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Introduction and Review



Graphical Model — Rough Sketch

Graphical model
o Graph: G=(V,E) V:the setof nodes, E:the setof edges
o In graphical models,

the random variables are represented by the nodes.

statistical relationships between the variables are represented by
the edges.

Directed graph Undirected graph Factor graph*

* Factor graphlEAEZE TIEEMLEL 3



Purpose of Using Graphical Models

Intuitive and visual representation

A graph is an intuitive way of representing and visualizing the
relationships among variables.

Independence / conditional independence

A graph represents conditional independence relationships among
variables.

—> Causal relationships, decision making, diagnosis system, etc.

Efficient computation
With graphs, efficient propagation algorithms can be defined.
—> Belief-propagation, junction tree algorithm
Which parts of the modeling block efficient computation?



Example: Diagnosis

Car start problem

lgnition ? Fuel Meter

If Fuel Meter indicates “full” and Plug is checked to be clean, it is
more likely that the battery is dead.



Review: Independence

For simplicity, it is assumed that the distribution of a random variable
X has the probability density function py(x).

Independence
o XandY are independent (X1LY)

S Pyy (X Y) =Py (X)py (Y)

XAY

Dawid’s notation



Review: Conditional Probability

o Conditional probability density of Y given X

Pyy (X, Y)
Py (X)

__ b (XxY)
2, Pxy (%)

Def. Py x (y | X) —




Review: Conditional Independence

= Two characterizations [ el ]

o XandY are conditionally independent givenZ (X1LY|Z)

< Pxvz (X, y[z)= Pxz (x]2) Pviz (yl2z) for all z with p,(z) > 0.

“conditional “ independnence

o XHY|Z
& Puyz (X1Y,2) = py (X12)  for all (y,z) with py,(y,z) > 0.

If we already know Z, additional information on Y
does not increase the knowledge on X.



Conditional Independence - Examples
o Speeding Fine }l\Type of Car (perhaps)
o Speeding Fine || Type of Car | Speed
o Ability of Team A 1l Ability of Team B

o Ability of Team A jj\ Ability of Team B | Outcome of Team A and B



Conditional Independence

Another characterization of cond. independence

Proposition 1

X1Y|z
N—

there exist functions f(x,z) and g(y,z) such that

Pxvz (X, Y,2) = 1(X,2)g(y, 2)
for all x, y and z with p,(z) > 0.

Corollary 2

X ALY
—

there exist functions f(x) and g(y) such that
Pxy (X, ¥) = T(x)g(y) for all x, .

10



Conditional Independence

o Proof of Prop.1.
—> Clear from the definition.
< For any x, y, and z with p,(z) > 0,
pZ(Z) — Z:B,y pXYZ(a:a Y, Z) — Zm,y f(.’l?, Z)g(y7 Z)

= (X, f(@,2)) (2, 9y, 2))

We have

Pyyz (X, Y, 2) f(x,2)g(y,z)
xyiz \ K Y 12) = = ~ ~
P Y= ) TS TR )Y 93.)
) S HxD)Y(y,2)
|0Y|z(y|z)—;onwz(x,ylz)—ZY ®03 0.0
f(x,2) ) 96y:2)
Thus,

PXY|Z($,:U|Z) :pX|Z($‘Z)pY|Z(y|Z)
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Undirected Graph and
Markov Property
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Undirected Graph

Undirected Graph
a G=(V, E): undirected graph (R4 57)
V: finite set
E <V xV, the order is neglected. (a, b) = (b, a)

Example: V ={a,b,c,d}
E ={(a,b),(b,c),(c,d),(b,d)}

Graph terminology

o Complete: A subgraph S of V is complete (5££)
if any aand b (a=Db) in S are connected
by an edge.

o Clique: A cligue is a maximal complete

subset w.r.t. inclusion. (@,b,d): complete,
but not a clique
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Probability and Undirected Graph

G =(V, E) : undirected graph. V={1,...,n}
X =(Xg,...,X,) :random variables indexed by V.

The probability density function p(X) factorizes with respect to G if
there is a non-negative function y(X.) for each clique C in G

such that
p(X)=— H we(X:) (Z: normalization constant)
C clique
Notation: for a subsetSofV, X =(X,).s

A.k.a. Markov random field

o An undirected graph does not specify a single probability, but
defines a family of probabilities, i.e. it defines a set of conditional

independence relations.
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‘ Probability and Undirected Graph

Example

1
POX) = ya(Xay X Jya (Xo, Xoo X JWg (Koo g Xe)
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Practical Example

Markov random field for image

()= TTewl-U, (X, X))

X; In {+1,-1} (binary image)

e.g. Uij (X, X J) =f )(i)(J (neighbors tend to take the same value)

p(X) = %GXP(—ﬂZ(i,j)eE Xin)

c.f. Ising model in statistical physics
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Markov Property

Def. Separation.
G = (V, E) : undirected graph.
A, B, S: disjoint subsets of V.
S separates A from B if every path
between any a in A and b in B intersects with S.

Theorem 3
G = (V, E) : undirected graph.

X: random vector such that the p.d.f. factorizes w.r.t. G.
If S separates A from B, then

Xa L X5 X;

(Proof: next lecture.)

17



Markov Property

o Example

1
p(X) — ZW1(Xa’ XC)W2(Xb’ XC, Xd)l//3(xci Xd 1 Xe)

{c, d} separates {b} and {e} = X, 1L X, | Xie.d

1
p(xb' xc’ Xd J Xe) :Zzl//l(xav Xc)‘//z(xb’ xc’ Xd)WB(Xm Xd J Xe)
Xa

1=
:Zliyl(xc)WZ(xb’ Xor Xg W3(Xe, Xy, Xe)
1

=Zf(xb,XC,Xd)g(Xe,Xc,Xd) Use prop.1.

{c} separates {a} and {b} => X_Il X, | X,

1
p(xa' Xb’ Xc) :Zl/jl(xa’ Xc)xz;({l/IZ(xb’ Xc' Xd)W3(Xc’ Xd ! Xe)}

1 (Xa X )9(Xy, X) Use prop.1.
18
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Markov Property

Global Markov Property
G = (V, E) : undirected graph
X: random vector indexed by V.

X satisfies global Markov property relative to G if X, 1l Xg| X
holds for any triplet (A,B,S) of disjoint subsets of V such that S
separates A from B. (Graph tells the conditional independence)

The previous theorem tells
If the distribution of X factorizes w.r.t. G, then X satisfies global
Markov property relative to G.
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Markov Property

Hammersley-Clifford theorem (see e.g. Lauritzen. Th.3.9)

Theorem 4
G = (V, E) : undirected graph
X: random vector indexed by V.

Assume that the probability density function p(X) of the distribution
of X is strictly positive.

If X satisfies global Markov property w.r.t. G, then X factorizes w.r.t.
G, i.e. p(X) admits the factorization:

p(X)= [lwc(Xc)

C:clique

Th. 3
[ Factorization | Global Markov}

Th. 4
(with positivity)
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Directed Acyclic Graph and
Markov Property
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Directed Acyclic Graph

Directed Graph

o G=(V, E): directed graph (BE4'52)
V: finite set -- nodes
E cV xV : set of edges

Example: V ={a,b,c,d}
E ={(a,b),(b,c),(c,d),(b,d)}

Orient the edge (a,b) bya > b

o Directed Acyclic graph (DAG, JEK[EF M5 52)
Directed graph with no cycles.
Cycle: directed path starting and ending at the same node.

N
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DAG and Probability

Probability associated with a DAG
o A DAG defines a family of probability distributions

pa(i)={jeV (i, j) € E} : parents of node i.

p factorizes wr.t. DAG G.

Example:

(X, X, Xo, Xy, X,)

= P(X,) P(Xp) POX, [ X5, Xp) POXg | Xpy X)) P(Xe | Xey Xg) .



Practical Examples

o Finite mixture model

VA 7 € Finite set P(X,Z)=p(Z)p(X |Z)

« p(X)=> p(Z)p(X|2)

o Hidden Markov model

Xo X1 X, X5 Xt
p(X,Y)= p(xo)H p(Xt | Xt—l)p(Yt | xt)
t=1
Yo Y, Y, Y, Y,

2

Mixture model and HMM are discussed later.
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Conditional Independence with DAG

Three basic cases
(1) P(Xas Xp, Xe) = P(X) P(Xc [ X)) P(Xy [ Xe)
Xa J-I— Xb | Xc

Note p(xa) p(Xc | Xa) - p(xa’ Xc) = p(xc) p(xa | Xc)
—> p(xa’ Xb’ Xc) = p(Xc) p(xa | Xc) p(xb | Xc)

p(xa’ Xb | Xc) — p(xa | Xc) p(xb | Xc)

(2)
- © - P(Xas Xy Xc) = P(Xo) P(Xa | X)P(Xp | Xo)

Xa Xb | Xc

Note: p(X,,X,, X.) are the same for (1) and (2).
25



'Conditional Independence with DAG

= Example for (2)

Sex
male/female

Sex (male/female) does influence both of hair length and stature,
but given male (or female), hair length and stature are independent.

26



Conditional Independence with DAG

3 @ ®  p(Xa Xy, X)) = p(X) P(Xp) (X | Xa0 Xp)
©

head-to-head xa :N\ Xb | Xc Xa 1L Xb

(or v-structure)

Note: p(X,,X,,X.) in(3) are different from (1) and (2).

If you often sneeze, but you do

not have cold, then it is more
@ likely you have allergy (hay fever).

27



D-Separation

Blocked:

An undirected path ris said to be blocked by a subset S inV
If there exists a node c on the path such that either

(i) ceS andcis not head-to-head in 7 (O—-C—-O or O«—c—0),
(i) O—~@+O and ({cyde(c))NsS =¢.

head-to-head _ _ _ o
Descendent: de(i) ={j €V | 3directed path fromi to j}

7is blocked by S 7is blocked by S 1S NOT blocked by S
28



D-Separation

d-separate:

A, B, S: disjoint subsets of V.

S d-separates A from B if every undirected path between a in A
and b in B is blocked by S.

d-separation and conditional independence

Theorem 5
X: random vector with the distribution associated with DAG G.

A, B, S: disjoint subsets of V.
If S d-separates A from B, then

Xall Xg| X

(Proof not shown in this course. See Lauritzen 1996, 3.23&3.25)
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D-Separation

Example
o X, X,

S=¢.
a 2> c <€ bis blocked (with c).
a—> c > d < bis blocked (with d)

a—>c—>e<d< bisblocked (with e)

- Xa 1 Xd i ><{b,c}

a - ¢ =2 dis blocked (with c).
a—> c < b < dis blocked (with b)
a—>c > e < dis blocked (with e or ¢)

30



Comparison: UDG and DAG

Limitation of undirected graph

p(xa’ Xb’ Xc) = p(xa) p(xb) p(xc | Xa’ Xb)

(a) (o . b

DAG If X X, X X, Xo X, | X,

any UDG is not able to
Kadl X, Xa X | X, express X, 1L X,.

31



Comparison: UDG and DAG

Limitation of DAG

Undirected graph @
p(Xa’Xb’XC’Xd) Q e
— p(xa’ Xb) p(xa’ Xc) p(xb’ Xd) p(xc’ xd)

><a 1L Xd | X{b,c} Xb 1L Xc | X{a,d}

No DAG expresses these conditional independence relationships.

[Sketch of the proof.] If every node had the form —()—, the graph
would be a cycle. Thus, there must be a v-structure.
Conditional independence of the parents of the v-structure given

the other two nodes cannot
be expressed by a DAG. @ :ij: :i;:
32



Appendix: Terminology on Graphs

Undirected graph c=(v,E)

o Adjacent(f##): aandbinV (a=b) are adjacent if (a,b) € E.

o NeighborGaf%): ne(a)={beV|(a,b)eE}. O ne(a)
()

DAG G=(,E) @)

o Parents: pa(a)={beV |(b,a) e E}.

o Children: ch(a)={beV |(a,b) € E}.

o Ancestors(5cfH): S
an(a) ={b €V |3 directed path from b to a}. ‘@

o Descendents(F#): O
de(a) ={b €V |3 directed path from a to b}. de(c)

33



More on Markov Property
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Markov Properties Revisited

Markov properties for an undirected graph
G = (V, E) : undirected graph.
X: random vector indexed by V. V\ ({a}une(a))

o Local Markov
X satisfies local Markov property relative to G

If for any node a
Xa J-I— xV\({a}une(a)) | Xne(a)

Dainancn MNMarl,Avs
D I QI VVIOU IVIAI NUV

X satisfies pairwise Markov property relative to G
If any non-adjacent pair of nodes (a, b) satisfies

Xa J-l— Xb | XV\{a,b}

ne(a)

V \{a,b}



Markov Properties Revisited

Theorem 7

Factorization — global Markov —> local Markov
— pairwise Markov

proof) factorization —> global Markov : Theorem 3.
global Markov —> local Markov : easy.

local Markov —> pairwise Markov : needs some math
(Exercise).

o Hammersley-Clifford asserts that the pairwise Markov property
means factorization w.r.t. the graph under positivity of the density.
(Theorem 4 assumes ‘global Markov’, but the assertion holds under

‘pairwise Markov’ assumptoin.)

o Similar notions are defined for directed and factor graphs.
36



Proof for Undirected Case

We show a slight generalization of Theorem 3.
Theorem 8
Let G = (V, E) be an undirected graph. If the distribution of X

factorizes as 1
pP(X)== [Jlwc(Xc)

Z C:complete

then X satisfies global Markov property relative to G, i.e., for a
triplet (S, A, B) such that S separates A from B, the conditional
independence X, 1l Xg| X5 holds.

o Proof ~

2 N
A={d eV \S|Jac A3zpathfromatod, 7S =g},
B=V\(AUS).
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Proof for Undirected Case

Obviously Ac ,&,
and since S separates A from B,

We can show for any complete subgraph C
CcSUA or CcSuUB holds.

/‘

If C < S, there is nothing to prove.

Assume C ¢« S.

Suppose that the above assertion does not hold, then
CnAzgandCnB=g. LetacAnCandbeBnC.
Because a and b are in the complete subgraph C, there is an

from b to A without intersecting S, which contradicts with the
\_ definition of A and B .

edge e connecting a and b. Since ae€ A, there is a path zfrom
a to A without intersecting S. Connecting 7 and e makes a path

_/
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Proof for Undirected Case

From this fact,

p(x):i l_h”c:(xc):1 [Tvc(Xe) Tlwo(Xp)

Z C:complete C:complete D:complete
CcSUA DcSuB

— f(XA,XS)g(XB—,XS)

which means
Xz 1L X5 | X, (Proposition 1)

and thus
XAJ_L XB| Xs-
Q.E.D.
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Mini Summary

Undirected graph Directed acyclic graph (DAG)

o Probability associated with G, o Probability associated with G
(p(X) factorizes w.r.t. G) (p(X) factorizes w.r.t. G)
1 n
p(X)=3 [lwc(Xc) P(Xq-- o X)) =TT PCXi | X pagiy)
VA C:clique i=1
o p(X) factorizes w.r.t. G o p(X) factorizes w.r.t. G
= =
X is global Markov relative to G. X is d-global Markov relative to G.
(i.e. if S separates A from B, (i.e. if S d-separates A from B,
then X, || Xg| Xs-) then X, || Xg| Xs -)
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