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Covariance on RKHS

(X, Y): random variable taking values on & X Y. resp.
(Hg, Kq)s (Hyy, Kgy): RKHS with measurable kernels on X and ¥, resp.

Assume  E[ky (X, X)IE[ky (Y,Y)] <00
Cross-covariance operator: Sy, :Hg — H,,
Zyx =E[®y (Y)®@ Dy (X)]-my ®my

=Mp, —Mp ep, EHy®Hx

Proposition

(9,Zyx F)=E[g(Y) f (X)]-E[g(VIELf (X)] (=Cov[f(X),g(Y)])
forall feHg geH,

— c.f. Euclidean case
Vi = E[YXT] - E[Y]E[X]" : covariance matrix
(b,V,xa)=Cov[(b,Y),(a, X)]



Characterization of independence

B Independence and Cross-covariance operator

Theorem
If the product kernel K.k, is characteristic on &L x, then

Xand Y are independent < X,, =0

proof)
Yyy =0 & Mp =Mpgp

& Py =Px ®R (by characteristic assumption)

— c.f. for Gaussian variables
XLY <« V., =0 Ile.uncorrelated

— c.f. Characteristic function
X J.I.Y s E)(Y [eﬁl(ux +VY)] _ EX [edflux ]EY [eﬂVY ]



Estimation of cross-cov. operator

(X Yp)s--n (X Yy) 1ilid. sample on £ x Y.
An estimator of Z,, is defined by

A 1 . .

2\((>N<) :N;{ky('iYi)_mY}@){kx("Xi)_mx}
Theorem

2% — Zvx HHS :Op(l/m) (N — o)

Corollary to the \/N -consistency of the empirical mean,
because the norm in H, ® H,, is equal to the Hilbert-Schmidt
norm of the corresponding operator H, — H,, .



Hilbert-Schmidt Operator

— Hilbert-Schmidt operator
A:H;,—> H, :operator on a Hilbert space

A is called Hilbert-Schmidt if for complete orthonormal systems
@} of Hyand {y; of H,

iji<gyj,Agpi>2<oo.

. ) 2
Hilbert-Schmidt norm:  [Al}s =X, (v, Ag,)
c.f. Frobenius norm of a matrix

— Fact: If A:H, > H, isregarded as an element F, e H, ® H,,
|| A“HS:” FA ”

. 2 2
7) AZHS :Zj2i<l//j’A¢i>H2 :ZjZi<FA’(Pi ®‘//J'>Hl®H2 =[| Fa ”2 :
CONS of H,®H,

- Fact 1A < [[Allzs
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Measuring Dependence

B Dependence measure
2
Myx :HZYX HHs
Myy =0 < XLY with kok,, characteristic
B Empirical dependence measure

TN _ S|P
Mix” = Zvx HHS

My x and Mgg can be used as measures of dependence.



HS norm of cross-cov. operator |

B Integral expression
My =[Sy s = Elke (X, X)kyy (Y, ¥ )] - 2E[Elky (X, X) | XIE[Ky (Y, Y) [ Y]]
+ E[ky (X, X)IE[Ky, (Y,Y)]
where (X,Y)is an independent copy of (X,Y).

Note: a Hilbert-Schmidt norm always has an integral expression

Proof.
IZyxllzs = IEEx(X,-) @ ky(Y,-)] — mx @ my |
= (Blkx(X,-) @ ky(Y, )], Elkx(X,-) @ ky(Y,)])
—2Elkx(X,-) @ ky(Y,:)],mgz @ mg) + (mx @ my,mg @ my)
= Elkx (X, X)ky(Y,Y)] = 2E[E[kx(X, X)|X]E[ky(Y,Y)|Y]]

+Elkx (X, X)]E[ky (Y, Y)]. 10



HS norm of cross-cov. operator |

B Empirical estimator

Gram matrix expression
HS-norm can be evaluated only in the subspaces
Span{k( X.)— m(N)} and Spani, (-,Y;) - m(N)}

~ 1
— M\S)T) :WTr[GXGY]

1
where G, =Q.K,Q,, Q, =1, —NININT

Or equivalently,

B =< zk (X0 Xy 0¥ =05 3 X0, Xy (1, )

J,k=1

+—zk (X, X )zk Y,.Y,)

i, j=1 k,/=1

q(N) _
Myx' =

11



Application: ICA

B Independent Component Analysis (ICA)
— Assumption
* m independent source signals
* m observations of linearly mixed signals

A ——>8& x0 XO=ASQ)

\ g!z A: m x m invertible
.\'{3 X(1) matrix

— Problem

» Restore the independent signals S from observations X.

N

S =BX B: m x m orthogonal matrix
12



B |CA with HSIC

X® . XM +ijd. observation (m-dimensional)

Pairwise-independence criterion is applicable.

Minimize L(B)=> > HSIC(Y,,Y,) Y = BX

a=lb>a

Obijective function is non-convex. Optimization is not easy.
- Approximate Newton method has been proposed
Fast Kernel ICA (FastKICA, Shen et al 07)

(Software downloadable at Arthur Gretton’s homepage)

B Other methods for ICA

See, for example, Hyvarinen et al. (2001).

13



B Experiments (speech signal)

>
\

{ sy(t)

P N /4’}:
¢ Sz(t)% A s {‘%%(t) 3 B )
b /randomly\\ & = / \\

8 |
§ 53(t) generated 1l Fast KICA v

Three speech
signals

14



Independence test with kernels |

B Independence test with positive definite kernels

— Null hypothesis HO: X and Y are independent
— Alternative H1.: X and Y are not independent

Mg{) can be used for a test statistics.

A (N) _
Myx' =

A 2 1 N 2 N
=X =7 2 ke OG0 X Dy (.Y =05 30 k(X1 X Dk 0, 5)

1 N N
#gr 2he (X1 X)) 2 Ky (%Y,)

i1j=1 k,€=l

15



Independence test with kernels Il

B Asymptotic distribution under null-hypothesis

Theorem (Gretton et al. 2008)
If X and Y are independent, then

NME = Y Az2  inlaw (N > )
i=1

where
Z; :1.i.d. ~ N(0,1),

{4 }Zl IS the eigenvalues of the following integral operator
Jh(ua’ub’uc’ud)% (upy)dR, dR, dR; = 4ig;(Uy,)
hU,,U,U,U Z(abcd)k;rbk;yb Zk;rbky "‘kx ky
k;r,b = kx(xa’ Xb)’ Ua = (Xa’ Ya)

— The proof is easy by the theory of U (or V)-statistics
(see e.g. Serfling 1980, Chapter 5). 16



Independence test with kernels Il

B Consistency of test

Theorem (Gretton et al. 2008)
If My IS not zero, then

W(MQ)—MYX) = N(0,0°) inlaw (N — )
where

o’ 216(Ea[Eb,c,d [h(Ua’Ub’Uc’Ud]Z]_ MYX)

17



B Synthesized data

0

% acceptance of H

Example of Independent Test

— Data: two d-dimensional samples
(X XY (X)X V)

Samp:128, Dim:1

1

0

0.8}

0.6}

0.4}

0.2}

% acceptance of H

0

0 05 1
Angle (xm/4)
strength of dependence

0.2}

Samp:128, Dim:2

— — =

(Yl(l)v--’Yd(l))’-"’(Yl(N)’---’Yd(N))

0

% acceptance of H

0 0.5

Angle (xm/4)

Samp:1024, Dim:4

05 1
Angle (xm/4)

18



B Power Divergence (Ku&Fine05, Read&Cressie)

— Make partition {A;},_,: Each dimension is divided into q parts so
that each bin contains almost the same number of data.

— Power-divergence .,
Ty =21*(X,m)=N “’j —

1= M| D; : frequency in A
12= Mean Square Conting. p™): marginal freq. in r-th interval

— Null distribution under independence
2
v = ZqN—qN+N—l
B Limitations
— All the standard tests assume vector (numerical / discrete) data.

— They are often weak for high-dimensional data.
19



Independent Test on Text

— Data: Official records of Canadian Parliament in English and French.

 Dependent data: 5 line-long parts from English texts
and their French translations.

* Independent data: 5 line-long parts from English texts
and random 5 line-parts from French texts.

— Kernel: Bag-of-words and spectral kernel

Topic Match BOW(N=10) Spec(N=10) BOW(N=50) Spec(N=50)
HSIC, HSIC, HSIC,HSIC, HSIC, HSIC, HSIC, HSIC,

Agri- Random 1.00 094 100 095 100 0.93 1.00 0.95
culture Same 099 0.18 100 0.00 0.00 0.00 0.00 0.00

Fishery Random 1.00 094 100 094 100 0.93 1.00 0.95
Same 100 020 100 0.00 0.00 0.00 0.00 0.00

Immig- Random 1.00 096 1.00 091 099 094 1.00 0.95
raton Same 1.00 0.09 100 0.00 0.00 0.00 0.00 0.00

Acceptance rate (a = 5%) (Gretton et al. 07) 20
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Re: Statistics on RKHS

B Linear statistics on RKHS T @ (X) = k( , X)
X .

v -

/

Q (original space) ~ feature map v " H (RKHS)

— Basic statistics Basic statistics
on Euclidean space on RKHS
Mean —> Mean element
Covariance —> Cross-covariance operator 2y

Conditional covariance —s  Cond. cross-covariance operator

— Plan: define the basic statistics on RKHS and derive nonlinear/
nonparametric statistical methods in the original space. 27



Conditional Independence

B Definition

X, Y, Z: random variables with joint p.d.f. Pxyz (X, Y,2)
X and Y are conditionally independent given Z, if

Pyizx (Y12,%) = pyz (Y| 2) (A)
or
Pxviz (X, Y 12) = Pxz (X]Z) Py (Y 2) (B)
(A)
X Z Y (B) 7
O—0O—0
With Z known, the information of X X O O Y

IS unnecessary for the inference on Y

23



Review: Conditional Covariance

B Conditional covariance of Gaussian variables

— Jointly Gaussian variable
X =(Xpo 0 Xp), Y =(Yp,...,Yy)
Z =(X,Y) :m(=p+q) dimensional Gaussian variable

V V
Z~N(uV) y:(“X} vz( S
Hy Vi Wiy

— Conditional probability of Y given X is again Gaussian
~N (,Uv|x ’VYY|X )
Cond. mean Hox = E[Y [ X =X]= 1 Vi Vi (X = a2 )

Cond. covariance  Vyyx =Var[Y | X =X]=Vyy —VyyVyxVyy

Schur complement of V,, in V

Note: V,yx does not depend on x Y



Conditional Independence for

Gaussian Variables

B Two characterizations
X,Y,Z are Gaussian.

— Conditional covariance
— Comparison of conditional variance

XUY|Z < Vyixzi =V

.. -1 V
) Viyy VY[X Z]V[X Z1[X, Z]V[Z x]y = Vyy _(VYX \ [ XX *

ZX VZZ

—V. _(V V ) | O VX_)%|Z O I VXZ ZZ V
" e _VZ_Z]\/ZX I O VZ_Z1 O I VZY

-1
:VYY|Z _VYX|ZVXX|ZVXY|Z 25



Linear Regression and Conditional

Covariance

B Review: linear regression
— X, Y: random vector (not necessarily Gaussian) of dim p and g (resp.)
X =X-—E[X], Y=Y-E[Y]

— Linear regression: predict Y using the linear combination of X.
Minimize the mean square error:

min EW—AﬂF

A.gx p matrix
— The residual error is given by the conditional covariance matrix.

min EJY - A)~('||2 = Tty |

A.gx p matrix

— For Gaussian variables,
Vivix 21 = Vviz (<& XWLY|Z)
can be interpreted as

“If Z s known, X is not necessary for linear prediction of Y.” 26



Conditional Covariance on RKHS

B Conditional Cross-covariance operator
X, Y, Z : random variables on Q,, Q,, Q, (resp.).
(Hy, ky), (Hy, k), (H;, k;) : RKHS defined on Q,, Q,, Q, (resp.).

— Conditional cross-covariance operator H, — H,
2yxjz = Zyx ~ szﬁilzzzx
— Conditional covariance operator H, — H,
Zw|z =2yy _szzzlzzzv
— X5 may not exist as a bounded operator. But, we can justify the

definions.

27



B Decomposition of covariance operator
Zyx = Z%KIYZWYX 21)4)%
such that W, is a bounded operator with ||W,, ||<1 and

Range(W,y ) = Range(X,y ), Ker(W,y) L Range(Zyy).

B Rigorous definition of conditional covariance
operators

_ 1/2 1/2
ZYX|Z = 2YX o 2YY WYZWZX ) XX

_ 1/2 1/2
Z“YY|Z = z“YY _ z“YY WYZWZY zW‘YY

28



Two Characterizations of Conditional
Independence with Kernels

(1) Conditional covariance operator (FBJo4, 08)
— Conditional variance (k, is characteristic)

(9,2y20) = ENarg(Y)| Z]]= inf E[§(Y)-T(2)

feH,

— Conditional independence (all the kernels are characteristic)

X1Y|Z S Zyyxz] = Zvygz
X 1S not necessary for predicting g(Y)

— c.f. Gaussian variables
b'Vyyzb=Var[b'Y |Z]=minb'Y ~a'Z|"
a

XUY|[Z < Viyxz; =Yy

29



(2) Cond. cross-covariance operator (FBJo4)
— Conditional Covariance (k, is characteristic)
9.2z F)=E[Cov[g(Y), F(X)| Z]]
— Conditional independence

where X =(X,Z),Y =(Y,2)

— c.f. Gaussian variables
a'Vyyzb=Covla' X,b"Y |Z]

XJ.LY|Z = VXY|Z:O

30



— Proof of (1) (partial) : relation between residual error and operator
E(9(V)-ELg(MD-(f (@) -ELf @)
=(f,2,1)-2(f,2,09)+(0,2v0)
= [z42 6] - 2(f, 5w, 52g) + [£i2g

=27 f Wy Zy'g 2 +HZ$/\(29H2 - MZYZ%(/YZQHZ

2
= 212/22 F =Wy 2\1(/\(2 g + <g ! (ZYY - Z%K/YZWYZWZY 2\1(/\(2 )g>

This part can be arbitrary Zyyiz
small by choosing f
because of

Range(W,, ) = Range(X,, ).

31



Proof of (1): conditional independence

Lemma  var[Y]=Vary |Eyx[Y | X1]+ Ex [Varx[Y | X]]

From the above lemma

Var[g(Y)|Z]=Exp [Var[g(Y)| X, Z]| 2]+ Vary [E[g(Y) | X, Z]| Z]
Take E,[]

E[var[g(Y)| Z]]- E[Var[g(Y)| X,Z]]= E, [Vary [E[g(Y) | X, 21| Z]
LHS =0 from 2Zyy xz; = Zvypz

= Vary;[E[9(Y)| X,Z]|Z]=0 P, —almostevery z
= E[g(Y)| X,Z]=E[g(Y)|Z] Py, —almostevery (X,z)

—

Rixz =Rz (k, characteristic)
32



— Why is the “extended variable” needed in (2)?
(9,Zyz f) = E[Covg(Y), T (X)|Z]]
(9,22 f)#Cov[g(Y), f(X)|Z =1]

The l.h.s is not a funciton of z. c.f. Gaussian case

Sz =0 = pxy)=]p(x|z)p(y|z)p(z)dz
2z =0 72 p(xylz)=p(x|z)p(y|2)
However, if X is replaced by [X, Z]
Syixzpz =0 = p(xy.z") =[p(x,2'|2) p(y|z)p(z)dz
where P(X,Z'|2) = p(x|z)o(z*-2)
— p(x,y,2") = p(x|Z') p(y | z') p(Z')
.e. p(x,y|z") = p(x|Z")p(y|Z')

33



Empirical Estimator of Cond. Cov.
Operator

(X Yy Zy), oo s (X Y Z0)

>, — I etc finite rank operators
L - (2(Z§)+5N|)_1 regularization for inversion
— Empirical conditional covariance operator
£, = S0 - SMIEW 1 g1 TEWY
— Estimator of Hilbert-Schmidt norm

gggz =Tr[G,S,G, S, ]

1 .
=QuKyQy: Qy =1, —NININT centered Gram matrix

S, =1y (G, +Neyly) 16, = Iy +& G, )

34



Statistical Consistency

B Consistency on conditional covariance operator

Theorem (FBJO8, Sun et al. 07)
Assume &y >0 and VNgy —

Zw((l;lq)z _ZYX|ZHHS —0 (N — o)

In particular,

i\((l;lq)z HHS - HZYX|Z HHS (N =)

35



Normalized Covariance Operator

B Normalized Cross-Covariance Operator

~1/2 ~1/2
NOCCO Wiy :zv\} Z:szx; Recall: 2y :szZWszl&

B Normalized Conditional cross-covariance operator
NOC30
WYX|Z = Z;\l(/zzvxaz;(l)éz = 2\_(\1(/2(2YX _szzglzzzx ;<1>22

— WYX _WYZWZX

B Characterization of conditional independence
With characteristic kernels,

W, =0 XILY
W

YX|Z

=0 & XUWUY(|Z a6



Measures for Conditional
Independence

Assume W,, etc. are Hilbert-Schmidt.

— Dependence measure
NOCCO = ‘NVYX 2Hs

— Conditional dependence measure
2
NOC®0 = Miﬂz S (X and Y augmented )

— Independence / conditional independence

NOCCO=0 < XY NOC’0=0«< X1Y|Z

37



Kernel-free Integral Expression

Theorem

Let E, |.PY|Z ® Py 2 J(B xA)=| Riz (BIZ =2)Py; (A|Z =2)dP, (2)
probability on Q, xQ,.

Assume
Pyvand g, R, ® P, | have densityp,, (X,y) andpy y; (X, Y) resp.
H, and H, ®H, are characteristic.
W, and W,, W, are Hilbert-Schmidt.

Then, B 2
W s = [ P70 PO g, gy

In the unconditional case

2 _ Pxy (X, Y) _1j2 dxd
| Wy [lHs jj (px () py (¥) Px (X) py (y)dxdy

- Kernel-free expression, though the definitions are given by kernels!
38




— Kernel-free value is desired as a “measure” of dependence.
c.f. If unnormalized operators are used, the measures depend on
the choice of kernel.

— In the unconditional case,
2
NOCCO = ||Wyy [lis

IS equal to the mean square contingency, which is a very popular
measure of dependence for discrete variables.

— In the conditional case, if the augmented variables are used,

2
||WY')'('|Z S

_ J‘J‘[ Pxvz (X, Y,Z) = Pxz (X| 2) Py (Y] 2) P; (Z)j 0., (%,2) D, (v, 2)dxdydz
Pxz (X, 2) Pyz (Y, 2)

(conditional mean square contingency)

39



Empirical Estimators

— Empirical estimation is straightforward with the empirical cross-
covariance operator 3{\
. L 4 A (N -1
— Inversion = regularization: Xy, — (Z(XX)+5I)
— Replace the covariances in W,, =2/’ X %° by the empirical
ones given by the data ®(X,),..., ®y(X,) and O (Y,),..., D,(Y,)

NOCCO,,, = Tr[RyRy] (dependence measure)

NOC°O,,, = Tr[RyR; —2R; R;R, + Ry R, R;R, |
(conditional dependence measure)
where R, =G, (G, +Ngyly)
Gy = (1, ~ 21,10 K (1, —21,1%) Ky =(k(X;, X))
X N~ NENEN/D™IXUN T NENEN X N FURE
— NOCCO,,, and NOC3O,,,, give kernel estimates for the mean

square contingency and conditional mean square contingency, 4o
resp.

-1



Consistency

Theorem (Fukumizu et al. 2008)

Assume that W, , Is Hilbert-Schmidt, and the regularization
coefficient satisfies

1/3
ey =0 N" gy — .

Then,

o (N
Y(X|% ~Wxz HHS —0 (N — o)

In particular,

\/ (N)
YX|2 HHS - ‘MYXVHHS (N = o)

l.e. NOC®Og,, (NOCCO,,,
NOC30 (NOCCO, resp).

) converges to the population value

41



Choice of Kernel

B How to choose a kernel?

— No definitive solutions have been proposed yet.
— For statistical tests, comparison of power or efficiency will be
desirable.
— Other suggestions:
* Make a relevant supervised problem, and use cross-validation.

* Some heuristics
— Heuristics for Gaussian kernels (Gretton et al 2007)

o = median{X; - X;| |i# j|
— Speed of asymptotic convergence (Fukumizu et al. 2008)

limVar| NxHSIC() |=2[Z,, [s|Zw ] s under independence

N —>o0 emp

Compare the bootstrapped variance and the theoretical one,

and choose the parameter to give the minimum discrepancy.
42



Conditional Independence Test

B Permutation test

T (N)

A 2
v
Bblhe o Tus

e

— If Z takes values in a finite set {1, ..., L},

set A, ={I|Z, =/} (/=1...,L), g ([ Xif Yai,
otherwise, partition the values of Z into q% 1 X1if Yai, [ Gy

L subsets C,, ..., C,, and set o ||| Xyl Yii,

A ={i|Z eC,} (/=1..,L). o (|Xzi)Yai,
— Repeat the following process B times: (b =1, ..., B) é P2l Yai, | Cs

1. Generate pseudo cond. independent 2 \|[X2il Yai,

data D® by permuting X data within each A,.

2. Compute T® for the data D® . S 11Xl Yo,
—> Approximate null distribution % XLig| YLl Co

under cond. indep. assumption || XL Yo,

— Set the threshold by the (1-a)-percentile of
the empirical distributions of T®). 43



Causality of Time Series

B Granger causality (Granger 1969)
X(t), Y(t): two time series t=1,2,3, ...

— Problem:
Is {X(1), ..., X(t)} a cause of Y(t+1)?

(No inverse causal relation)

— Granger causality
Model: AR ) )
Y (t) =C+ZaiY(t—i)+ijX(t— ])+U,
i=1 j=1

Test

X is called a Granger cause of Y If H, Is rejected.

44



— F-test
e Linear estimation

Y(t)=c+D,aY(t- ')+Z,1,X(t pD+U, — c,a,,bJ
Hy: Y({®)=c+X2aY({t—i)+W, — ¢4

ERR, =30, 000 -Y®)  ERR,=3" Fo-vof
 Test statistics

- der H
o (ERR, —ERR,)/p under H, F vaon (N —>c0)
ERR, /(N -2p+1) |

d d
1 dx ) dx )1
- 1- 1 =
p-d.fof Fy 4, B(d1/2,d2/2)(dlx+d2j ( d1x+d2j X
— Software

« Matlab: Econometrics toolbox (www.spatial-econometrics.com)
* R:Imtest package

45



— Granger causality is widely used and influential in econometrics.
Clive Granger received Nobel Prize in 2003.

— Limitations
» Linearity: linear AR model is used.
No nonlinear dependence is considered.
o Stationarity: stationary time series are assumed.

 Hidden cause: hidden common causes (other time series)
cannot be considered.

“Granger causality” is not necessarily “causality” in general sense.

— There are many extensions.

— With kernel dependence measures, it is easily extended to
Incorporate nonlinear dependence.

Remark: There are few good conditional independence tests

for continuous variables. 46



Kernel Method for Causality of

Time Series

B Causality by conditional independence

— Extended notion of Granger causality
X 1s NOT a cause of Y if

POV g Yeops Koo X p) = PO [Yegsns Vi)
—

Yo AL X X | Yegoeon Yoo

— Kernel measures for causality

2
_ IS (N=p+1)
HSCIC =[S0 0
A 2
HSNCICz‘ (N=p+1)
1A

X, ={(Xe3 Xprs X ) €RP[t= p1,., N}
Y, ={(Ve 1 Yior oY) €RP[t=p+1..,N}

a7



Example

B Coupled HéEnon map
- X, Y:

(X, (t+1) =1.4—x(t)? +0.3%, (t)
%, (t+1) =%(t)

Ya(t+1) =14-{x )y, (1) + A=)y, ()7} + 0.1y, (t)
LYo (t+1) =y, (1)

X17Y1 .

R, PR ERRSR

:'E- ,‘.’.' LI

-
o gy
et

P
i, AP
et

4
3
]




B Causality in coupled Hénon map

— XisacauseofYif y>0.

— Y is not a cause of X for all y.

Yt+1;Ji Xt |Yt
Xt+1 J-L Yt | Xt

— Permutation tests for non-causality with NOC30

le —1310 H,: Y, is not a cause of X, H,: X, Is not a cause of Y,,,
y 00 01 02 03 04 05 06]00 01 02 03 04 05 0.6
NOC30 |94 88 81 63 86 77 62197 O 0 0 0 0 0
Granger | 92 96 95 90 90 94 93|96 92 85 45 13 2 3

Number of times accepting H, among 100 datasets (a = 5%)

49



Summary

B Dependence analysis with RKHS

Covariance and conditional covariance on RKHS can capture the
(in)Jdependence and conditional (in)dependence of random
variables.

Easy estimators can be obtained for the Hilbert-Schmidt norm of
the operators.

Statistical tests of independence and conditional independence are
possible with kernel measures.

» Applications: dimension reduction for regression (FBJO04,
FBJO8), causal inference (Sun et al. 2007).

Further studies are required for kernel choice.

50
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