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Multiclass classification - overview - I

Multiclass classification:
Classify x in one of L classes {1, 2, . . . , L}.
(X1, Y1), . . . , (XN , YN ): data

Xi: explanatory variable
Yi ∈ {1, . . . , L}: labels for L classes.

Make a classifier: h : X → {1, 2, . . . , L}.

The original SVM is applicable only to binary classification
problems.

There are some approaches to extending SVM to multiclass
classification.

Direct construction of a multiclass classifier.
Combination of binary classifiers.
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Multiclass classification - overview - II
An incomplete list of multiclass extension of SVM and related
methods.

Direct approach:
Multiclass SVM ([CS01],[WW98], [BB99], [LLW] etc.)
Kernel logistic regression ([ZH02], K.Tanabe, [KDSP05])
and others

Combination approach:
How to divide the problem

- one-vs-rest (one-vs-all)
i-th class vs the other classes (L binary classification problems)

- one-vs-one
i-th vs j-th class (L(L− 1)/2 binary classification problems)

- Error correcting output code (ECOC) [DB95]
How to combine the binary classifiers

- Hamming decoding
- Bradly-Terry model ([HT98], [HWL06])
- Learning of combiner (stacking [Shi08])
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Multiclass SVM I

Multiclass SVM (Crammer & Singer 2001)

Large margin criterion is generalized to multiclass cases.
Efficient optimization.
Implemented in SVMlight.

Linear classifier for L-class classification
Data: (X1, Yi), . . . , (XN , YN ), Xi ∈ Rm, Yi ∈ {1, . . . , L}.
Classifier:

h(x) = arg max
`=1,...,L

wT` x.

L linear classifiers are used.
(The bias term b` is omitted for simplicity.)
wT` x (` = 1, . . . , L) is the similarity score for the class `. The class
of the largest similarity is the answer of the classifier.
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Multiclass SVM II

Margin for multiclass problem:

Margini = wTYi
Xi −max

` 6=Yi

wT` Xi.

W = (w1, . . . , wL) correctly classifies the data (Xi, Yi), if and only
if Margini ≥ 0.
The scale of the margin must be fixed.

Large margin classifier (hard margin)

min
W

1
2
‖W‖2 subj. to wTYi

Xi + δ`Yi
− wT` Xi ≥ 1 (∀`, i).

If ` = Yi, the constraints are redundant.
If ` 6= Yi, the score must be at least 1 smaller than the score of the
true class.
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Multiclass SVM III

Meaning of margin

8 / 24



Multiclass classification with SVM
Combination of binary classifiers

Structured output
Others

Multiclass SVM IV

Multiclass SVM (soft margin)

Introducing slack variables ξi ≥ 0 (i = 1, . . . , N )

max
`

(
wT` Xi + 1− δ`Yi

)
− wTYi

Xi = ξi (∀i).

ξi represents the break of the separability.

Primal problem of multiclass SVM:

min
W,ξ

β

2
‖W‖2+

N∑
i=1

ξi subj. to wTYi
Xi+δ`Yi

−wT` Xi ≥ 1−ξi (∀`, i).

Note: for ` = Yi, the inequality constraints become ξi ≥ 0.
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Dual of multiclass SVM I

Lagrangian:

L(W, ξ, η) =
β

2
‖W‖2+

N∑
i=1

ξi+
N∑
i=1

L∑
`=1

ηi`
(
(w`−wYi)

TXi−δ`Yi+1−ξi
)
.

(ηi` ≥ 0,∀`, i)
Dual function:

∇ξi
L = 0 =⇒

∑
`ηi` = 1,

∇w`
L = 0 =⇒ w` = β−1∑

i(δYi` − ηi`)Xi

Xi is a support pattern if and only if ηi` is not concentrated on
the true label Yi.
(Note: ηi` ≥ 0 and

∑
` ηi` = 1. )
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Dual of multiclass SVM

Let

τi = eYi − ηi, where er = (0, . . . , 0, 1, 0, . . . , 0).

Dual problem:

min
τ

: g(τ) = −1
2
∑N
i,j=1

(
XT
i Xj

)
τTi τj + β

∑N
i=1τ

T
i eYi

,

subject to τi ≤ eYi
(∀i)

∑L
`=1τi` = 1.

Classifier:
h(x) = arg max

`=1,...,L

(∑N
i=1τ

∗
i`(X

T
i x)

)
.

Kernelization: Just replace (XT
i Xj) and (XT

i x) by k(Xi, Xj) and
k(Xi, x).
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Efficient computation I

The dual problem is QP with L×N variables. Direct application
of a QP solver may be difficult.

Efficient computation 1: Decomposition into N subproblems
Select an example p ∈ {1, . . . , N} one by one.
Solve a subproblem over τp.

(∗) min
τp

1

2
apτ

T
p τp + bTp τp,

subj. to τp ≤ eYp ,
∑L
`=1τp` = 1,

where ap = k(Xp, Xp) and bp =
∑
i 6=p k(Xi, Xp)τp − βeYp .

The example p is chosen by the degree of breaking KKT condition.
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Efficient computation II

Efficient computation 2: Optimization by fixed point algorithm
The subproblem over τp has a special form: the coefficient of
quadratic term is a scaler matrix.
The solution of the dual of the subproblem (*) is reduced to a fixed
point problem:

θ∗ =
1

L

∑L
`=1 max{θ∗, d`} −

1

L
,

where θ is a Lagrange multiplier and d` is a constant.
Use iteration

θnew =
1

L

∑L
`=1 max{θold, d`} −

1

L
.
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Combination of binary classifiers

Base classifiers: make use of strong binary classifiers, and
combine their outputs. e.g. SVM, AdaBoost, etc.

Decomposition of a multiclass classification into binary
classifications

1-vs-rest
i-class vs the other classes – L problems

1-vs-1
i-class vs j-class (∀i, j ∈ {1, . . . , L}) – L(L− 1)/2 problems

More general approach = Error correcting output code (ECOC).
ECOC attributes a code for each class.

class f1 f2 f3 f4 f5 f6
C1 -1 -1 -1 1 1 1
C2 -1 1 1 -1 -1 1
C3 1 -1 1 -1 1 -1
C4 1 1 -1 -1 1 1
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Combining base classifiers

Hamming decoding for ECOC:
Let W`a be the code of ECOC for the class ` and classifier fa
(1 ≤ ` ≤ L, 1 ≤ a ≤M ).

h(x) = arg min
`
‖w` − f(x)‖Hamming,

where f(x) = (f1(x), . . . , fM (x)) ∈ {±1}M .
This is equivalent to

h(x) = arg max
`

∑M
a=1W`afa(x).

In the case of one-vs-one, Hamming decoding coincides with
majority vote, which returns the class with the most "votes".

Bradly-Terry model:
A probabilistic model for paired comparison. It can be applied
when the output of fi(x) is continuous.
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Learning combiner

Given base classifiers {fi(x)}Ma=1, consider a linear combination
function

h(x) = arg max
`

∑M
a=1v`afa(x).

It is reasonable to expect that adapting v by the data increases
the classification accuracy.

A better combination is possible, if we avoid overfitting caused by
reusing the data for both of base classifiers and combiner.
Stacking via cross-validation ([Shi08]):

min
v

N∑
i=1

∥∥Yi −∑M
a=1vaf

[−i]
a (Xi)

∥∥2 + λ‖v‖2.
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Structured output

The output of prediction may be structured object, such as label
sequence (strings), trees, and graphs.
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Large margin approach to structured output I
References

Application to natural language processing [Col02].
Max-Margin Markov Network (M3N) [TGK04].
Hidden Markov support vector machine [ATH03].

Approach
Assign for x a structured object y ∈ Y.
(X1, Y1), . . . , (XN , YN ): data

Xi: input variable,
Yi ∈ Y: structured object.

Feature vector

F (x, y) = (f1(x, y), . . . , fM (x, y))

Make a classifier: h : X → Y

h(x) = arg max
y∈Y

wTF (x, y).
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Large margin approach to structured output II

Formulate the problem as a multiclass classification.
Each y ∈ Y is regarded as a class.

Multiclass SVM gives

min
W,ξ

β

2
‖w‖2 +

∑N
i=1ξi

subj. to wTF (Xi, Yi) + δyYi
− wTF (Xi, y) ≥ 1− ξi (∀i, y ∈ Y).

Problem:
# constrains (= # dual variables) = |Y|.
This is prohibitive in many cases!
e.g. for label sequence

|Y| = |Alphabet|length.
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Large margin approach to structured output III

The computational cost must be reduced by some methods.
Reducing the dual variables according to the graph structure
[TGK04].
The variables correspond to the nodes and edges.
Cutting plane method (selecting variables) [ATH03].
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Other topics

Support vector regression. [MM00]
ν-SVM: Another formulation of soft margin. [SSWB00]
ν = an upper bound on the fraction of margin errors.
ν = the lower bound on the fraction of support vectors.
one-class SVM: (similar to estimating a level set of density
function.)
Large margin approach to ranking.
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