithmg
 EM always increases the likelihood of observable variables, but there 

are no theoretical guarantees of global maximizationare no theoretical guarantees of global maximization. 
In general, it can converge only to a local maximum. 

 There is a sufficient condition of convergence by Wu (1983).
 Practically, EM converges very quickly. 

 For Gaussian mixture model,,
 If the mean and variance are its parameters, the likelihood 

function can take an arbitrary large value.  There is no global 
maximum of likelihoodmaximum of likelihood. 

 EM often finds a reasonable local optimum by a good choice of 
initialization. 

 The results depend much on the initialization. 

 Further readings: 

32

g
 The EM Algorithm and Extensions (McLachlan & Krishnan 1997)
 Finite Mixture Models (McLachlan & Peel 2000)



EM Algorithm for Hidden 
Markov ModelMarkov Model
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Maximum Likelihood for HMM

 Parametric model of Gaussian HMM
X X X X
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max log p(Y | ) is difficult. 



EM for HMM 

 Complete likelihood
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EM for HMM 

 Expected complete likelihood
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can be computed by the forward-backward algorithm.



EM for HMM – Baum-Welch Algorithmg
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c.f. EM for Gaussian mixture



Summary: Parameter learningy g

Di t i bl ith t hidd i bl Discrete variables without hidden variables
 Maximum likelihood estimation is easy by frequencies.
 Bayesian estimation is often done with Dirichlet prior Bayesian estimation is often done with Dirichlet prior. 

 Discrete variables with hidden variables
 Maximum likelihood estimation can be done with EM algorithm.
 Bayesian approach  computational difficulty. 

Some technique is needed e g variational methodSome technique is needed, e.g. variational method.

38



S L iStructure Learning
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Working with Graphical Modelsg p

 Determining structure ba Determining structure 
 Structure given by modeling 

e.g. Mixture model, HMM 

b

c
d

eg ,
 Structure learning  Part 4

Parameter estimation

e
structure

 Parameter estimation
 Parameter given by some knowledge
 Parameter estimation with data

)|( ac XXp
1 2 3

1 0 2 0 3 0 4
ac XX \

 Parameter estimation with data 
such as MLE or Bayesian estimation

 Part 4

1 0.2 0.3 0.4
2 0.8 0.7 0.6

parameter
 Inference

 Computation of posterior and marginal probabilities   

parameter
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(Already seen in Part 3.)



How to determine a network?

 Prior knowledge
A graphical model may be given by the prior knowledge on the problem.

e.g.1) Diagnosis system 

Plug

Ignition

Battery

Th bl i t ti t

e.g.2) HMM 

Ignition The problem is to estimate
the probabilities (parameters). 

…

 Structure learning
If it is difficult to assume an appropriate model, 

the graph structure must be learned from data

41

the graph structure must be learned from data. 



Structure Learningg
Variables:  X1, ..., Xm

D t ( (1) (1)) ( (N) (N))Data: (X1
(1), ..., Xm

(1)), ..., (X1
(N), ..., Xm

(N))
Output of structure learning = a directed / undirected graph associated 

with the probability of (X1, ..., Xm).p y ( 1, , m)

baba

c
d

c
d

Data
structure learning

ee
g

Difficulty:  the number of possible directed graphs = 3m(m-1)/2

The search space is very large. 
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Learning of Directed Graphg p

 Score-based method
 Use a global score to match a graph and data.
 Problem:  Optimization in huge search space. 

Abl t i f ti i h Able to use informative prior on graphs. 
 Usually, discrete variables are assumed.
 Often referred to as Bayesian structure learning Often referred to as Bayesian structure learning.

 Constraint-based method Constraint based method
 Determine the conditional independence of the underlying 

probability by statistical tests.
 Problem: Many statistical tests are required.
 Often referred to as causal learning.
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Score-based Structure Learning: Exampleg

Discrete variables:  X1, ..., Xm

Data: D = {(X (1) X (1)) (X (N) X (N))}Data: D = {(X1
( ), ..., Xm

( )), ..., (X1
( ), ..., Xm

( ))}
 Model: 

When a directed graph G is specified, multinomial distribution is 
assumed with Dirichlet prior.  
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Score-based Structure Learning: Exampleg

 Marginal likelihood:
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Score(G) ≡ Log Marginal Likelihood of G.
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j
ibN , : number of data s.t. Xb = j and Xpa(b) = i . 



Score-based Structure Learningg
 Prior to the models

We can use a prior distribution P(G) on the graphs.p ( ) g p

Optimization over the graphs

)(log)|(log)( GPGDPG Score

 Optimization over the graphs
The space is very huge  greedy search.

Start from a graph G, and repeat the following process:Sta t o a g ap G, a d epeat t e o o g p ocess
Update the graph by deleting, inserting, or reversing an edge.
Accept the new graph G’ if Score(G’) > Score(G). 

 Many others 
 Score by MDL (minimum description length) / BIC (BayesianScore by MDL (minimum description length) / BIC (Bayesian 

information criterion)
 MCMC, etc.   

46
See D. Heckerman “A tutorial on learning with Bayesian networks” 

in Learning in Graphical Models (M. Jordan ed. 1998).



Marginal Likelihood / ABICg /

 Bayesian method for model selection
Maximum a posteriori model given data

)|(maxargˆ DGPG 

Note:

)()|()()|()|( GPGDPGPGDPDGP  as a function of model)()|(
)(

)()|()|( GPGDP
DP

DGP  as a function of model

 ˆ

If P(G) is uniform over the models,

 )(log)|(logmaxargˆ GPGDPG 

( ) ,

 dGPGDP )|()|(l 

)|(logmaxargˆ GDPG  Marginal log likelihood
(ABIC: Akaike’s Bayesian 
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 dGPGDP )|(),|(logmaxarg  information criterion)



Mini-Summary on score-based methody

U l b l h h d d Use a global score to match a graph and data.
Marginal log likelihood (ABIC), MDL, etc.

 Optimization in huge search space. 
Some techniques are needed.  e.g. greedy search.

 Able to use informative prior on graphs. 

 Usually, discrete or Gaussian variables are assumed.
For non-Gaussian continuous variables, we need some 

techniques such as discretization. 

 Also known as  Bayesian structure learning
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Causal Learningg

 Directed graph as causal graph
 A directed graph can be regarded as the expression of causal 

relationships among variables.

b

c

a Causal direction = Edge-direction

)|()()()( XXXpXpXpXp c
d

e

),|()()()( bacba XXXpXpXpXp 
),|(),|( dcecbd XXXpXXXp

 Causal learning:  learning of the directed graph from data.
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Causal Leaning from Datag

 With manipulation – intervention
X is a cause of Y?

Easier.  (do-calculus, Pearl 1995)X
Y

 No manipulation / with temporal information

manipulate observation

 No manipulation / with temporal information
)(tX )(tY : observed time series

X(1), …, X(t) are a cause of Y(t+1)?

 No manipulation / no temporal information

X(1), …, X(t) are a cause of Y(t 1)?

Causal inference is harder.
X

Y

50

Y



Addendum: Causality and Correlationy

 Correlation (dependence) and causality
Do not confuse causality with dependence (or correlation)!

Example)
A study shows: 

Young children who sleep with the light on are much more likely 
to develop myopia in later life. (Nature 1999)y ( )

Parental myopia

light on short-sightg g

light on short-sight
(Nature 2000)

51
Hidden common cause



Causal Learning without Manipulationg p

 Difficulty of causal inference from non-
experimental data 
 Widely accepted view till 80’s

Causal inference is impossible without manipulating some 
variables.

e g ) “No causation without manipulation” (Holland 1986 JASA)e.g.)   No causation without manipulation (Holland 1986, JASA)

 Temporal information is very helpful, but not decisive.
e.g.)  The barometer falls before it rains, but it does not cause 

the rain. 

 Many philosophical discussions, but not discussed here. 
See Pearl (2009) and the references therein.
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Causal Learning without Manipulationg p

 Why is it possible?
 DAG of chain  X – Z – Y 

V-structure

X Y
and 

X Y

 This is the only detectable directed graph of three variables. 

| ZX YZ

y g p
 The following structures cannot be distinguished from the 

probability.
Z| ZX Y

X Y

Z
YX ZYX Z

| ZX Y

53p(x,y,z)  =  p(x|z)p(y|z)p(z)  =  p(x|z)p(z|y)p(y)   =    p(x|z)p(z|y)p(x)



Causal Learning without Manipulationg p

 Fundamental assumptions
 Causal Markov condition

The probability generating data is associated with a DAG.

c
ba

)|()|()()()( XXXXXXXX





n

i
i iXpXp

1
))(pa|()(

 Causal Faithfulness Condition
d

)|(),|()()()( cdbacba XXpXXXpXpXpXp 

The inferred DAG (causal structure) must express all the 
independence relations. 

This includes the true probability 
as a special case, but the structure

c
ba

c
ba
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Constraint-based Causal Learningg

 IC algorithm (Verma&Pearl 90)
Input  – V: set of variables,     D: dataset of the variables. 
Output – Partial DAG (specifies an equivalence class, directed partially)

1. For each                                    ,  search for 
such that 

)(),( baVVba  },{\ baVSab 

| SabXa Xb

Construct an undirected graph (skeleton) by making an edge 
between a and b if and only if no set Sab can be found.  

2. For each nonadjacent pair (a,b) with a – c – b,  direct the edges 
by                     ifbca  abSc

3. Orient as many of undirected edges as possible on condition that 
neither new v-structures nor directed cycles are created. 
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– Implemented in PC algorithm (Spirtes & Glymour) efficiently. 



Constraint-based Causal Learningg

 Example
True structure

a a a a

The output from each step of IC algorithm 

1) 2) 3)

cb cb cb cb

) ) 3)

d d d d

e e e e

},{ cbSad 
}{d

For (b,c), bcSd 
}{dSae 
}{aSbc 

}{dSS cebe 

bc

Direction of some edges 
may be left undetermined
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}{cebe
For other pairs,
S does not exist.

may be left undetermined.



Mini-summary on constraint-based y
method

 Determine the conditional independence of the underlying 
probability by statistical tests.

 Many statistical tests are required.
 Problems: 

 Errors in statistical tests.
 Computational costs.
 Multiple comparison difficult to set critical regions Multiple comparison – difficult to set critical regions 

 Effects of hidden variables are important to consider (not 
discussed here)discussed here).

 Often discussed in the context of causal learning.
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Summary: Structure learningy g
 Two major approaches

 Score-based Bayesian structure learning Score based Bayesian structure learning
There are many methods how to define score function.
Marginal likelihood, MDL, etc.

 Constraint-based causal learning
Testing conditional independence.

 More recent approach
 Sparse network by Lasso

Meinsha sen and B hlmann [Ann Statist 34 (2006) 1436 1462]Meinshausen and Buhlmann [Ann. Statist. 34 (2006) 1436–1462]

 Further readings
D Heckerman A tutorial on learning with Bayesian networks in Learning inD. Heckerman. A tutorial on learning with Bayesian networks. in Learning in 

Graphical Models.  (ed. M.Jordan) pp.301-354. MIT Press (1999)
This book contains various advanced topics. 

J Pearl Causality 2nd ed Cambridge University Press (2009)
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J. Pearl. Causality. 2nd ed. Cambridge University Press (2009)
宮川雅巳 「統計的因果推論」 朝倉書店(2004)
宮川雅巳 「グラフィカルモデリング」 朝倉書店(1997)


