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Introduction
“Kernel methods” for statistical inference
– We have seen that positive definite kernels are used for capturing 

‘nonlinearity’ of original data through the higher-order moments.     
e.g. Support vector machine, kernel PCA, kernel CCA, etc. 

– Kernelization:  mapping data into a RKHS and apply linear 
methods on the RKHS.

Ω (original space)
Φ 

mapping to 
a Hilbert space

H (RKHS)

X
Φ (X) = k(  , X)
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Do more basic descriptive statistics!
– Consider basic linear statistics (mean, variance, …) on RKHS, and 

their meaning on the original space. 

– Basic statistics Basic statistics
on Euclidean space on RKHS

Mean Mean element
Covariance Cross-covariance operator
Conditional covariance Conditional-covariance operator
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Mean Element on RKHS I
(X, B): measurable sapce.
X: random variable taking value on X.
k: measurable positive definite kernel on X.       H: RKHS defined by k.

: random variable on RKHS.

– Assume 

– Define the mean element of X on H by that satisfies 

Existence and uniqueness:

[ ])(, XfEfmX = )( Hf ∈∀

),()( XkX ⋅=Φ

HmX ∈

[ ] ||||),(||),(|||||||),(,|)]([ fXXkEXkEfXkfEXfE =⋅≤⋅≤

)]([ XfEf a is a bounded linear functional on H. 
Use Riesz’s lemma. 

[ ] .),( ∞<XXkE (satisfied by a bounded kernel)
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Mean Element on RKHS II
– Explicit form

– Intuition on the role: the mean element contains the information of 
the higher-order moments.

X: R-valued random variable.     k: pos.def. kernel on R.        
Suppose pos. def. kernel k admits a power-series expansion on R.

The mean element mX works as a moment generating function:

)],([)( XukEumX =

)].,([),(,)() uXkEukmum XX =⋅=Q

L+++= 2
210 )()(),( xucxuccxuk

L+++== 22
210 ][][)],([)( uXEcuXEccXukEumX

][)(1

0

l

l

l

l

XEum
du
d

c u
X =

=

)exp(),( xuuxk =e.g.)
(ci > 0)
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Characteristic Kernel I
P :  family of all the probabilities on a measurable space (Ω, B).
H:  RKHS on Ω with a bounded measurable kernel k. 
mP: mean element on H for a probability 

– Definition
The kernel k is called characteristic (w.r.t. P) if the mapping 

is one-to-one.

– The mean element for a characteristic kernel uniquely 
determines a probability. 

P∈P

PmPH a,→P

QPmm QP =⇔=
i.e.
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– Generalization of characteristic function
With Fourier kernel

• The characteristic function uniquely determines a Borel
probability on Rm. 

• The mean element w.r.t. a characteristic 
kernel uniquely determines a probability on (Ω, B).

Note: Ω may not be Euclidean. 

– The characteristic RKHS must be large enough!
Examples for Rm (proved later)

• Gaussian RBF kernel

• Laplacian kernel

• Polynomial kernels are not characteristic. 

( )yxyxk T
F 1exp),( −=

)].,([)(.f.Ch uXkEu FX =

)],([)( XukEumX =

Characteristic Kernel II

exp(− 1
2σ2 kx− yk2).

exp(−αPm
i=1 |xi − yi|).
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Determining a Probability I
– P :  family of all the probabilities on a measurable space (Ω, B).
– F: a class of bounded measurable functions. 

– When is the following map injective?

i.e.  

• (all index functions) satisfies this, of course.  
• A characteristic RKHS is defined as such. 
• For a metric space S,  F = Cb(S) (Banach space of the bounded 

continuous functions) satisfies this. 

( )∫→ fdPfP* aa,FP

}|)({ B∈= ExIEF
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Determining a Probability II
Maximum mean discrepancy (MMD)

– M is a distance on P, if F satisfies the injective property.

– Let (H,k) be a RKHS.

With a characteristic kernel k, 
MMD = ||mP – mQ|| is a distance over probabilities. 

)]([)]([sup);,( ~~ XfEXfEQPM QXPX
f

−=
∈F

F

}.1|||||{ ≤∈= fHfF

||||,sup);,(
1||||

QPQP
f

mmmmfQPM −=−=
≤

F
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Empirical mean element on RKHS
– An advantage of RKHS approach is its easy empirical estimation.

– : i.i.d. sample  : sample on RKHS 

Empirical mean

The empirical mean element gives empirical average

)()1( ,..., NXX ( ) ( )NXX ΦΦ ,,1 K

∑∑
==

⋅=Φ=
N

i
i

N

i
i

N
X Xk

N
X

N
m

11

)( ),(1)(1ˆ

)]([ˆ)(1,ˆ
1

)( XfEXf
N

fm N

N

i
i

N
X ≡= ∑

=
)( Hf ∈∀

Empirical Estimation of Mean Element
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Asymptotic Properties I
Theorem (strong      -consistency)

Assume 

( ) )(1ˆ )( ∞→=− NNOmm pX
N

X

N

.)],([ ∞<XXkE

By Chebychev’s inequality, 

Proof.
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Asymptotic Properties II
Corollary (Uniform law of large numbers)

Assume .)],([ ∞<XXkE

Proof.
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Asymptotic Properties III
Theorem (Convergence to Gaussian process)

Assume  

where G is a centered Gaussian process on H with the 
covariance function 

.)],([ ∞<XXkE

in law  ),( ∞→N

Proof is omitted.  See Berlinet & Thomas-Agnan, Theorem 108.
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Application: Two-sample problem
– Homogeneity test

Two  i.i.d. samples are given;

Q:  Are they sampled from the same distribution? 

– Practically important.  
We often wish to distinguish two things:

– Are the experimental results of treatment and control 
significantly different? 

– Were the plays “Henry VI” and “Henry II” written by the 
same author? 

– Kernel solution:  
Use the difference
with a characteristic kernel such as Gaussian.

)()1( ,..., XNXX .,..., )()1( YNYYand

YX mm −
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– Example: do they have the same distribution?
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Kernel Method for Two-sample 
Problem

Maximum Mean Discrepancy (Gretton etal 07, NIPS19)
– In population

– Empirically

– With characteristic kernel,  MMD = 0  if and only if  PX = PY. 

– Asymptotic distribution of              is known, and used for two-
sample homogeneity test (Gretton et al. 2007). 

22
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Experiment with MMD
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Conditions on Characteristic Kernels
Proposition

k: bounded measurable pos. def. kernel on a measurable space 
(Ω, B).  H: associated RKHS.  Then, 

k is characteristic if and only if H + R is dense in L2(P) for any 
probability P on (Ω, B).

Assume mP = mQ.   
: the total variation of P - Q.

Since H + R is dense in                      for any ε > 0 and
there exists                 and such that 

Thus, 

From mP = mQ,  EP[f(X)] = EQ[f(X)], thus |P(A) - Q(A)| < ε. 
This means P = Q.

Proof. 
)⇐

B∈A
R+∈ Hf

|| QP −
|),(|2 QPL −
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Suppose H + R is not dense in L2(P).
There is 

Let  

Define probabilities Q1 and Q2 by

by 
But, 

which means k is not characteristic. 

)⇒
)0()(2 ≠∈ fPLfR

fϕdP = 0, (∀ϕ ∈ H),
R
fdP = 0.

c = 1
kfkL1(P )

.

Q1(E) = c
R
E
|f |dP, Q2(E) = c

R
E
(|f |− f)dP.

EQ1
[k(·, X)]− EQ2

[k(·, X)] = c
R
f(x)k(·, x)dP (x) = 0,

21 QQ ≠ .0≠f
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Shift-invariant Characteristic Kernels
– Continuous shift-invariant kernels on Rm:  φ(x-y)

By Bochner’s theorem, Fourier transform of φ is non-negative.
The characteristic kernels in this class are completely determined. 

Theorem (Sriperumbudur et al. 2008)
Let k(x,y) = φ(x-y) be a R-valued continuous shift-invariant positive 
definite kernel on Rm such that 

Then, k is characteristic if and only if supp(Λ) = Rm.

φ(x) =
R
e
√−1ωTxdΛ(ω).

} s.t. set open  allfor   0)(|{)(supp UxUUx m ∈≠∈= μμ R

qpdxyqyxkdxypyxk =⇒−=− ∫∫ )()()()(

qpqp =⇒=− 0)ˆˆ(φ̂

Intuition:

or
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– Observation:  if                on an interval of some frequency, then k
must not be characteristic. 

E.g. 

– Conjecture: if               for all w, then k(x, y) = f(x - y) is characteristic.

– Is B2n+1-spline kernel characteristic? 

0)(ˆ =ωφ

x
xx )(sin)( αφ = )()(ˆ ][2 ωωφ αα

π
−= I
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– Examples
• Gaussian RBF kernels and Laplacican kernels are characteristic.

• B2n+1-spline kernel is characteristic.

– Remark:
The Fourier analysis, Bochner’s theorem, and the theorem on shift-
invariant characteristic kernels on Rm can be extended to locally 
compact Abelian groups. 

25
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Summary
Mean element in RKHS
– A random variable X can be transformed into a RKHS by 

It contains the information of the higher-order moments of X.

– The mean element is defined by mX = E[Φ(X)].

– If the pos. def. kernel is characteristic, the mean element 
uniquely determines a probability. 

– The mean element with a characteristic kernel can be used for 
homogeneity tests.

– The shift-invariant characteristic kernels on Rm (and locally 
compact Abelian groups) is completely determined. 

),()( XkX ⋅=Φ
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Appendix: Hahn-Jordan decomposition I

Singed measure
: measurable space. 

μ is a signed measure if μ is countably additive, i.e.,  

Hahn-Jordan decomposition
Theorem.
For any signed  measure μ on , there is             such that

are non-negative measures.  

: disjoint.

(Jordan decomposition)
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Appendix: Hahn-Jordan decomposition II

Total variation
– For a signed  measure μ

– If f is an integrable function on a measure space                , 

is a signed measure.

where

The total variation is

(total variation)

+
-

f(x)
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Appendix: Review of Fourier analysis
– Fourier transform of 

– Fourier inverse transform

– Fourier transform of a bounded C-valued Borel measure μ

– Convolution

– Fourier transform of convolution：

)(1 lRLf ∈

x
xdmexff

T

∫ −−= ωω 1)()(ˆ

)()(ˆ 1 xdef xT
μω ω∫ −−=

∫∫ −=−= dyyfyxgdyygyxfgf )()()()(*

∫ −= )()(* ydyxfg μμ

( ) gg ˆˆ* ^ μμ =
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