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Inference with Graphical Modelp

 Assumption in this partp p
Every variable takes values in a finite set. 

 Probabilistic Inference
)|( XYp X: observed (evidence)

Y: variable for inference

 Example: diagnosis for car start
Fuel?

(yes/no)
Clean plug?

(yes/no)(yes/no)

St t?

(yes/no)

Fuel Meter Start?
(yes/no)

Fuel Meter
(full/half/empty)
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P(Clean plug = no | No start, Fuel meter = half)



Inference with Graphical Modelp

 Probabilistic inference with graphical model
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Inference with Graphical Modelp
Assume each variable takes K values

N ï th d Naïve method
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In total:  K5 + 2K operations are needed.
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Inference with Graphical Modelp
 Efficient method: 

Eli i ti i i li ti
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Elimination or successive marginalization 1
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In total: K3 (+ K) + K3 + K2 + 2K operations are needed. 
The efficiency depends on the number of variables in the factors. 



Tree
 The previous elimination method works most efficiently for trees. 

 Tree: a (directed or undirected) graph such that for any two
nodes there is a unique (undirected) path connecting them. q ( ) p g

 Tree is connected, and has no loop.

undirected tree di t d t

 |E| = |V|-1

undirected tree directed tree
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Inference with Undirected Tree
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Inference with Undirected Tree

 Propagation in a tree 1

Marginalization in an undirected tree
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Inference with Undirected Tree
Propagate messages from the bottom nodes to an upper level. 
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When all the messages are propagated to i0, 
the marginal of        is given by k0iX
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Note: normalization factor 1/Z in the joint probability is not needed.
We can normalize the marginal after the propagation finishes
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We can normalize the marginal after the propagation finishes.



Inference with Undirected Tree

 Computation of all the marginals
 We DO NOT need to repeat the process for every node.
 Propagate the messages downward

after the upward propagations are done iafter the upward propagations are done.

 When all the upward and downward j0

i0)(
000 jji Xm 

p
messages are computed, every marginal
can be obtained. 

j0
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Belief Propagation for Undirected Treep g

 Belief propagation algorithm for undirected tree
(sum-product algorithm)

(1) Fix a root of the tree
(2) [Upward] Propagate the messages from to bottom nodes to the

root according to
j

(3) [D d] P t th
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(3) [Downward] Propagate the messages 
from the root to the bottom nodes by the same rule.

(4) The marginals are obtained by 
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Belief Propagation for Undirected Treep g

 Message passing protocol
 The order of updates may be different, but should keep the 

following message passing protocol:
“The message to a node must be propagated after theThe message to a node must be propagated after the 
messages from all the other neighbors are received”.  

Effi i t l ith Efficient algorithm
 Reuse of messages to compute all the marginals.

The cost for computing all the marginals The cost for computing all the marginals
=  (Upward + Downward) x K2 = 2|E| x K2 = 2(|V|-1) x K2

Linear in the number of nodes or edgesLinear in the number of nodes or edges

 Use of evidence
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 If some nodes have evidence, just fix the values in computing the 
messages. 



Inference with Directed Tree
(Details are omitted in this course)
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Directed Tree
 Directed tree (polytree)

E lExample
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directed tree
(polytree)
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Belief Propagation for Directed Treep g

 -algorithm (Kim & Pearl 1983) two types of messages are used
Parent to child:
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 -algorithm is the first general belief propagation algorithm.



Mini Summaryy

 Belief propagation / sum-product algorithm
 All the marginals are exactly calculated for trees.

 Undirected tree, factor tree, polytree.
N t ill b di d l t Non-tree cases will be discussed later. 

 The computational cost is linear w.r.t. the tree size (number of 
ariables)variables).
 Basic idea is successive marginal-out, but the messages are 

reused to compute all the marginals. g
 Messages are passed upward and then downward.
 In general, the order of the message passing should keep the 

message passing protocolmessage passing protocol. 

 The equations of message passing is local: 
d t f th f th i hb d l l
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product of the messages from the neighbors and sum over local 
variables. 



Mini Summaryy
 Constant factor is not necessary.

T i th j i t b bilit d it th fTo given the joint probability density, the form

 )()( aa XfXp

is sufficient to apply the belief propagation.
Just normalize after the unnormalized marginal is computed.  

 Normalization factor can be computed by belief propagation.
ForFor 

Normalization factor Z is given by marginal-out:
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
X
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