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Bounding risk
Joncentration inequ:
=] d for finite funct

Risk and empirical risk |: Terminology

@ Supervised learning:
e D={(X1,Y1),...,(Xn,Yy)}: data. i.i.d. sample.
e X; € X:input, Y; € Y: output.
e F C{f:X — Y}: function class.
@ Choose f from F so that V; =~ f(X,).

@ Risk and empirical risk
e Loss function £(y, f) : measure discrepancy of ¥; and f(X;).
e Risk: the purpose of learning is to minimize the risk;

L(f) = ElY, (XD (FeF).
e Empirical risk:

La(f) = Balf(Y, (X)) = 250,006, f(X) (€ F),

e Learning must be done with data:

~

f = argmin Ln(f).



@ Mean square error.
° Uy, f)=(y—f)

e Empirical risk
minger > i, (Vi — f(X3))? (least mean square).
e Risk = E[(Y — f(X))3.

@ 0-1loss. y, f(z) € {£1}.
° Uy, f) = .
e Empirical risk = ratio of errors:
En[e(Y, f(X))] = £1{i | Yi # F(X0)}.
o Risk = mean error rate: E[((Y, f(X))] = Pr(Y # f(X)).

@ Log likelihood

o Uy, f) = —logp(ylf)-
e Empirical risk = - Empirical log likelihood.
e Risk = - Expected log likelihood.



Bounding risk and empirical risk

Risk and empirical risk Ill: Two approaches

@ Goal: What can we say about L(f) ?

L(f) = La(f) = E[((Y, f(X))|D] — En[e(Y, F(X))].

known ?

@ Approaches to analysis.
e Asymptotic expansion of the expectation:

eg.  Bo[E[(Y, F(X))] — Bae(y, FXN)] = 5 + .
= AIC.
e Bounding risk:
e.g. Pr(E[(Y, f(X))|D] < Enll(Y, f(X))] +¢)

< Pr(sup (LAY, (X)) = Balt(, f(X))]) € 2) < e
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Bounding risk

Risk and empirical risk IV

@ This lecture explains the latter approach

e The bound applies for all n, not asymptotics.

@ Just a bound, but often derives a useful information in its functional
form.

e Can be applied to complex methods, such as SVM, AdaBoost.
o Note: the loss function of SVM (1 — y f(x))+ is not differentiable.

@ The techniques explained here use the notion of Rademacher
average [BBMO02].

For more classical background, see [Vap98].

@ Comment on terminology:'
o Risk = generalization error, prediction error, (expected log
likelihood), etc.

e Empirical risk = empirical error, training error, (empirical log
likelihood), etc.

"The terminology in statistical learning theory is slightly different-from statistics.
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Bounding risk Risk and empirical risk
Concentration inequalities
Bound for finite function class

Empirical mean and expectation

Before considering

~

sup e E[L(Y, f(X))] = En[0(Y, f(X))],
review the behavior of
E[U(Y, f(X))] = En[0(Y, f(X))] = E[Z] = 2320, Z;.
@ The law of large numbers (Z;: i.i.d.)
%Z?:1Zi —  E[Z] a.e.(n— )
@ Central limit theorem (Z;: i.i.d.)
V(5 2i1Zi) — E[Z]) = N(0,Var[Z])  (n — o)

@ How about
Pr(:30,Zi — ElZ] >¢) ?

10/50



Bounding risk Risk and empirical risk
Concentration inequalities
Bound for finite function class

Hoeffding’s inequality

Theorem (Hoeffding’s inequality)

X1, ..., Xy independent random variables, X; € [a;, b;]. Then, for
anye > 0,

—2e2n? )

Pr(3Xin X~ BIX] > ) S o5 s

and
—2e2n?2 )

Z?:l(bi —a;)?

@ Proof is omitted (see e.g. [vdVW96]), since this is a corollary to
McDiamid’s inequality).

@ Example:
If £(y, f) € [0,1], then forany f € F,

Pr(1y0 X; — B[X] < —) < eXp(

Pr(|L,(f) — L(f)| > &) < 2e72°™.
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Bounding risk

Risk and empirical risk
Concentration inequalities
Bound for finite function class

Azuma-Hoeffding’s/McDiamid’s inequality

Theorem (Azuma-Hoeffding’s/McDiamid’s inequality)

Xy,..., X, independent random variables on X .
f: X" — R: measurable function.
Assume for each i there exists ¢; > 0 such that for any 1, .

|f(z1a"'7xi7"'

/
o o 5 LBy A8

) — f(@1, T xn)| < ey

then

Pr(f(X1,..., Xn) — B[f(X1,...,Xn)] > €) < exp(z_fi?)
=1 "1

and
—2¢2

Pr(f(X1,..., Xn) — E[f(X1,...,Xn)] < —¢) < exp(ﬁ

N—
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Bounding risk Risk and empirical risk
Concentration inequalities
Bound for finite function class

Proof |

Remark. f(z1,...,2,) =Y i, X; and ¢; = b; — a; prove Hoeffding’s
inequality.
proof. Let
Vi=Elf(X1,..,Xn) | X1,.., Xi] = E[f(X1,...,Xn) | X1,..., Xi—1]
=E[f(X1,...,Xn) | X1,...,Xi]
— Ex,[E[f(X1,.., X)) | X1,..., Xa] | X1,..., Xi—1]

Then,
?le:f—E[f], and E[‘/Z |X1,...,Xi_1}20.

By Markov’s inequality with e** (¢ > 0),
Pr(f — E[f] > &) = Pr(¥0, Vi > ¢)
< inf eftsE[etZin’:l Vi}
t>0
=infe “E[Ex, [¢'==1" | X1,..., Xn_1]]
t>0

= inf e*ffE[efZ?:’f ViBx, [V | Xa, .., Xn_l]] Vi, Vo1 LX)
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Bounding risk Risk and empirical risk
Concentration inequalities
Bound for finite function class

Proof Il

Let

L; =inf,Vi(x1,...,zi—1,2) < V; <sup,Vi(zi1,...,zi—1,2) = U;.

By the assumption, it is easy to see
Ui — Li S Ci.
From the lemma shown below, E[e!"" | X1, ... ,Xn_l] < et’cn/8. Thus,
. < —te e 4%31/8.
Pr(f E[ﬂ>z~:)7gge Ele Je
Repeating the same argument n — 1 times,
Pr(f — E[f] > ¢) < 22567%67752 Tiiqci/s

The optimal choice t = 4e/ >_7"_ ¢} gives

Pr(f(X1,...,Xn) — E[f(X1,..., Xn)] > €) <exp<i>.
) ) n ) ) n i 2?21 C?
The second inequality is obtained by replacing f with = f. OJ
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Bounding risk Risk and empirical risk
Concentration inequalities
Bound for finite function class

Lemmas

Lemma (Hoeffding’s lemma)

Let X be a random variable with E[X]| =0 and a < X < b. Then for
anyt >0,
E[etX] < etQ(bfa)Q/S.

Proof omitted (exercise).

Lemma (Markov’s inequality)

Let X be a random variable such that X > 0. Then, foranye > 0

Pr(X >¢) <
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Bounding risk

Bound for finite function class |

The simplest case: | F| < o (finite class). ¢(y, f) € [0, 1].
@ Foreach f € F,

Pr(EU(Y, f(X))] - Bal0(Y, f(X))] > ) < e %™
@ From Pr(AU B) < Pr(A) + Pr(B),

Pr(;gg{E[f(Y,f(X))] E Y, J(X)]} =€) < [Fle™> ™.

o Letd = |Fle2"",
With probability at least 1 — 4,

sup { E[(Y, f(X))] = En[0(Y, f(X)]} < \/log 7] J;;og(l/é).

fer



Bounding risk

Bound for finite function class Il

Two results:

@ Estimation of the risk by the empirical risk.
With probability at least 1 — 4,

@ The difference from the optimal risk.
f« = argminger L(f). With probability at least 1 — 26,

L() < L(f) + V D V el

Proof.

L) = (L(F) = La(P) + (La(f) = La(f2)) + (Ln(fu) = L(f2)) + L(f.)
< (uniform bound) + (< 0) 4 (Hoeffding).
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Techni infinite function class
Rade

Risk bound for infinite function class - N T -
adel rage, growth function, and VC-dimension

Extension of risk bound to infinite classes

We wish to extend the uniform bound to an infinite function class F;

sup { E[0(Y, f(X))] = Enlf(y, f(X))]}.

feFr

Consider in general G C {g: Z — [0,1]} and

£57161[g){E[g(Z)] — En[Q(Z)]}

Ex. Z=&xxYand G ={lr ={l(y, f(x)) | f € F}.
The method consists of three steps:
@ Concentration by Azuma-Hoeffding’s inequality.

© Symmetrization for removing Elg].
© Bounding Rademacher average.

20/50



Technique: function class

Risk bound for infinite function class = .
Rademach growth function, and VC-dimension

Step 1: Concentration

@ Define

h(z1,. .., 2n) = zlelg{E[g(Z)] — A9z}

@ h satisfies the condition
|h(21, ey 2im1s Ziy ey 2n) — (21, ooy 2im1, 20y ooy 20)| < 1/n.

@ Apply Azuma-Hoeffding’s inequality to h:
With probability > 1 — 4,

ileug){E[g(Z)]*En[g(Z)}} < E[EEE{E[Q(ZH*EL[Q(Z)]}]+ W'

21/50



Techni function class

Risk bound for infinite function class = .
Rademacl ge, growth function, and VC-dimension

Step 2: Symmetrization - (1)

@ We wish to have
E[sup,cg{ Elg(2)] - Ealg(2)]}]

converge to zero.
@ Symmetrization.
Zi,...,Z}: ani.i.d. sample with the same distribution as Z,.

Elsup{Elo(2)) = Bala(2)1}] = E[sup{ ERSILag(20)] - 150 20]

= E[Z‘E‘EE[%Z?=1<9<Z;> - 9(2)) | 2]]

< E[E [sup{ 13" (9(Z]) — 9(Z:)} | Z]] [convexity of sup]
Y
= Bsup{ 11, (9(2) - 9(Z))}]
Y
@ This removes the infinite sample E[g], and makes a bound with a

finite sample.

22/50



Technique: function class

Risk bound for infinite function class = .
Rademach growth function, and VC-dimension

Step 2: Symmetrization - (2)

@ We wish to remove the double sample Z; and Z..
@ Rademacher variables: i.i.d. random variable o; € {1} with
probability 1/2 for each value.

@ Note: By the symmetry,
2i1(9(Z)) = 9(Z;)) and 37, 0i(9(Z)) — 9(Z:))

have the same law.
Hence,

Blsup{ L L (0(2) ~ o))}

= Blsup{ S iei(o(20) — 97}

<l A Lura@)] + Bl AT oa()
= 2B[sup LS 1ou0(2)|

23/50



Technig ion class

Risk bound for infinite function class Radema th function, and VC-dimension

Step 3: Rademacher average

E[sup,eg{Elg(Z)] — Enlg(2)]}] < 2E[supyeg2 S0 0:9(Z))].
@ Rademacher average:
Ro(G) = Bsup,eg S ,0i9(2)]-

@ Empirical Rademacher average:

~

R.(G) = E[supgeg%Z?zlaig(Zi) | Z1,..., Zn} .

@ Note: E[o;9(Z;)] = 0. Thus, 2 3", 0;9(Z;) must be small.
® R,(G) (R.(G)) represents the complexity of the function class G.
Example: G C {g: {Z1,...,Zn} — {£1}}. Regard o; as a label of Z;.
AYi0i9(Zi) = X0 (1= 20, (z0)) = L — 2Lnl(9)-

R, (G) =1 — 2 x (expected minimum empirical loss).
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Techniques for infinite function class

Risk bound for infinite function class N - N T -
Rademache e, growth function, and VC-dimension

Risk bound for infinite classes

We have obtained: With probability > 1 — 4,

supyeg{ El9(2)] — Eal9(Z)])} < 2R.(G) + log(1/9)

2n
Two consequences:
Uy, f) €10,1], and let £x = {{(y, f(z)) | f € F}.
@ Estimation of the risk by the empirical risk.
With probability at least 1 — 4,
log(1/9)

L() < La(f) +2Ru(lr) +1) =5 =

@ The difference from the best possible risk.
f« = argmingex L(f). With probability at least 1 — 26,

log(1/6)

L(f) < L(f.) + 2Ba(lr) + 2/ —5

25/50



. . " Technique: function class
Risk bound for infinite function class ~ q N - N _ - -
Rademact growth function, and VC-dimension

Relations between R, (¢7) and R, (F)

The bound includes R, (¢F).
It is often related to R, (F), which is easier to analyze.

@ 0-1loss: F C {f: X — {£1}}, Ly, ) = L.
@ Fact: for 0-1 loss,

Rallr) = 3 Fu(F).

Proof.

Rn(lF) = E[)S;lelg Z?Zlai%}

2
1 n
= JE[sup S0, (—on¥) £(3)]
feFr
1

= 5Rn(}‘) [(—0;Y;) works as a Rademacher variable]

26/50
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Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Bounding Rademacher average |

How to bound the Rademacher average ?

R, (G) = E[Supgeg Z?:lUig(Zi)]
Assume G C {g: Z — {£1}}.
Note: G affects on R, (G) only through (g(Z1),...,9(Z,)) € {£1}".

We can use the following lemma.

Lemma (Massart [Mas])

A finite subset of R™. Assume max,ec 4 ||la|| < R.
Then
E hneaj(; Uiai] < Ry/2log|A|,
=

where o; are Rademacher variables.

28/50



Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Bounding Rademacher average |l

For Z1 = (Zi,...,Z,) € Z", define
Gizp ={(9(Z1),--,9(Zy)) € {£1}" | g € G}.

i) <[22l [2os Gz )

Fact:

n - n
Proof.
R.(G) = E[supaeg‘zib LS oiail

= E[E[sup,cg,,, 1300100 | 2]

1
< —E|y/ n !
< \/EE[ 2log |G| zp | [Massart’s lemma]

2E[log |g|Z{” ]
n

2log K n
< M [concavity of log]

[concavity of | /7]
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Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Proof of Massart’s lemma

Proof.
Let s > 0.
exp(sE[maxqy _,0;a;]) < Elexp(smaxqy ,0;a;)] [convexity of exp(sz)]
= E[max, exp(s)_,0:a;)]
< E[Y-, exp(s>_,04a,)] [max — ]
=Y BTl e %] [independence of o]
=Y aeallin Ble7]

< Yaea [Tizs exp(s™4ai/8)
[Hoeffding’s lemma, c;a; € [—a;, a;]]

= |A| exp(s*R?/2).

Take the optimal s = /21%5]4l Then,

Elmax,) ,0;a;) < Ry/2log|Al.
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Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Distribution-free bound: Growth function

LetG c {g: Z — {£1}}.
Definition. Growth function

Hg(n) = max{|G 2| € N| Z = (Z1,...,Z,) € Z"}.
IIg (n) is monotonically decreasing w.r.t. n.
Definition. Vapnik-Chervonenkis (VC) dimension
dimy¢(G) = max{n € N [IIg(n) = 2"}
Example: linear threshold functions on R<.
G = {sgn(wTz +b) | w € R, b € R},

dlmvc(g) =d-+1.

31/50
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d=2
n=3 n=4
O o) o)
o) o) o o
®
® ® ®
o o e /o
® ®
® ®
e o e\ o
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Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Sauer’s lemma

Theorem (Sauer’s lemma)
G C{g: Z— {£1}}. dmyc(G) = d. Then,

and forn > d,

Corollary (Distribution-free bound of Rademacher average)
G Cc{g: Z— {£1}}. dimyc(G) =d. Then,

Rn(g)g\/ZlogHg(n)<\/2d(logn+1og(e/d))-

n - n

For the proof of Sauer’s lemma, see [Vap98].
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Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Bound of risk |

Flf: X {£1}). dimyo(F) = d.
Recall R, ((r) = 1R, (F) < 2\/2dlogn+2dlog /) for n > d.

Distribution-free bound of risk.

@ Estimation of the risk by the empirical risk.
With probability at least 1 — 4,

L) < EulP + \/2dlogn+idlog(€/d)) N \/logéim-

@ The difference from the best possible risk.
f« = argminger L(f). With probability at least 1 — 26,

L(f) <L(f) 4 \/leogn + 2dlog(e/d)) N 2\/1og(1/5).

n n
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Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Bound of risk Il

@ Risk bound:
With Probability > 1 — 4,

L(J?) Szn(f) + \/Zdl;:gn + Zdlogrge/d)) n \/logévll/é)
" n n # parameters
Ep|L(f)] ~ Ep[L(f)] + —— =
@ MDL:

# parameterslogn
- .

MDL = Ep[L(f)] +

35/50



Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Properties of Rademacher average |

Qo
FCG = R,(F)CR,).

(2]
Ry (cF) = |c|Rn(F),

where ce Rand ¢F = {cf | f € F}.
QForF+g={f+g|feF}

© Assume —F = F. Then,
R, (coF) = R, (F),

where coF = {3°"  aifi | fi € Fra; > 0,370 a; = 1},

36/50



Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Properties of Rademacher average |l

@ Letyp,:R —R (i =1,...,n) be Lipschitz continuous with
Lipschitz constant b, i.e.,

[9i(z) — i(y)| <blz —y| (Vo).
Then,

{sup Zal@ } < bE{Sup Zaz X; } = bR, (F),

ferFn feFn

where o; are Rademacher constants.

Proof is omitted. For (5), see [LT91], Th.4.12.



Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Rademacher average vs distribution-free bound

How to measure the complexity of function classes.

@ VC-dimension is simple and easy to compute or bound for many
function classes.

@ VC-dimension does not take the distribution of X into account.

@ Rademacher average includes the distribution of X.
@ It may not be easy to compute.

@ Various useful properties. (For Rademacher averages, see
[BMO02], [LT91].)
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Techniques for infinite function class

Risk bound for infinite function class Rademacher average, growth function, and VC-dimension

Mini-summary on risk bound

@ With probability > 1 — 4,

(Risk) < (Empirical risk) + (Complexity of F) + ©(1/6).

@ The bound applies to all n, but usually meaningful for large n.

@ The functional form of the complexity term reflects the property
of the function class and learning method.

@ Rademacher average represents the complexity term. It is upper
bounded by using VC dimension.
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Risk bound for SVM
Risk bound for SVM

Review of risk bound |

@ Assume loss function £(y, f) € [0, 1], and let

tr ={ly, f(x)) | f € F}.
@ Risk: the purpose of learning is to minimize the risk;

L(f) = El((Y, f(X))]  (feF).

@ Empirical risk:

.} aIg min L’I’L ) .

41/50



Risk bound for SVM
Risk bound for SVM

Review of risk bound I

@ Estimation of the risk by the empirical risk.
With probability at least 1 — 4,

log(1/9)

L(F) < Lu(F) + 2Rallr) +1) =,/

@ The difference from the best possible risk.
f« = argmingex L(f). With probability at least 1 — 26,

LOP) < L(f) + 2Ru(t) + 20 B

@ Rademacher average R, (G) expresses the complexity of G.
Ro(G) = E[sup 10, 01(Z0)]
geG
where o; € {+1} are Rademacher variables (i.i.d. and

Pr(o; =1)=1/2.
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Risk bound for SVM
Risk bound for SVM

Hinge loss and 0-1 loss |

Binary classification. y € {£1}.

@ 0-1loss:
Cor(y, f) = (1 —ysen(f))/2.
@ Risk is often evaluated with 0-1 loss in classification.

L(f) = Elto(y, f(X))] = E[Y # sen(f(X))].

@ Hinge loss (soft margin loss)

ehinge(yv f) = ¢(fy)a (rb(t) = (1 - t)-‘r

used for representing the constraints of soft-margin SVM.
@ c.f. SVM

min B, [¢(Y f(X:))] + ||f||2
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Risk bound for SVM
Risk bound for SVM

Hinge loss and 0-1 loss |l

@ Truncated hinge loss:

¢(t) = min(1, ¢(t)).

@ ¢ satisfies ¢(yf) € [0, 1].
The results on the uniform bound are applicable.

@ Relation:

lor(y, f(2)) < d(yf(x)) < d(yf()).

01 N\j
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Risk bound for SVM
Risk bound for SVM

Uniform bound with hinge loss

L(f) = Eltor(Y, f(X))] < E[$(Y f(X))].

@ With probability > 1 — 4,

supfef{E (Y f(X))]-E [¢(Yf )]} < 2R, (C5.7)+ logéil/(”’

where (; = {¢(yf(x)) | f € F}.
@ As a result, With probability > 1 — ¢,

LUf) < BulolY FX))] 42Ral5 ) + ) 2L
S— "

empirical hinge loss

forany f € F.
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Risk bound for SVM
Risk bound for SVM

Uniform bound for SVM

@ Recall margin = 1/||w|| (w: weight of linear classifier).
@ Set the function class
Fr=Af € Hi | [[fllr <7}
and consider

min E,[6(Y[(X))]  subj.to f € .

(Slightly different from the original SVM.)
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Risk bound for SVM
Risk bound for SVM

Risk bound for SVM

Let F. ={f € Hi [ [ fll3. <7}
With probability > 1 — ¢,

2n

3

12": LY (X))s 2 \/E““(ff’X” N \/logu/é)

forany f € F,

@ The risk is smaller for a class of larger margin (smaller r),
assuming that the empirical error is the same.

@ The complexity term of the function class does not depend on the
dimensionality (= number of parameters), but only on the norm.
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Risk bound for SVM
Risk bound for SVM

Proof of Lemma |

o Rn(‘é&_’]:") S Rn(f7)
By definition,

Rl 5)=E [fsgﬁ IS oV (X0)].

Since ¢ is Lipschitz continuous
|6(t1) = b(t2)] < |t — ta,

(see Properties of Rademacher averages (5))

E[Sup %Z?:lo—zﬁg(y;f(Xz))] < E[Sup %Z?=101Kf(X1):| = Rn(}—r)
feFr feFr

The last equality holds because o;Y; are Rademacher variables.
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Risk bound for SVM
Risk bound for SVM

Proof of Lemma i

Q R.(F) <ryEk(X,X)]/n.

w2 0if (X)) = (001 0ik(, X), f) < W5 ik, Xa) |-

Thus,
Ro(Fy) < rE||:50 oik(, X))

(Blis o x0])’

< Bl ES ok X [El¢l < (Blel*)/?]
_E[ Z” 102‘7Jk(XZ=Xj)]
= i B[R(Xi, X0)] + 5300 20, 4 Eloi] Bloj | E[k(Xs, X;)]
= LE[k(X, X)] +0.
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Risk bound for SVM
Risk bound for SVM

More on the bound for SVM etc.

@ The previous theorem does not reflect the learning of SVM
rigorously;
the bound is determined as a result of learning, not a priori.

@ More rigorous approaches:

@ Bound by fat shattering dimension [BST99].
e Luckiness framework [Her01].

@ Other topics:

e Generalization of boosting.
e Relation to the uniform convergence of empirical process (covering
number, entropy integral, etc.).
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