グラフィカルモデルの基礎

Kenji Fukumizu
The Institute of Statistical Mathematics
計算推論科学概論 II（2010年度，後期）

Introduction and Review

Graphical Model－Rough Sketch

－Graphical model
－Graph：$G=(V, E) \quad V$ ：the set of nodes，E ：the set of edges
－In graphical models，
－the random variables are represented by the nodes．
－statistical relationships between the variables are represented by the edges．

Directed graph
Undirected graph
Factor graph＊

Purpose of Using Graphical Models

- Intuitive and visual representation

A graph is an intuitive way of representing and visualizing the relationships among variables.

- Independence / conditional independence

A graph represents conditional independence relationships among variables.
\rightarrow Causal relationships, decision making, diagnosis system, etc.

- Efficient computation

With graphs, efficient propagation algorithms can be defined.
\rightarrow Belief-propagation, junction tree algorithm
Which parts of the modeling block efficient computation?

Example: Diagnosis

Car start problem

If Fuel Meter indicates "full" and Plug is checked to be clean, it is more likely that the battery is dead.

Review: Independence

For simplicity, it is assumed that the distribution of a random variable X has the probability density function $p_{X}(x)$.

- Independence
- X and Y are independent $(X \Perp Y)$

$$
\Leftrightarrow \quad p_{X Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

$$
X \Perp Y
$$

Dawid's notation

Review: Conditional Probability

- Conditional probability density of Y given X

$$
\text { Def. } \quad \begin{aligned}
p_{Y \mid X}(y \mid x) & =\frac{p_{X Y}(x, y)}{p_{X}(x)} \\
& =\frac{p_{X Y}(x, y)}{\sum_{y} p_{X Y}(x, y)}
\end{aligned}
$$

Review: Conditional Independence

- Two characterizations
- X and Y are conditionally independent given $Z \quad(X \Perp Y \mid Z)$

$$
\begin{aligned}
\Leftrightarrow & p_{X Y \mid Z}(x, y \mid z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z) \quad \text { for all } z \text { with } p_{Z}(z)>0 . \\
& \text { "conditional " independnence }
\end{aligned}
$$

- $\quad X \Perp Y \mid Z$

$$
\Leftrightarrow \quad p_{X \mid Y Z}(x \mid y, z)=p_{X \mid Z}(x \mid z) \quad \text { for all }(y, z) \text { with } p_{Y Z}(y, z)>0 \text {. }
$$

If we already know Z, additional information on Y does not increase the knowledge on X.

Conditional Independence - Examples

- Speeding Fine \mathcal{X} Type of Car (perhaps)
- Speeding Fine \Perp Type of Car | Speed
- Ability of Team A \Perp Ability of Team B
- Ability of Team A $\xrightarrow{\perp}$ Ability of Team B | Outcome of Team A and B

Conditional Independence

- Another characterization of cond. independence

Proposition 1

$X \Perp Y \mid Z$
\Leftrightarrow
there exist functions $f(x, z)$ and $g(y, z)$ such that

$$
\begin{array}{rl}
p_{X Y Z}(x, y, z)=f & f(x, z) g(y, z) \\
& \quad \text { for all } x, y \text { and } z \text { with } p_{Z}(z)>0 .
\end{array}
$$

Corollary 2
$X \Perp Y$
there exist functions $f(x)$ and $g(y)$ such that

$$
p_{X Y}(x, y)=f(x) g(y) \quad \text { for all } x, y .
$$

Conditional Independence

- Proof of Prop.1.
\Rightarrow Clear from the definition.
$\Leftarrow \quad$ For any x, y, and z with $p_{z}(z)>0$,

$$
\begin{aligned}
p_{Z}(z) & =\sum_{x, y} p_{X Y Z}(x, y, z)=\sum_{x, y} f(x, z) g(y, z) \\
& =\left(\sum_{x} f(x, z)\right)\left(\sum_{y} g(y, z)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { We have } \\
& \begin{aligned}
& p_{X Y \mid Z}(x, y \mid z)=\frac{p_{X Y Z}(x, y, z)}{p_{Z}(z)}=\frac{f(x, z) g(y, z)}{\sum_{\tilde{x}} f(\tilde{x}, z) \sum_{\tilde{y}} g(\tilde{y}, z)} \\
& p_{Y \mid Z}(y \mid z)=\sum_{x} p_{X Y \mid Z}(x, y \mid z)=\frac{\sum_{x} f(x, z) g(y, z)}{\sum_{\tilde{x}} f(\tilde{x}, z) \sum_{\tilde{y}} g(\tilde{y}, z)} \\
& p_{X \mid Z}(x \mid z)=\sum_{y} p_{X Y \mid Z}(x, y \mid z)=\frac{f(x, z) \sum_{y} g(y, z)}{\sum_{\tilde{x}} f(\tilde{x}, z) \sum_{\tilde{y}} g(\tilde{y}, z)}
\end{aligned}
\end{aligned}
$$

Thus,

$$
p_{X Y \mid Z}(x, y \mid z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z)
$$

Undirected Graph and Markov Property

Undirected Graph

－Undirected Graph
－$G=(V, E)$ ：undirected graph（無向グラフ）
V ：finite set
$E \subset V \times V$ ，the order is neglected．$\quad(a, b)=(b, a)$
Example：$\quad V=\{a, b, c, d\}$

$$
E=\{(a, b),(b, c),(c, d),(b, d)\}
$$

－Graph terminology
－Complete：A subgraph S of V is complete（完全） if any a and $b(a \neq b)$ in S are connected by an edge．
－Clique：A clique is a maximal complete subset w．r．t．inclusion．

Probability and Undirected Graph

$G=(V, E)$: undirected graph. $V=\{1, \ldots, n\}$
$X=\left(X_{1}, \ldots, X_{n}\right):$ random variables indexed by V.

The probability density function $p(X)$ factorizes with respect to G if there is a non-negative function $\psi_{C}\left(X_{C}\right)$ for each clique C in G such that

$$
p(X)=\frac{1}{Z} \prod_{C: \text { clique }} \psi_{C}\left(X_{C}\right) \quad \text { (Z: normalization constant) }
$$

Notation: for a subset S of $V, \quad X_{S}=\left(X_{a}\right)_{a \in S}$

- A.k.a. Markov random field
- An undirected graph does not specify a single probability, but defines a family of probabilities, i.e. it defines a set of conditional independence relations.

Probability and Undirected Graph

Example

Practical Example

- Markov random field for image

$$
\begin{array}{r}
p(X)=\frac{1}{Z} \prod_{(i, j) \in E} \exp \left(-U_{i j}\left(X_{i}, X_{j}\right)\right) \\
X_{i} \text { in }\{+1,-1\} \text { (binary image) }
\end{array}
$$

e.g. $\quad U_{i j}\left(X_{i}, X_{j}\right)=\beta X_{i} X_{j} \quad$ (neighbors tend to take the same value)

$$
p(X)=\frac{1}{Z} \exp \left(-\beta \sum_{(i, j \in E} X_{i} X_{j}\right)
$$

c.f. Ising model in statistical physics

Markov Property

Def. Separation.

$G=(V, E)$: undirected graph.
A, B, S : disjoint subsets of V.
S separates A from B if every path
between any a in A and b in B intersects with S.

Theorem 3

$G=(V, E)$: undirected graph.
X : random vector such that the p.d.f. factorizes w.r.t. G.
If S separates A from B, then

$$
X_{A} \Perp X_{B} \mid X_{S}
$$

(Proof: next lecture.)

Markov Property

- Example

$$
p(X)=\frac{1}{Z} \psi_{1}\left(X_{a}, X_{c}\right) \psi_{2}\left(X_{b}, X_{c}, X_{d}\right) \psi_{3}\left(X_{c}, X_{d}, X_{e}\right)
$$

- $\{c, d\}$ separates $\{b\}$ and $\{e\} \Rightarrow X_{b} \Perp X_{e} \mid X_{\{c, d\}}$

$$
\begin{aligned}
p\left(X_{b}, X_{c}, X_{d}, X_{e}\right) & =\frac{1}{Z} \sum_{X_{a}} \psi_{1}\left(X_{a}, X_{c}\right) \psi_{2}\left(X_{b}, X_{c}, X_{d}\right) \psi_{3}\left(X_{c}, X_{d}, X_{e}\right) \\
& =\frac{1}{Z} \widetilde{\psi}_{1}\left(X_{c}\right) \psi_{2}\left(X_{b}, X_{c}, X_{d}\right) \psi_{3}\left(X_{c}, X_{d}, X_{e}\right) \\
& =\frac{1}{Z} f\left(X_{b}, X_{c}, X_{d}\right) g\left(X_{e}, X_{c}, X_{d}\right) \quad \text { Use prop.1. }
\end{aligned}
$$

- $\{c\}$ separates $\{a\}$ and $\{b\} \Rightarrow X_{a} \Perp X_{b} \mid X_{c}$

$$
\begin{aligned}
& p\left(X_{a}, X_{b}, X_{c}\right)=\frac{1}{Z} \psi_{1}\left(X_{a}, X_{c}\right) \sum_{X_{d}, X_{e}}\left\{\psi_{2}\left(X_{b}, X_{c}, X_{d}\right) \psi_{3}\left(X_{c}, X_{d}, X_{e}\right)\right\} \\
&=\frac{1}{Z} \psi_{1}\left(X_{a}, X_{c}\right) g\left(X_{b}, X_{c}\right) \quad \text { Use prop.1. }
\end{aligned}
$$

Markov Property

- Global Markov Property
$G=(V, E)$: undirected graph
X : random vector indexed by V.
X satisfies global Markov property relative to G if $X_{A} \Perp X_{B} \mid X_{S}$ holds for any triplet (A, B, S) of disjoint subsets of V such that S separates A from B. (Graph tells the conditional independence)

The previous theorem tells if the distribution of X factorizes w.r.t. G, then X satisfies global Markov property relative to G.

Markov Property

- Hammersley-Clifford theorem (see e.g. Lauritzen. Th.3.9)

Theorem 4

$G=(V, E)$: undirected graph
X : random vector indexed by V.
Assume that the probability density function $p(X)$ of the distribution of X is strictly positive.

If X satisfies global Markov property w.r.t. G, then X factorizes w.r.t. G, i.e. $p(X)$ admits the factorization:

$$
p(X)=\prod_{C: \text { clique }} \psi_{C}\left(X_{C}\right)
$$

Directed Acyclic Graph and Markov Property

Directed Acyclic Graph

－Directed Graph
－$G=(V, E)$ ：directed graph（有向グラフ）
V ：finite set－－nodes
$E \subset V \times V$ ：set of edges
Example：$\quad V=\{a, b, c, d\}$

$$
E=\{(a, b),(b, c),(c, d),(b, d)\}
$$

Orient the edge（ a, b ）by $a \rightarrow b$
－Directed Acyclic graph（DAG，非巡回有向グラフ） Directed graph with no cycles．

Cycle：directed path starting and ending at the same node．

DAG and Probability

- Probability associated with a DAG
- A DAG defines a family of probability distributions

$$
\begin{aligned}
p\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} p\left(X_{i} \mid X_{p a(i)}\right) \\
& p a(i)=\{j \in V \mid(i, j) \in E\}: \text { parents of node } i .
\end{aligned}
$$

p factorizes wr.t. DAG G.
Example:

$$
\begin{aligned}
& p\left(X_{a}, X_{b}, X_{c}, X_{d}, X_{e}\right) \\
& =p\left(X_{a}\right) p\left(X_{b}\right) p\left(X_{c} \mid X_{a}, X_{b}\right) p\left(X_{d} \mid X_{b}, X_{c}\right) p\left(X_{e} \mid X_{c}, X_{d}\right)
\end{aligned}
$$

Practical Examples

- Finite mixture model

- Hidden Markov model

$$
p(X, Y)=p\left(X_{0}\right) \prod_{t=1}^{T} p\left(X_{t} \mid X_{t-1}\right) p\left(Y_{t} \mid X_{t}\right)
$$

- Mixture model and HMM are discussed later.

Conditional Independence with DAG

- Three basic cases
(1)
(a) \longrightarrow (c) \longrightarrow b $p\left(X_{a}, X_{b}, X_{c}\right)=p\left(X_{a}\right) p\left(X_{c} \mid X_{a}\right) p\left(X_{b} \mid X_{c}\right)$

$$
X_{a} \Perp X_{b} \mid X_{c}
$$

$$
\text { Note } p\left(X_{a}\right) p\left(X_{c} \mid X_{a}\right)=p\left(X_{a}, X_{c}\right)=p\left(X_{c}\right) p\left(X_{a} \mid X_{c}\right)
$$

$$
\Longrightarrow p\left(X_{a}, X_{b}, X_{c}\right)=p\left(X_{c}\right) p\left(X_{a} \mid X_{c}\right) p\left(X_{b} \mid X_{c}\right)
$$

$$
p\left(X_{a}, X_{b} \mid X_{c}\right)=p\left(X_{a} \mid X_{c}\right) p\left(X_{b} \mid X_{c}\right)
$$

$$
\begin{align*}
& \text { (b) } p\left(X_{a}, X_{b}, X_{c}\right)=p\left(X_{c}\right) p\left(X_{a} \mid X_{c}\right) p\left(X_{b} \mid X_{c}\right) \tag{2}\\
& X_{a} \Perp X_{b} \mid X_{c}
\end{align*}
$$

Note: $\quad p\left(X_{a}, X_{b}, X_{c}\right)$ are the same for (1) and (2).

Conditional Independence with DAG

- Example for (2)

Sex (male/female) does influence both of hair length and stature, but given male (or female), hair length and stature are independent.

Conditional Independence with DAG

(3)

Note: $\quad p\left(X_{a}, X_{b}, X_{c}\right)$ in (3) are different from (1) and (2).

If you often sneeze, but you do not have cold, then it is more likely you have allergy (hay fever).

D-Separation

- Blocked:

An undirected path π is said to be blocked by a subset S in V if there exists a node c on the path such that either
(i) $c \in S$ and c is not head-to-head in $\pi(\bigcirc \rightarrow(\mathbb{C})$ or $\bigcirc \longleftarrow(C \rightarrow \bigcirc)$,
(ii) $\bigcirc \rightarrow(C) \bigcirc$ and $(\{c\} \cup d e(c)) \cap S=\phi$. head-to-head Descendent: $\operatorname{de}(i)=\{j \in V \mid \exists$ directed path from i to $j\}$

Examples

π is blocked by S

π is blocked by S

π is NOT blocked by S

D-Separation

- d-separate:
A, B, S : disjoint subsets of V.
S d-separates A from B if every undirected path between a in A and b in B is blocked by S.
- d-separation and conditional independence

Theorem 5

X : random vector with the distribution associated with DAG G.
A, B, S : disjoint subsets of V.
If S d-separates A from B, then

$$
X_{A} \Perp X_{B} \mid X_{S}
$$

(Proof not shown in this course. See Lauritzen 1996, 3.23\&3.25)

D-Separation

- Example
- $\quad X_{a} \Perp X_{b}$
$S=\phi$.
$\mathrm{a} \rightarrow \mathrm{c} \leftarrow \mathrm{b}$ is blocked (with c).
$\mathrm{a} \rightarrow \mathrm{c} \rightarrow \mathrm{d} \leftarrow \mathrm{b}$ is blocked (with d)
$a \rightarrow c \rightarrow e \leftarrow d \leftarrow b$ is blocked (with e)

- $X_{a} \Perp X_{d} \mid X_{\{b, c\}}$ $\mathrm{a} \rightarrow \mathrm{c} \rightarrow \mathrm{d}$ is blocked (with c).
$\mathrm{a} \rightarrow \mathrm{c} \leftarrow \mathrm{b} \leftarrow \mathrm{d}$ is blocked (with b)
$a \rightarrow c \rightarrow e \leftarrow d$ is blocked (with e or c)

Comparison: UDG and DAG

- Limitation of undirected graph

$$
p\left(X_{a}, X_{b}, X_{c}\right)=p\left(X_{a}\right) p\left(X_{b}\right) p\left(X_{c} \mid X_{a}, X_{b}\right)
$$

DAG
$X_{a} \Perp X_{b}, \quad X_{a} \not \Perp X_{b} \mid X_{c}$

If $X_{a} \not \Perp X_{c}, X_{b} \not \Perp X_{c}, X_{a} \not \Perp X_{b} \mid X_{c}$, any UDG is not able to express $X_{a} \Perp X_{b}$.

Comparison: UDG and DAG

- Limitation of DAG

Undirected graph

$$
\begin{aligned}
& p\left(X_{a}, X_{b}, X_{c}, X_{d}\right) \\
& =p\left(X_{a}, X_{b}\right) p\left(X_{a}, X_{c}\right) p\left(X_{b}, X_{d}\right) p\left(X_{c}, X_{d}\right) \\
& X_{a} \Perp X_{d}\left|X_{\{b, c\}} \quad X_{b} \Perp X_{c}\right| X_{\{a, d\}}
\end{aligned}
$$

No DAG expresses these conditional independence relationships.
[Sketch of the proof.] If every node had the form $\rightarrow \bigcirc$, the graph would be a cycle. Thus, there must be a v-structure.
Conditional independence of the parents of the v-structure given the other two nodes cannot be expressed by a DAG.

Appendix：Terminology on Graphs

－Undirected graph $G=(V, E)$

- Adjacent（隣接）：a and b in $V(a \neq b)$ are adjacent if $(a, b) \in E$ ．
- Neighbor（近傍）：ne $(a)=\{b \in V \mid(a, b) \in E\}$ ．
－DAG $G=(V, E)$
－Parents：$p a(a)=\{b \in V \mid(b, a) \in E\}$ ．
－Children： $\operatorname{ch}(a)=\{b \in V \mid(a, b) \in E\}$ ．
－Ancestors（先祖）： $a n(a)=\{b \in V \mid \exists$ directed path from b to $a\}$ ．
－Descendents（子孫）：

$\operatorname{de}(a)=\{b \in V \mid \exists$ directed path from a to $b\}$ ．

More on Markov Property

Markov Properties Revisited

- Markov properties for an undirected graph $G=(V, E)$: undirected graph.
X : random vector indexed by V. $V \backslash(\{a\} \cup n e(a))$
- Local Markov X satisfies local Markov property relative to G if for any node a

$$
X_{a} \Perp X_{V \backslash(\{a\} \cup n e(a))} \mid X_{n e(a)}
$$

- Pairwise Markov
X satisfies pairwise Markov property relative to G if any non-adjacent pair of nodes (a, b) satisfies

$$
X_{a} \Perp X_{b} \mid X_{V \backslash\{a, b\}}
$$

Markov Properties Revisited

Theorem 7

Factorization \Rightarrow global Markov \Rightarrow local Markov
\Rightarrow pairwise Markov
proof) factorization \Rightarrow global Markov : Theorem 3. global Markov \Rightarrow local Markov : easy. local Markov \Rightarrow pairwise Markov : needs some math (Exercise).

- Hammersley-Clifford asserts that the pairwise Markov property means factorization w.r.t. the graph under positivity of the density. (Theorem 4 assumes 'global Markov', but the assertion holds under 'pairwise Markov' assumptoin.)
- Similar notions are defined for directed and factor graphs.

Proof for Undirected Case

We show a slight generalization of Theorem 3.
Theorem 8
Let $G=(V, E)$ be an undirected graph. If the distribution of X factorizes as

$$
p(X)=\frac{1}{Z} \prod_{C: \text { complete }} \psi_{C}\left(X_{C}\right),
$$

then X satisfies global Markov property relative to G, i.e., for a triplet (S, A, B) such that S separates A from B, the conditional independence $X_{A} \Perp X_{B} \mid X_{S}$ holds.

- Proof

Let

$\tilde{A}=\{d \in V \backslash S \mid \exists a \in A, \exists \pi$ path from a to $d, \pi \cap S=\phi\}$, $\widetilde{B}=V \backslash(\tilde{A} \cup S)$.

Proof for Undirected Case

Obviously $A \subset \tilde{A}$, and since S separates A from B,

$$
B \subset \widetilde{B} .
$$

We can show for any complete subgraph C

$$
C \subset S \cup \tilde{A} \text { or } C \subset S \cup \widetilde{B} \text { holds. }
$$

If $C \subset S$, there is nothing to prove.
Assume $C \not \subset S$.
Suppose that the above assertion does not hold, then $C \cap \widetilde{A} \neq \phi$ and $C \cap \widetilde{B} \neq \phi$. Let $a \in \widetilde{A} \cap C$ and $b \in \widetilde{B} \cap C$. Because a and b are in the complete subgraph C, there is an edge e connecting a and b. Since $a \in \tilde{A}$, there is a path π from a to A without intersecting S. Connecting π and e makes a path from b to A without intersecting S, which contradicts with the definition of \widetilde{A} and \widetilde{B}.

Proof for Undirected Case

From this fact,

$$
\begin{aligned}
p(X)=\frac{1}{Z} \prod_{\text {C: complete }} \psi_{C}\left(X_{C}\right) & =\frac{1}{Z} \prod_{\substack{C: \text { complete } \\
C \subset S \cup A}} \psi_{C}\left(X_{C}\right) \prod_{\substack{\text { D:complete } \\
D \subset S \cup B}} \psi_{D}\left(X_{D}\right) \\
& =f\left(X_{\tilde{A}}, X_{S}\right) g\left(X_{\tilde{B}}, X_{S}\right)
\end{aligned}
$$

which means

$$
X_{\tilde{A}} \Perp X_{\tilde{B}} \mid X_{S},
$$

(Proposition 1)
and thus

$$
X_{A} \Perp X_{B} \mid X_{S} .
$$

O.E.D.

Mini Summary

Undirected graph

- Probability associated with G, ($p(X)$ factorizes w.r.t. G)

$$
p(X)=\frac{1}{Z} \prod_{C: \text { clique }} \psi_{C}\left(X_{C}\right)
$$

- $\quad p(X)$ factorizes w.r.t. G \Rightarrow
X is global Markov relative to G. (i.e. if S separates A from B, then $X_{A} \Perp X_{B} \mid X_{S}$.)

Directed acyclic graph (DAG)

- Probability associated with G ($p(X)$ factorizes w.r.t. G)

$$
p\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} p\left(X_{i} \mid X_{p a(i)}\right)
$$

- $p(X)$ factorizes w.r.t. G
\Rightarrow
X is d-global Markov relative to G.
(i.e. if S d-separates A from B, then $\left.X_{A} \Perp X_{B} \mid X_{S}.\right)$

