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Risk and empirical risk I: Terminology

Supervised learning:
D = {(X1, Y1), . . . , (Xn, Yn)}: data. i.i.d. sample.
Xi ∈ X : input, Yi ∈ Y: output.
F ⊂ {f : X → Y}: function class.
Choose f from F so that Yi ≈ f(Xi).

Risk and empirical risk
Loss function `(y, f) : measure discrepancy of Yi and f(Xi).
Risk: the purpose of learning is to minimize the risk;

L(f) = E[`(Y, f(X))] (f ∈ F).

Empirical risk:

Ln(f) = Ên[`(Y, f(X))] =
1

n

∑n
i=1`(Yi, f(Xi)) (f ∈ F).

Learning must be done with data:

f̂ = arg min
f∈F

Ln(f).
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Risk and empirical risk II: Example of loss function

Mean square error.
`(y, f) = (y − f)2.
Empirical risk

minf∈F
∑n
i=1(Yi − f(Xi))

2 (least mean square).

Risk = E[(Y − f(X))2].

0-1 loss. y, f(x) ∈ {±1}.
`(y, f) = 1−yf(x)

2
.

Empirical risk = ratio of errors:
Ên[`(Y, f(X))] = 1

n
|{i | Yi 6= f(Xi)}|.

Risk = mean error rate: E[`(Y, f(X))] = Pr(Y 6= f(X)).

Log likelihood
`(y, f) = − log p(y|f).
Empirical risk = - Empirical log likelihood.
Risk = - Expected log likelihood.
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Risk and empirical risk III: Two approaches

Goal: What can we say about L(f̂) ?

L(f̂)− L̂n(f̂)︸ ︷︷ ︸
known

= E[`(Y, f̂(X))|D]− Ên[`(Y, f̂(X))]︸ ︷︷ ︸
?

.

Approaches to analysis.
Asymptotic expansion of the expectation:

e.g. ED
[
E[`(Y, f̂(X))]− Ên[`(Y, f̂(X))]

]
=
A

n
+ ...

=⇒ AIC.

Bounding risk:

e.g. Pr
(
E[`(Y, f̂(X))|D] ≤ Ên[`(Y, f̂(X))] + ε

)
≤ Pr

(
sup
f∈F

(
E[`(Y, f(X))]− Ên[`(Y, f(X))]

)
≤ ε
)
≤ αe−βε

2n.
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Risk and empirical risk IV

This lecture explains the latter approach
The bound applies for all n, not asymptotics.
Just a bound, but often derives a useful information in its functional
form.
Can be applied to complex methods, such as SVM, AdaBoost.
Note: the loss function of SVM (1− yf(x))+ is not differentiable.

The techniques explained here use the notion of Rademacher
average [BBM02].
For more classical background, see [Vap98].

Comment on terminology:1

Risk = generalization error, prediction error, (expected log
likelihood), etc.
Empirical risk = empirical error, training error, (empirical log
likelihood), etc.

1The terminology in statistical learning theory is slightly different from statistics.
8 / 50



Bounding risk
Risk bound for infinite function class

Risk bound for SVM

Risk and empirical risk
Concentration inequalities
Bound for finite function class

1 Bounding risk
Risk and empirical risk
Concentration inequalities
Bound for finite function class

2 Risk bound for infinite function class
Techniques for infinite function class
Rademacher average, growth function, and VC-dimension

3 Risk bound for SVM
Risk bound for SVM

9 / 50



Bounding risk
Risk bound for infinite function class

Risk bound for SVM

Risk and empirical risk
Concentration inequalities
Bound for finite function class

Empirical mean and expectation

Before considering

supf∈FE[`(Y, f(X))]− Ên[`(Y, f(X))],

review the behavior of

E[`(Y, f(X))]− Ên[`(Y, f(X))] = E[Z]− 1
n

∑n
i=1Zi.

The law of large numbers (Zi: i.i.d.)

1
n

∑n
i=1Zi −→ E[Z] a.e.(n→∞)

Central limit theorem (Zi: i.i.d.)
√
n
(

1
n

∑n
i=1Zi)− E[Z]

)
=⇒ N(0,Var[Z]) (n→∞)

How about
Pr
(

1
n

∑n
i=1Zi − E[Z] ≥ ε

)
?
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Hoeffding’s inequality

Theorem (Hoeffding’s inequality)

X1, . . . , Xn: independent random variables, Xi ∈ [ai, bi]. Then, for
any ε > 0,

Pr
(

1
n

∑n
i=1Xi − E[X] > ε

)
≤ exp

( −2ε2n2∑n
i=1(bi − ai)2

)
and

Pr
(

1
n

∑n
i=1Xi − E[X] < −ε

)
≤ exp

( −2ε2n2∑n
i=1(bi − ai)2

)
Proof is omitted (see e.g. [vdVW96]), since this is a corollary to
McDiamid’s inequality).
Example:
If `(y, f) ∈ [0, 1], then for any f ∈ F ,

Pr
(
|L̂n(f)− L(f)| > ε

)
≤ 2e−2ε2n.
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Azuma-Hoeffding’s/McDiamid’s inequality

Theorem (Azuma-Hoeffding’s/McDiamid’s inequality)

X1, . . . , Xn: independent random variables on X .
f : Xn → R: measurable function.
Assume for each i there exists ci > 0 such that for any x1, . . . , xn, x

′
i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci,

then

Pr
(
f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] > ε

)
≤ exp

( −2ε2∑n
i=1 c

2
i

)
and

Pr
(
f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] < −ε

)
≤ exp

( −2ε2∑n
i=1 c

2
i

)
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Proof I
Remark. f(x1, . . . , xn) =

∑n
i=1Xi and ci = bi − ai prove Hoeffding’s

inequality.
proof. Let

Vi = E[f(X1, . . . , Xn) | X1, . . . , Xi]− E[f(X1, . . . , Xn) | X1, . . . , Xi−1]

= E[f(X1, . . . , Xn) | X1, . . . , Xi]

− EXi [E[f(X1, . . . , Xn) | X1, . . . , Xi] | X1, . . . , Xi−1]

Then, ∑n
i=1Vi = f − E[f ], and E[Vi | X1, . . . , Xi−1] = 0.

By Markov’s inequality with etx (t > 0),

Pr(f − E[f ] > ε) = Pr(
∑n
i=1Vi > ε)

≤ inf
t>0

e−tεE
[
et

∑n
i=1 Vi

]
= inf
t>0

e−tεE
[
EXn

[
et

∑n
i=1 Vi | X1, . . . , Xn−1

]
]

= inf
t>0

e−tεE
[
et

∑n−1
i=1 ViEXn [etVn | X1, . . . , Xn−1

]]
[V1, . . . , Vn−1⊥⊥Xn].
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Proof II
Let

Li ≡ infxVi(x1, . . . , xi−1, x) ≤ Vi ≤ supxVi(x1, . . . , xi−1, x) ≡ Ui.

By the assumption, it is easy to see

Ui − Li ≤ ci.

From the lemma shown below, E[etVn | X1, . . . , Xn−1

]
≤ et

2c2n/8. Thus,

Pr(f − E[f ] > ε) ≤ inf
t>0

e−tεE
[
et

∑n−1
i=1 Vi

]
e−t

2c2n/8.

Repeating the same argument n− 1 times,

Pr(f − E[f ] > ε) ≤ inf
t>0

e−tεe−t
2 ∑n

i=1 c
2
i /8.

The optimal choice t = 4ε/
∑n
i=1 c

2
i gives

Pr
(
f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] > ε

)
≤ exp

( −2ε2∑n
i=1 c

2
i

)
.

The second inequality is obtained by replacing f with −f .
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Lemmas

Lemma (Hoeffding’s lemma)

Let X be a random variable with E[X] = 0 and a ≤ X ≤ b. Then for
any t > 0,

E[etX ] ≤ et
2(b−a)2/8.

Proof omitted (exercise).

Lemma (Markov’s inequality)

Let X be a random variable such that X ≥ 0. Then, for any ε > 0

Pr(X ≥ ε) ≤ E[X]
a

.
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Bound for finite function class I

The simplest case: |F| <∞ (finite class). `(y, f) ∈ [0, 1].

For each f ∈ F ,

Pr
(
E[`(Y, f(X))]− Ên[`(Y, f(X))] ≥ ε

)
≤ e−2ε2n.

From Pr(A ∪B) ≤ Pr(A) + Pr(B),

Pr
(
sup
f∈F

{
E[`(Y, f(X))]− Ên[`(Y, f(X))]

}
≥ ε
)
≤ |F|e−2ε2n.

Let δ = |F|e−2ε2n.
With probability at least 1− δ,

sup
f∈F

{
E[`(Y, f(X))]− Ên[`(Y, f(X))]

}
≤
√

log |F|+ log(1/δ)
2n

.
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Bound for finite function class II
Two results:

Estimation of the risk by the empirical risk.
With probability at least 1− δ,

L(f̂) ≤ L̂n(f̂) +

√
log |F|+ log(1/δ)

2n
.

The difference from the optimal risk.
f∗ = arg minf∈F L(f). With probability at least 1− 2δ,

L(f̂) ≤ L(f∗) +

√
log(1/δ)

2n
+

√
log |F|+ log(1/δ)

2n
.

Proof.

L(f̂) = (L(f̂)− L̂n(f̂)) + (L̂n(f̂)− L̂n(f∗)) + (L̂n(f∗)− L(f∗)) + L(f∗)
≤ (uniform bound) + (≤ 0) + (Hoeffding).
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Extension of risk bound to infinite classes

We wish to extend the uniform bound to an infinite function class F ;

sup
f∈F

{
E[`(Y, f(X))]− Ên[`(y, f(X))]

}
.

Consider in general G ⊂ {g : Z → [0, 1]} and

sup
g∈G

{
E[g(Z)]− Ên[g(Z)]

}
.

Ex. Z = X × Y and G = `F = {`(y, f(x)) | f ∈ F}.

The method consists of three steps:
1 Concentration by Azuma-Hoeffding’s inequality.
2 Symmetrization for removing E[g].
3 Bounding Rademacher average.
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Step 1: Concentration

Define

h(z1, . . . , zn) = sup
g∈G

{
E[g(Z)]− 1

n

∑n
i=1g(zi)

}
.

h satisfies the condition

|h(z1, . . . , zi−1, zi, . . . , zn)− h(z1, . . . , zi−1, z
′
i, . . . , zn)| ≤ 1/n.

Apply Azuma-Hoeffding’s inequality to h:
With probability ≥ 1− δ,

sup
g∈G

{
E[g(Z)]−Ên[g(Z)]

}
≤ E

[
sup
g∈G

{
E[g(Z)]−Ên[g(Z)]

}]
+

√
log(1/δ)

2n
.
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Step 2: Symmetrization - (1)

We wish to have

E
[
supg∈G

{
E[g(Z)]− Ên[g(Z)]

}]
converge to zero.
Symmetrization.
Z ′1, . . . , Z

′
n: an i.i.d. sample with the same distribution as Zi.

E
[
sup
g∈G

{
E[g(Z)]− Ên[g(Z)]

}]
= E

[
sup
g∈G

{
E[ 1

n

∑n
i=1g(Z ′i)]− 1

n

∑n
i=1g(Zi)]

}]
= E

[
sup
g∈G

E
[

1
n

∑n
i=1(g(Z ′i)− g(Zi)) | Z

]]
≤ E

[
E
[
sup
g∈G

{
1
n

∑n
i=1(g(Z ′i)− g(Zi))

}
| Z
]]

[convexity of sup]

= E
[
sup
g∈G

{
1
n

∑n
i=1(g(Z ′i)− g(Zi))

}]
This removes the infinite sample E[g], and makes a bound with a
finite sample.
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Step 2: Symmetrization - (2)

We wish to remove the double sample Zi and Z ′i.
Rademacher variables: i.i.d. random variable σi ∈ {±1} with
probability 1/2 for each value.
Note: By the symmetry,∑n

i=1(g(Z ′i)− g(Zi)) and
∑n
i=1σi(g(Z ′i)− g(Zi))

have the same law.
Hence,

E
[
sup
g∈G

{
1
n

∑n
i=1(g(Z ′i)− g(Zi))

}]
= E

[
sup
g∈G

{
1
n

∑n
i=1σi(g(Z ′i)− g(Zi))

}]
≤ E

[
sup
g∈G

1
n

∑n
i=1σig(Z ′i)

]
+ E

[
sup
g∈G

1
n

∑n
i=1σig(Zi)

]
= 2E

[
sup
g∈G

1
n

∑n
i=1σig(Zi)

]
.
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Step 3: Rademacher average

E
[
supg∈G

{
E[g(Z)]− Ên[g(Z)]

}]
≤ 2E

[
supg∈G

1
n

∑n
i=1σig(Zi)

]
.

Rademacher average:

Rn(G) ≡ E
[
supg∈G

1
n

∑n
i=1σig(Zi)

]
.

Empirical Rademacher average:

R̂n(G) ≡ E
[
supg∈G

1
n

∑n
i=1σig(Zi) | Z1, . . . , Zn

]
.

Note: E[σig(Zi)] = 0. Thus, 1
n

∑
i σig(Zi) must be small.

Rn(G) (R̂n(G)) represents the complexity of the function class G.

Example: G ⊂ {g : {Z1, . . . , Zn} → {±1}}. Regard σi as a label of Zi.

1
n

∑n
i=1σig(Zi) = 1

n

∑n
i=1(1− 2I{σi 6=g(Zi)}) = 1− 2L̂n(g).

Rn(G) = 1− 2× (expected minimum empirical loss).
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Risk bound for infinite classes
We have obtained: With probability ≥ 1− δ,

supg∈G
{
E[g(Z)]− Ên[g(Z)]

}
≤ 2Rn(G) +

√
log(1/δ)

2n
.

Two consequences:

`(y, f) ∈ [0, 1], and let `F = {`(y, f(x)) | f ∈ F}.
Estimation of the risk by the empirical risk.
With probability at least 1− δ,

L(f̂) ≤ L̂n(f̂) + 2Rn(`F ) +

√
log(1/δ)

2n
.

The difference from the best possible risk.
f∗ = arg minf∈F L(f). With probability at least 1− 2δ,

L(f̂) ≤ L(f∗) + 2Rn(`F ) + 2

√
log(1/δ)

2n
.
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Relations between Rn(`F) and Rn(F)

The bound includes Rn(`F ).
It is often related to Rn(F), which is easier to analyze.

0-1 loss: F ⊂ {f : X → {±1}}, `(y, f) = 1−yf
2 .

Fact: for 0-1 loss,

Rn(`F ) =
1
2
Rn(F).

Proof.

Rn(`F ) = E
[
sup
f∈F

∑n
i=1σi

1− Yif(Xi)
2

]
=

1
2
E
[
sup
f∈F

∑n
i=1(−σiYi)f(Xi)

]
=

1
2
Rn(F) [(−σiYi) works as a Rademacher variable]
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Bounding Rademacher average I

How to bound the Rademacher average ?

Rn(G) = E
[
supg∈G

∑n
i=1σig(Zi)

]
Assume G ⊂ {g : Z → {±1}}.

Note: G affects on Rn(G) only through (g(Z1), . . . , g(Zn)) ∈ {±1}n.

We can use the following lemma.

Lemma (Massart [Mas])

A: finite subset of Rn. Assume maxa∈A ‖a‖ ≤ R.
Then

E
[
max
a∈A

∑
i=1

σiai

]
≤ R

√
2 log |A|,

where σi are Rademacher variables.
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Bounding Rademacher average II
For Zn1 = (Z1, . . . , Zn) ∈ Zn, define

G|Zn
1

=
{(
g(Z1), . . . , g(Zn)

)
∈ {±1}n | g ∈ G

}
.

Fact:

Rn(G) ≤

√
2E[log |G|Zn

1
|]

n
≤

√
2 logE[|G|Zn

1
|]

n
.

Proof.
Rn(G) = E

[
supa∈G|Zn

1

1
n

∑n
i=1σiai

]
= E

[
E
[
supa∈G|Zn

1

1
n

∑n
i=1σiai | Z

n
1

]]
≤ 1√

n
E
[√

2 log |G|Zn
1
|
]

[Massart’s lemma]

≤

√
2E[log |G|Zn

1
|]

n
[concavity of √ ]

≤

√
2 logE[|G|Zn

1
|]

n
[concavity of log]
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Proof of Massart’s lemma
Proof.
Let s > 0.

exp(sE[maxa
∑
iσiai]) ≤ E[exp(smaxa

∑
iσiai)] [convexity of exp(sz)]

= E[maxa exp(s
∑
iσiai)]

≤ E[
∑
a exp(s

∑
iσiai)] [max −→

∑
]

=
∑
aE
[∏n

i=1e
sσiai

]
[independence of σi]

=
∑
a∈A

∏n
i=1E

[
esσiai

]
≤
∑
a∈A

∏n
i=1 exp(s24a2

i /8)
[Hoeffding’s lemma, σiai ∈ [−ai, ai]]

= |A| exp(s2R2/2).

Take the optimal s =
√

2 log |A|
R2 . Then,

E[maxa
∑
iσiai] ≤ R

√
2 log |A|.

.
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Distribution-free bound: Growth function

Let G ⊂ {g : Z → {±1}}.
Definition. Growth function

ΠG(n) = max{|G|Zn
1
| ∈ N | Zn1 = (Z1, . . . , Zn) ∈ Zn}.

ΠG(n) is monotonically decreasing w.r.t. n.

Definition. Vapnik-Chervonenkis (VC) dimension

dimV C(G) = max{n ∈ N | ΠG(n) = 2n}

Example: linear threshold functions on Rd.

G = {sgn(wTx+ b) | w ∈ Rd, b ∈ R},

dimV C(G) = d+ 1.
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Sauer’s lemma

Theorem (Sauer’s lemma)

G ⊂ {g : Z → {±1}}. dimV C(G) = d. Then,

ΠG(n) ≤
d∑
i=0

(
n
i

)
and for n ≥ d,

ΠG(n) ≤
(en
d

)d
.

Corollary (Distribution-free bound of Rademacher average)

G ⊂ {g : Z → {±1}}. dimV C(G) = d. Then,

Rn(G) ≤
√

2 log ΠG(n)
n

≤
√

2d(log n+ log(e/d))
n

.

For the proof of Sauer’s lemma, see [Vap98].
33 / 50



Bounding risk
Risk bound for infinite function class

Risk bound for SVM

Techniques for infinite function class
Rademacher average, growth function, and VC-dimension

Bound of risk I

F ⊂ {f : X → {±1}}. dimV C(F) = d.

Recall Rn(`F ) = 1
2Rn(F) ≤ 1

2

√
2d logn+2d log(e/d))

n for n ≥ d.

Distribution-free bound of risk.

Estimation of the risk by the empirical risk.
With probability at least 1− δ,

L(f̂) ≤ L̂n(f̂) +

√
2d log n+ 2d log(e/d))

n
+

√
log(1/δ)

2n
.

The difference from the best possible risk.
f∗ = arg minf∈F L(f). With probability at least 1− 2δ,

L(f̂) ≤ L(f∗) +

√
2d log n+ 2d log(e/d))

n
+ 2

√
log(1/δ)

2n
.
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Bound of risk II

Risk bound:
With Probability ≥ 1− δ,

L(f̂) ≤L̂n(f̂) +

√
2d log n

n
+

2d log(e/d))
n

+

√
log(1/δ)

2n

AIC:
ED[L(f̂)] ≈ ED[L(f̂)] +

# parameters
n

.

MDL:
MDL = ED[L(f̂)] +

# parameters log n
n

.
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Properties of Rademacher average I

1

F ⊂ G =⇒ Rn(F) ⊂ Rn(G).

2

Rn(cF) = |c|Rn(F),

where c ∈ R and cF = {cf | f ∈ F}.

3 For F + g = {f + g | f ∈ F},

Rn(F + g) = Rn(F).

4 Assume −F = F . Then,

Rn(coF) = Rn(F),

where coF = {
∑m
i=1 aifi | fi ∈ F , ai ≥ 0,

∑n
i=1 ai = 1}.
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Properties of Rademacher average II

5 Let φi : R→ R (i = 1, . . . , n) be Lipschitz continuous with
Lipschitz constant b, i.e.,

|φi(x)− φi(y)| ≤ b|x− y| (∀x, y).

Then,

E
[
sup
f∈F

1
n

n∑
i=1

σiφi(f(Xi))
]
≤ bE

[
sup
f∈F

1
n

n∑
i=1

σif(Xi)
]

= bRn(F),

where σi are Rademacher constants.

Proof is omitted. For (5), see [LT91], Th.4.12.
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Rademacher average vs distribution-free bound

How to measure the complexity of function classes.

VC-dimension is simple and easy to compute or bound for many
function classes.
VC-dimension does not take the distribution of X into account.

Rademacher average includes the distribution of X.
It may not be easy to compute.
Various useful properties. (For Rademacher averages, see
[BM02], [LT91].)
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Mini-summary on risk bound

With probability ≥ 1− δ,

(Risk) ≤ (Empirical risk) + (Complexity of F) + Θ(1/δ).

The bound applies to all n, but usually meaningful for large n.

The functional form of the complexity term reflects the property
of the function class and learning method.

Rademacher average represents the complexity term. It is upper
bounded by using VC dimension.
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1 Bounding risk
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Concentration inequalities
Bound for finite function class

2 Risk bound for infinite function class
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3 Risk bound for SVM
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Review of risk bound I

Assume loss function `(y, f) ∈ [0, 1], and let
`F = {`(y, f(x)) | f ∈ F}.

Risk: the purpose of learning is to minimize the risk;

L(f) = E[`(Y, f(X))] (f ∈ F).

Empirical risk:

L̂n(f) = Ên[`(Y, f(X))] =
1
n

∑n
i=1`(Yi, f(Xi)) (f ∈ F).

Learning:
f̂ = arg min

f∈F
Ln(f).
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Review of risk bound II

Estimation of the risk by the empirical risk.
With probability at least 1− δ,

L(f̂) ≤ L̂n(f̂) + 2Rn(`F ) +

√
log(1/δ)

2n
.

The difference from the best possible risk.
f∗ = arg minf∈F L(f). With probability at least 1− 2δ,

L(f̂) ≤ L(f∗) + 2Rn(`F ) + 2

√
log(1/δ)

2n
.

Rademacher average Rn(G) expresses the complexity of G.

Rn(G) = E
[
sup
g∈G

1
n

∑n
i=1σig(Zi)

]
,

where σi ∈ {±1} are Rademacher variables (i.i.d. and
Pr(σi = 1) = 1/2.
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Hinge loss and 0-1 loss I

Binary classification. y ∈ {±1}.

0-1 loss:
`01(y, f) = (1− y sgn(f))/2.

Risk is often evaluated with 0-1 loss in classification.

L(f) = E[`01(y, f(X))] = E[Y 6= sgn(f(X))].

Hinge loss (soft margin loss)

`hinge(y, f) = φ(fy), φ(t) = (1− t)+

used for representing the constraints of soft-margin SVM.
c.f. SVM

min Ên[φ(Yif(Xi))] +
λ

2
‖f‖2.
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Hinge loss and 0-1 loss II

Truncated hinge loss:

φ̃(t) = min(1, φ(t)).

φ̃ satisfies φ̃(yf) ∈ [0, 1].
The results on the uniform bound are applicable.

Relation:
`01(y, f(x)) ≤ φ̃(yf(x)) ≤ φ(yf(x)).
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Uniform bound with hinge loss

L(f) = E[`01(Y, f(X))] ≤ E[φ̃(Y f(X))].

With probability ≥ 1− δ,

supf∈F
{
E[φ̃(Y f(X))]−Ên[φ̃(Y f(X))]

}
≤ 2Rn(`φ̃,F )+

√
log(1/δ)

2n
,

where `φ̃,F = {φ̃(yf(x)) | f ∈ F}.

As a result, With probability ≥ 1− δ,

L(f) ≤ Ên[φ(Y f(X))]︸ ︷︷ ︸
empirical hinge loss

+2Rn(`φ̃,F ) +

√
log(1/δ)

2n

for any f ∈ F .
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Uniform bound for SVM

Recall margin = 1/‖w‖ (w: weight of linear classifier).

Set the function class

Fr = {f ∈ Hk | ‖f‖Hk
≤ r}

and consider

min
f∈Hk

Ên[φ(Y f(X))] subj. to f ∈ Fr.

(Slightly different from the original SVM.)

Lemma

Rn(`φ̃,Fr
) ≤ Rn(Fr) ≤ r

√
E[k(X,X)]

n
.
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Risk bound for SVM

Theorem

Let Fr = {f ∈ Hk | ‖f‖Hk
≤ r}.

With probability ≥ 1− δ,

L(f) ≤ 1
n

n∑
i=1

(1− Yif(Xi))+ + 2r

√
E[k(X,X)]

n
+

√
log(1/δ)

2n

for any f ∈ Fr.

The risk is smaller for a class of larger margin (smaller r),
assuming that the empirical error is the same.
The complexity term of the function class does not depend on the
dimensionality (≈ number of parameters), but only on the norm.
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Proof of Lemma I

1 Rn(`φ̃,Fr
) ≤ Rn(Fr).

By definition,

Rn(`φ̃,Fr
) = E

[
sup
f∈Fr

1
n

∑n
i=1σiφ̃(Yif(Xi))

]
.

Since φ̃ is Lipschitz continuous

|φ̃(t1)− φ̃(t2)| ≤ |t1 − t2|,

(see Properties of Rademacher averages (5))

E
[

sup
f∈Fr

1
n

∑n
i=1σiφ̃(Yif(Xi))

]
≤ E

[
sup
f∈Fr

1
n

∑n
i=1σiYif(Xi)

]
= Rn(Fr).

The last equality holds because σiYi are Rademacher variables.
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Proof of Lemma II
2 Rn(Fr) ≤ r

√
E[k(X,X)]/n.

1
n

∑n
i=1σif(Xi) =

〈
1
n

∑n
i=1σik(·, Xi), f

〉
≤ ‖f‖

∥∥ 1
n

∑n
i=1σik(·, Xi)

∥∥.
Thus,

Rn(Fr) ≤ rE
∥∥ 1
n

∑n
i=1σik(·, Xi)

∥∥.
(
E
∥∥ 1
n

∑n
i=1σik(·, Xi)

∥∥)2

≤ E
∥∥ 1
n

∑n
i=1σik(·, Xi)

∥∥2 [E|ϕ| ≤ (E|ϕ|2)1/2]

= E
[

1
n2

∑n
i,j=1σiσjk(Xi, Xj)

]
= 1

n2

∑n
i=1E

[
k(Xi, Xi)

]
+ 1

n2

∑n
i=1

∑
j 6=iE[σi]E[σj ]E[k(Xi, Xj)]

= 1
nE[k(X,X)] + 0.
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More on the bound for SVM etc.

The previous theorem does not reflect the learning of SVM
rigorously;
the bound is determined as a result of learning, not a priori.

More rigorous approaches:
Bound by fat shattering dimension [BST99].
Luckiness framework [Her01].

Other topics:
Generalization of boosting.
Relation to the uniform convergence of empirical process (covering
number, entropy integral, etc.).
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