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Introduction and Review
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Graphical Model – Rough Sketchp g

 Graphical modelp
 Graph:  G = (V, E)   V: the set of nodes,   E: the set of edges
 In graphical models, 

 the random variables are represented by the nodes.
 statistical relationships between the variables are represented by 

the edges.the edges.

A A A

B C B C B C

D D

Directed graph Undirected graph

D

Factor graph*
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Directed graph Undirected graph Factor graph

* Factor graphは本講義では議論しない



Purpose of Using Graphical Modelsp g p

 Intuitive and visual representationp
A graph is an intuitive way of representing and visualizing the 
relationships among variables. 

 Independence / conditional independence
A graph represents conditional independence relationships amongA graph represents conditional independence relationships among 
variables. 
 Causal relationships, decision making, diagnosis system, etc.

 Efficient computation
With h ffi i t ti l ith b d fi dWith graphs, efficient propagation algorithms can be defined. 
 Belief-propagation, junction tree algorithm

Which parts of the modeling block efficient computation?

4

Which parts of the modeling block efficient computation?



Example:  Diagnosis p g

C blCar start problem

Plug Battery Fuel

Ignition ? Fuel MeterIgnition ?

If Fuel Meter indicates “full” and Plug is checked to be clean, it is 
more likely that the battery is dead. 
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Review: Independencep

For simplicity, it is assumed that the distribution of a random variable 
X h th b bilit d it f ti ( )X has the probability density function pX(x). 

 Independence Independence
 X and Y are independent 

)()()(

X Y(           )

)()(),( ypxpyxp YXXY 

X Y
Dawid’s notation
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Review: Conditional Probabilityy

 Conditional probability density of Y given X

),()|( yxpXYD f
)(

),()|(| xp
yxpxyp

X

XY
XY Def.

)(




y XY

XY

yxp
yxp

),(
),(
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Review: Conditional Independencep

 Two characterizations David’s notation
 Two characterizations

 X and Y are conditionally independent given Z (                )X Y | Z

)|()|()|,( ||| zypzxpzyxp ZYZXZXY  for all z with pZ(z) > 0.

“conditional “ independnence 

 X Y | Z

p

)|(),|( || zxpzyxp ZXYZX  for all (y,z) with pYZ(y,z) > 0.

X Y | Z

If we already know Z, additional information on Y
does not increase the knowledge on X. 
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Conditional Independence - Examplesp p

 Speeding Fine       Type of Car (perhaps)

 Speeding Fine       Type of Car  |  Speed

 Ability of Team A        Ability of Team B

 Ability of Team A        Ability of Team B  | Outcome of Team A and B

9



Conditional Independencep

 Another characterization of cond. independencep
Proposition 1

X Y | Z

there exist functions f(x,z) and g(y,z) such that 

)()()( f ),(),(),,( zygzxfzyxpXYZ 
for all x, y and  z with pZ(z) > 0.

Corollary 2
X Y

there exist functions f(x) and g(y) such that 
)()(),( ygxfyxpXY  for all x, y.
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Conditional Independencep
 Proof of Prop.1.

Clear from the definitionClear from the definition. 
For any x, y, and z with pZ(z) > 0, 

We haveWe have





yxZ

XYZ
ZXY zygzxf

zygzxf
zp

zyxpzyxp
~~

| ),~(),~(
),(),(

)(
),,()|,(

 zygzxf )()(


 
yx

x

x
ZXYZY zygzxf

zygzxf
zyxpzyp

~~
|| ),~(),~(

),(),(
)|,()|(

Thus,



 
yx

y

y
ZXYZX zygzxf

zygzxf
zyxpzxp

~~
|| ),~(),~(

),(),(
)|,()|(
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Undirected Graph and 
kMarkov Property
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Undirected Graphp

 Undirected Graphp
 G = (V, E) : undirected graph （無向グラフ）

V: finite set
, the order is neglected.

Example:  

VVE  (a, b) = (b, a) a

b c},,,{ dcbaV  b c

d
)},(),,(),,(),,{( dbdccbbaE 

 Graph terminology
 Complete:  A subgraph S of V is complete （完全）

if d b ( ) i S t db
a

if any a and b (        ) in S are connected 
by an edge.  

 Clique:  A clique is a maximal complete 

ba  b c

d
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q q p
subset w.r.t. inclusion. (a,b,d): complete, 

but not a clique



Probability and Undirected Graphy p

G = (V, E) : undirected graph.      V = {1,…,n}
: random variables indexed by V. 

The probability density function p(X) factorizes with respect to G if

),,( 1 nXXX 

The probability density function p(X) factorizes with respect to G if 
there is a non-negative function C(XC) for each clique C in G
such that

1 
clique :

)(1)(
C

CC X
Z

Xp 

Notation: for a subset S of V XX )(

(Z: normalization constant)

 A.k.a. Markov random field

Notation:  for a subset S of V, SaaS XX  )(

 An undirected graph does not specify a single probability, but 
defines a family of probabilities i e it defines a set of conditional

14

defines a family of probabilities,  i.e. it defines a set of conditional 
independence relations.  



Probability and Undirected Graphy p

E lExample

ba b

c
d

a

d
e

),,(),,(),(1)( 321 edcdcbca XXXXXXXX
Z

Xp 
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Practical Examplep

 Markov random field for image Markov random field for image

   jiij XXU
Z

Xp ),(exp1)(

i j

 
Eji

jjZ ),(

Xi in {+1,-1} (binary image)

XXXXU )(e.g. (neighbors tend to take the same value)jijiij XXXXU ),(e.g.

  


Eji ji XX
Z

Xp
),(

exp1)( 

(neighbors tend to take the same value)

 
EjiZ ),(

c.f. Ising model in statistical physics
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Markov Propertyp y

Def. Separation. 
G (V E) di t d h AG = (V, E) : undirected graph. 
A, B, S: disjoint subsets of V.
S separates A from B if every path 

2

3

1
A

p y p
between any a in A and b in B intersects with S. 

3
4

5 S
B

Theorem 3
G = (V, E) : undirected graph.G  (V, E) : undirected graph. 
X: random vector such that the p.d.f. factorizes w.r.t. G. 
If S separates A from B, then 

XA XB |  XS

(P f t l t )
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(Proof: next lecture.)



Markov Propertyp y

 Example
b

c

a

c
d

e),,(),,(),(1)( 321 edcdcbca XXXXXXXX
Z

Xp 

 {c, d} separates {b} and {e} Xb Xe |  X{c,d}

)()()(1)( XXXXXXXXXXXX  ),,(),,(),(),,,( 321 edcdcb
X

caedcb XXXXXXXX
Z

XXXXp
a



),,(),,()(~1
321 edcdcbc XXXXXXX

Z


 {c} separates {a} and {b} X X | X

Z
),,(),,(1

dcedcb XXXgXXXf
Z

 Use prop.1.

 {c} separates {a} and {b} Xa Xb |  Xc
 
ed XX

edcdcbcacba XXXXXXXX
Z

XXXp
,

321 ),,(),,(),(1),,( 

1
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),(),(1
1 cbca XXgXX

Z
 Use prop.1.



Markov Propertyp y

 Global Markov Propertyp y
G = (V, E) : undirected graph 
X: random vector indexed by V.

X satisfies global Markov property relative to G if                       
holds for any triplet (A,B,S) of disjoint subsets of V such that S

t A f B (G h t ll th diti l i d d )

XA XB |  XS

separates A from B.   (Graph tells the conditional independence)

The previous theorem tellsThe previous theorem tells 
if the distribution of X factorizes w.r.t. G, then X satisfies global 
Markov property relative to G. 

19



Markov Propertyp y

 Hammersley-Clifford theorem  (see e.g. Lauritzen. Th.3.9)y
Theorem 4 

G = (V, E) : undirected graph 
X d t i d d b VX: random vector indexed by V.
Assume that the probability density function p(X) of the distribution 
of X is strictly positive.

If X satisfies global Markov property w.r.t. G, then X factorizes w.r.t. 
G, i.e.  p(X) admits the factorization:

.)()(
clique :


C
CC XXp 

Factorization Global Markov
Th. 3
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Th. 4
(with positivity)



Directed Acyclic Graph and 
kMarkov Property
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Directed Acyclic Graphy p

 Directed Graphp
 G = (V, E) : directed graph (有向グラフ)

V: finite set   -- nodes
a

: set of edges

Example:  

VVE 
b c

},,,{ dcbaV 
d)},(),,(),,(),,{( dbdccbbaE 

Orient the edge (a,b) by a b

 Directed Acyclic graph (DAG, 非巡回有向グラフ)
Directed graph with no cycles.

C l di t d th t ti d di t th dCycle:  directed path starting and ending at the same node.
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DAG and Probabilityy

 Probability associated with a DAGy
 A DAG defines a family of probability distributions


n

XXXX )|()( 



i

ipain XXpXXp
1

)(1 )|(),,( 

: parents of node i. EjiVjipa  ),(|)( : parents of node i.  EjiVjipa  ),(|)(

p factorizes wr.t. DAG G. 

baExample:

c
d

e),,,,( edcba XXXXXp
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



Practical Examplesp

 Finite mixture model

)|()(),( ZXpZpZXp 


Z ∈ Finite setZ

Hidd M k d l


Z

ZXpZpXp )|()()(
X

 Hidden Markov model

T

X0 X1 X2 X3 XT
…

)|()|()(),(
1

10 tt

T

t
tt XYpXXpXpYXp 




Y Y Y Y Y

 Mixture model and HMM are discussed later.

Y0 Y1 Y2 Y3 YT
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Conditional Independence with DAGp

 Three basic cases
(1) a c b )|()|()(),,( cbacacba XXpXXpXpXXXp 

Xa Xb |  Xc

)|()(),()|()( caccaaca XXpXpXXpXXpXp Note
)|()|()(),,( cbcaccba XXpXXpXpXXXp 

)|()|()|,( cbcacba XXpXXpXXXp 

(2) 

a
c

b
)|()|()(),,( cbcaccba XXpXXpXpXXXp 

a b

Xa Xb |  Xc

25
Note: ),,( cba XXXp are the same for (1) and (2).



Conditional Independence with DAGp

E l f (2) Example for (2)
Sex

(male/female)

Hair 
length Stature

Sex (male/female) does influence both of hair length and statureSex (male/female) does influence both of hair length and stature, 
but given male (or female), hair length and stature are independent. 
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Conditional Independence with DAGp

(3)(3) a

c

b ),|()()(),,( bacbacba XXXpXpXpXXXp 

Xa Xb |  Xc Xa Xb
head-to-head
(or v-structure)

Note: ),,( cba XXXp are different from (1) and (2).in (3) 

Allergy Coldgy

Sneeze

If you often sneeze, but you do 
not have cold, then it is more 
likely you have allergy (hay fever)

27

Sneeze likely you have allergy (hay fever).



D-Separationp

 Blocked: 
An undirected path  is said to be blocked by a subset S in V
if there exists a node c on the path such that either 
(i) d i t h d t h d i ( )S(i)               and c is not head-to-head in  (                   or                   ),

(ii)                    and                

Sc c c

c .))(}({  Scdec
h d t h d

Examples

head-to-head
} |{)( jiVjide tofrompathdirectedDescendent: 

c

b

a

c b

a

c b

a  

Examples

b c b c b

S
S

S

28
 is blocked by S  is blocked by S  is NOT blocked by S



D-Separationp

 d-separate:p
A, B, S:  disjoint subsets of V.
S d-separates A from B if every undirected path between a in A

d b i B i bl k d b Sand b in B is blocked by S. 

 d-separation and conditional independence d separation and conditional independence
Theorem 5

X: random vector with the distribution associated with DAG GX: random vector with the distribution associated with DAG G.
A, B, S:  disjoint subsets of V.
If S d-separates A from B, then 

XA XB |  XS

(Proof not shown in this course See Lauritzen 1996 3 23&3 25)
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(Proof not shown in this course.  See Lauritzen 1996, 3.23&3.25)



D-Separationp

 Examplep


S = . ba
Xa Xb


a  c  b is blocked (with c).
a  c  d  b is blocked (with d) 

c
d

ea  c  e  d  b is blocked (with e)



e

X X | X

a  c  d is blocked (with c).
a c b d is blocked (with b)

Xa Xd |  X{b,c}
b

c

a

a  c  b  d is blocked (with b) 
a  c  e  d is blocked (with e or c)

c
d

e
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Comparison: UDG and DAGp

 Limitation of undirected graphg p
),|()()(),,( bacbacba XXXpXpXpXXXp 

a b a b

c cc c

DAG If X X , Xb X , X Xb | X ,DAG If 
any UDG is not able to 
express Xa Xb.

Xa Xc , Xb Xc , Xa Xb | Xc ,

Xa Xb | XcXa Xb ,
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Comparison: UDG and DAGp

 Limitation of DAG
a

cb

Undirected graph
),,,( dcba XXXXp

cb

d

),(),(),(),( dcdbcaba XXpXXpXXpXXp

X X | X X X | X

No DAG expresses these conditional independence relationships. 

Xa Xd |  X{b,c} Xb Xc |  X{a,d}

p p p

If every node had the form           , the graph 
would be a cycle.  Thus, there must be a v-structure.   
Conditional independence of the parents of the v structure given

[Sketch of the proof.]

Conditional independence of the parents of the v-structure given 
the other two nodes cannot 
be expressed by a DAG. 
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Appendix: Terminology on Graphspp gy p

 Undirected graph   G = (V, E)g p ( )
 Adjacent（隣接）:   a and b in V are adjacent if
 Neighbor(近傍）:    

)( ba  .),( Eba 
}.),(|{)( EbaVbane  ne(a)

 DAG    G = (V, E) a

 Parents: 
 Children:

}.),(|{)( EabVbapa 
}.),(|{)( EbaVbach 

an(a)
 Ancestors(先祖）: 

Descendents(子孫):

}. to frompath directed|{)( abVbaan 
a

an(a)

 Descendents(子孫):   
}. to frompath directed|{)( baVbade  c de(c)
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More on Markov Property
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Markov Properties Revisitedp

 Markov properties for an undirected graphp p g p
G = (V, E) : undirected graph.      
X: random vector indexed by V. ))(}({\ aneaV 

 Local Markov
X satisfies local Markov property relative to G
if for any node a ay

 Pairwise Markov

Xa )())(}({\ | aneaneaV XX 
ne(a)

 Pairwise Markov
X satisfies pairwise Markov property relative to G
if any non-adjacent pair of nodes (a, b) satisfies

Xa Xb },{\| baVX b

a

35
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Markov Properties Revisitedp

Theorem 7
Factorization          global Markov           local Markov 

pairwise Markov
 

 pairwise Markov

proof)   factorization             global Markov   :    Theorem 3.



global Markov           local Markov    :    easy.
local Markov            pairwise Markov   :    needs some math

(Exercise)




(Exercise).

 Hammersley-Clifford asserts that the pairwise Markov property 
means factorization w r t the graph under positivity of the densitymeans factorization w.r.t. the graph under positivity of the density. 
(Theorem 4 assumes ‘global Markov’, but the assertion holds under   
‘pairwise Markov’ assumptoin.)

36
 Similar notions are defined for directed and factor graphs.



Proof for Undirected Case

We show a slight generalization of Theorem 3.
Theorem 8

Let G = (V, E) be an undirected graph.  If the distribution of X
factorizes as 1factorizes as 

then X satisfies global Markov property relative to G, i.e., for a 

,)(1)(
complete :


C
CC X

Z
Xp 

triplet (S, A, B) such that S separates A from B, the conditional 
independence                      holds. XA XB | XS S BA

 Proof Proof
Let

},,,|\{~   SdaAaSVdA to frompath

A~

B~
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},,,|{ p
).~(\~ SAVB 



Proof for Undirected Case

Obviously
S BA

,~AA
and since S separates A from B, 

A~
.~BB 

We can show for any complete subgraph C
or                     holds.

B~

ASC ~ BSC ~

e

If              there is nothing to prove.  
Assume                .SC 

,SC 

Suppose that the above assertion does not hold, then 
Let                and  

Because a and b are in the complete subgraph C there is an



CAa  ~.~~   BCAC and .~ CBb 
Because a and b are in the complete subgraph C, there is an 
edge e connecting a and b.  Since there is a path  from 
a to A without intersecting S.  Connecting  and e makes a path 
from b to A without intersecting S which contradicts with the

,~Aa

38

from b to A without intersecting S, which contradicts with the 
definition of     and     .A~ B~



Proof for Undirected Case

From this fact, 





BSD

D
DD

ASC
C

CC
C

CC XX
Z

X
Z

Xp
~complete :~complete :complete :

)()(1)(1)( 

hi h

),(),( ~~ SBSA XXgXXf

which means
|  XS ,AX ~ BX ~ (Proposition 1)

and thus
XA XB |  XS .

Q.E.D.
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Mini Summaryy

Undirected graph Directed acyclic graph (DAG)

b

c

ab

c

a

c
d

e

c
d

e

 Probability associated with G,
(p(X) factorizes w.r.t. G) 

 Probability associated with G
(p(X) factorizes w.r.t. G)

n1

 p(X) factorizes w r t G  p(X) factorizes w r t G





n

i
ipain XXpXXp

1
)(1 )|(),,( 

clique :
)(1)(

C
CC X

Z
Xp 

 p(X) factorizes w.r.t. G

X is global Markov relative to G.
(i e if S separates A from B

 p(X) factorizes w.r.t. G

X is d-global Markov relative to G.
(i.e. if S d-separates A from B,

40

(i.e. if S separates A from B, 
then                        .)  

(i.e. if S d separates A from B, 
then                        .)  XA XB |  XS XA XB |  XS


