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Kernel Methodology

Kernel methodology: feature space by RKHS

@ Kernel methodology = Data analysis by transforming data into a
high-dimensional feature space given by RKHS.

O(x) =k(-,x)
H ()
Space of original data / Feature space (RKHS)

Apply linear methods on RKHS.
The computation of the inner product is cheap.



Kernel Methodology

Higher-order statistics by positive definite kernel

@ A nonlinear kernel can include higher-order statistics.
Example: Polynomial kernel on R: k(y, z) = (yz + 1)%.

o Data are transformed as k(-, X1),...,k(-, Xn) € Hk.
e Regarding k(-, X) = k(y, X) as a function of y,

Ey,X)= X% +aq 1 X" o+ a Xy +ao (a; #0).

o {1,y,4% ...,y%} is a basis of H.
o With respect to this basis, the component of the feature vector
E(-,X)is
(X% ag 1 X X, a0)”.

This includes the statistics (X, X2,..., X9).

@ Similar nonlinear statistics appear in other kernels such as
Gaussian, Lapacian, etc.
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Kernel PCA

Kernel PCA |

@ Xy,...,Xy:dataon X.
@ k: X x X positive definite kernel, Hy.: RKHS.
@ Transform the data into H;, by ®(z) = k(-, ) :

X1, Xy ®(Xy),...,0(Xy).

Kernel PCA ([SSM98]): Apply PCA on Hj.:
@ Maximize the variance of the projection onto the unit vector f.

s Varl(f, @(X)] = max &30 ((F, @(X0)~F X7 (F 2(X,))

o It sufficestouse f =3 | a;®(X;), where
(X)) = B(X;) — L, (X)),

The direction orthogonal to {®(X}),...,®(Xx)} does not
contribute.
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Kernel PCA Il

@ The PCA solution:

maxa’ K2a subjectto o’ Ka=1,
where K is N x N matrix with K;; = (®(X;), ®(X;)).
K = k(X3 X;) = % S5l (X0, X) = 3000, k(Xa, X5)
+ e a1 k(Xa, Xa).
K is called a centered Gram matrix.
Note:
F Ui (L (X)) = F 2 (O a9(X)), (X)) = ya’ Ka,

112 = (20 ad(X,), T ad (X)) = o Ka.
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Kernel PCA Il

@ The p-th principal direction f® ="V oP(X;,) is given by

a(p)}?a(p) =1

max o7 K20 subj. to -
a® Kal@ =0 (a=1,...,p—1).

Principal component of kernel PCA

Let K = Z;V:lApu(”)u(P)T is the eigen decomposition
(A= >An >0).
The p-th principal component of the data X is

(B(X:), XN 0P o) = 2N VA,




Kernel PCA

Kernel PCA: numerical examples

@ Wine data (from UCI repository [MA94]).

@ 178 data of 13 dimension. They represents chemical
measurements of different wine.

@ There are three classes, which correspond to types of wine.

@ The classes are shown in different colors, but not used for the

analysis.
Linear PCA KPCA Gaussian kernel
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Kernel PCA

KPCA with Gaussian
kernels. k(z,y) = exp{—52= ||z — y|*}.
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Kernel PCA

Application to noise reduction

Noise reduction by kernel PCA.
@ Xp,...,Xy:data, — ®(X;),...,P(Xy): datain RKHS.
@ V,: subspace of H;, spanned by (). ... f(@ (d major principle
directions).
@ II(x) (€ Hy): orthogonal projection of ®(x) onto V.
@ Find a point y in the original space such that

= in||®(y) — 11 .

y = argmin [[(y) — I(2)]x,
Note: II(z) is not necessarily in the image of embedding ®.
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Kernel PCA

USPS hand-written digits data:
7191 images of hand-written digits of 16 x 16 pixels.

QO SR RORA TR0

Sample of original images (not used for experiments)

AR EEENEEEE

Sample of noisy images

MEEEes @ vEE e

Sample of denoised images (linear PCA)

Il Pl El ¥ & € ¥l E] Ei [6)

Sample of denoised images (kernel PCA, Gaussian kernel)



Kernel PCA

Properties of kernel PCA

@ Nonlinear features can be considered.

@ The results depend on the choice of kernel and kernel
parameters. Interpreting the results may be difficult.

@ Can be used for a preprocessing of other analysis like
classification. (Dimension reduction / feature extraction)

@ How to choose a kernel and kernel parameter?

e Cross-validation may be possible, in general.
e Ifitis a preprocessing, the performance of the final analysis should
be maximized.
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e Kernel Fisher discriminant analysis
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Kernel Fisher discriminant analysis

Fisher discriminant analysis |

Fisher’s linear discriminant analysis
@ Data: (X1,Y1),...,(Xn,Yn): data
e X;: explanatory variable, covariate (m-dimensional)
e Y; € {+1,—1} binary,
@ Linear discriminant function
f(z) = sgn(w”z +b)
@ Criterion: maximize the quotient

Between-class scatter along w ~ w? Sgw

Jw) = Within-class scatter along w ~ w? Syw’
° Sp = (s — p-)(ps — p-)",
e Sy =
Divimp1 (Xi — g ) (Xs — pi )" ( — (X5 — )T,

T2y,
® i =, Livima Xio e = 5= Ly
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Fisher discriminant analysis |l

Linear discriminant function Fisher LDA

Y =/
£x) <0

Sux)Z0
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Kernel Fisher discriminant analysis

Fisher discriminant analysis I

@ The maximization
wl Spw
max

w#0 ’LUTSW’LU

can be solved as a generalized eigenproblem.

@ If the discriminant function is needed, a possible choice of b is

F) = —fn) = b=y o)

18/48
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Kernel Fisher Discriminant Analysis |

Kernel Fisher discriminant analysis (kernel FDA, [MRW199])

® (X1,11),...,(Xn,YN): data
e X;: arbitrary covariate
e Y; € {+1,—1} binary,
@ Embedding: X;,..., Xy +— @(Xy),...,2(Xn) € Hi, where
O(x) = k(- z).
@ Linear discriminant function on RKHS

f(x) = sgn((h, ®(x)) +b) = sgn(h(z) +b).

@ Criterion:

JP(h) = Between-class scatter along % in H;,
~ Within-class scatter along & in H;,
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Kernel Fisher discriminant analysis

Kernel Fisher Discriminant Analysis

@ Between-class scatter:
(h,pu$ = p2)?
@ Within-class scatter:
Sy 1 (B = pi3)2 4 Sy (B B(X) — )2,

where 1%, u® are the mean of {®(X;) | Y; = +1},
{o(X;)|Y; =1}, ie,

pt = N%E;YFH@(XZ-), pe = ﬁZj:Yj:—l‘I’(Xj)

@ It suffices to assume h = Zf\il a; ®(X;),
because the orthogonal direction does not contribute to J(h).
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Kernel Fisher discriminant analysis

Kernel Fisher Discriminant Analysis Il

@ Between-class:
<h'> ,U/i> = ﬁZi\;l Zi:Yi:ilat<(b(Xt)7 (I)(X1)> = mioﬁ
where  (mi)e = g3 ,y,—0 k(Xi, Xe) € RM.
Scatter: (h, u® — u®)? = a*Ska,
SE = (my —m_)(my —m_)" (N x N matrix).
@ Within-class:
Zi:Yi:i1<h’7¢(Xi) - p’i> = (INi - NiliJNi)Kia7
where  (K+)i = k(Xi, Xt) (1:Y; =41,t=1,...,N),
I is the unit matrix, and Jy is the N x N matrix with all entries 1.
Scatter:  oTS¥

Sw=Ki(In, — g v ) Ky + KX (In. = g=Jn)K- (N x N matrix).
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Kernel Fisher discriminant analysis

Kernel Fisher Discriminant Analysis IV

@ Objective function
aTS%a

T (a) = aT S o’

@ Regularization:
e Maximizing J® () is ill-posed. The matrix Sy is of low rank!.
e Use Tikhonov-type regularization

T o®
=g o a” Spa
THle):= a(SE + M)

(\: regularization coefficient.)

@ max, J®(a) is solved as a generalized eigenproblem.
@ The discriminant function is given by

flx) = sgn((h, O(x)) + b) = sgn(ztk(x,Xt)at + b).
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e Introduction to Support Vector Machine
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Introduction to Support Vector Machine

Large margin classifier in R™

Linear support vector machine (in R™)

(] (Xl,Yl), ceey (XN, YN): data
e X;: explanatory variable (m-dimensional)
e Y; € {+1,—1} binary,
@ Linear classifier
f(z) = sgn(w”z +b)

@ Large margin criterion:
Assumption: the data is linearly separable.

Among infinite number of separating hyperplanes, choose the
one to give the largest margin.
e Margin = distance of two classes measured along the direction of

w.
e The classifying hyperplane is the middle of the margin.
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Introduction to Support Vector Machine

Large margin classifier in R™ Il

To fix a scale, assume

min(w? X; +b) =1 1:Y; =41 ' W °
A support vector

max(wl X; +b) = -1 i:Y;=—1

Then, o

0
. 2
Margin = — 2
[[w]l
The vectors attaining the . © s
minimum and maximum are Y .
-8 -6 -4 -2 0 2 4 6 8

called support vectors.

25/48



Introduction to Support Vector Machine

Large margin classifier in R™ Il

@ Large margin linear classifier

wIX;, +b>1  ifY; =+1,

1 .
max —— subj. to T .
||wl] w X; +0< -1 ifY;=-1.

Equivalently,

Linear support vector machine (hard margin)

min |w|®  subjectto  Yi(wTX;+b)>1 (Vi).

)

@ Quadratic objective function with linear constraints = free from
local minima!

@ This optimization can be numerically solved with the standard
quadratic programming (QP, discussed later). Software
packages are available.
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Introduction to Support Vector Machine

SVM with soft margin

Relax the separability assumption. The linear separability is too
restrictive in practice.
@ Hard constraint: Yi(wl X; +b) > 1

@ Soft constraint:  Vi(w' X, +b)>1-& (& >0)

Linear support vector machine (soft margin)

: N
min |lw|* + O3, &

w,b,&;

Y; (w? X; >1-&
subj. to { (W X +b) 214
& > 0.

@ The optimization is still QP.
@ (' is a hyper-parameter, which we have to decide.



Introduction to Support Vector Machine

Soft margin as regularization

@ Soft margin linear SVM is equivalent to the following
regularization problem (A = 1/C):

N
min (l—Y;(wTXZ-—i—b))++>\||w||2

where
(2)+ = max(z,0)

max(z,0)

0l z

@ /(f(x),y) = (1 —yf(x)) is called the soft margin loss function.

28/48



Introduction to Support Vector Machine

Tikhonov Regularization

General theory of regularization
@ When the solution of the optimization

neh (e

(A C H) is not unique or stable, a regularization technique is
often used.

@ Tikhonov regularization: add a regularization term (or penalty
term), e.g.,
min Q(a) + ||
a€A

A > 0: regularization coefficient.
@ The solution is often unique and stable.

@ Other regularization terms, such as ||«/||, are also possible, but
differentiability may be lost.
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Introduction to Support Vector Machine

Tikhonov Regularization Il

@ Example
o lll-posed problem:
min(Y; — f(X:))".

Many f give zero error, if f is taken from a large space.

Ay

e Regularized objective function
mfin(Yi — F(X))? +A|fII?  (ridge regression)

finds a unique solution, which is often smoother.

30/48



Introduction to Support Vector Machine

SVM with kernels |

Kernelization of linear SVM

(] (Xl,Yl), RN (XN7 YN): data

e X;: arbitrary covariate taking values in X,

o Y; € {+1,—1} binary,
@ k: positive definite kernel on X'. ‘H: associated RKHS.
@ ¥(X;) =k(-,X;): transformed data in H.

@ Large margin linear classifier on RKHS
f(z) = sgn((h, ®(x))y +b) = sgn(h(z) +b).
Objective function (soft margin):
min [ +CTY 16 subi. to {Zi(;hé:b(xi» v 21-g,
or equivalently
min Zz (1= Yi((h, (X)) + b)), + AlA]f?

31/48



Introduction to Support Vector Machine

SVM with kernels Il

@ It suffices to assume h = Zf;l ¢;®(X;), because the orthogonal
direction only increases the regularization term without changing
the first term of

min S0, (1= Yi({h, ®(X0) + b)), + Allh]*

@ In this case, N
IR]* = > i j=16icik(Xi, X)),

(h, ®(X;)) = S0 cik( Xy, X))

32/48



Introduction to Support Vector Machine

SVM with kernels Il

In summary,

N
cmbngl sz 1GiCj (Xzan) + Czizlgi,

N
subj. 1o {Y;(Z]_lk(xz,xj)c] ) > 16,

& > 0.

@ The optimization is numerically solved with QP.
@ The dual form is simpler to solve (discussed later.)

@ The parameter C and the kernel are often chosen by
cross-validation.
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Introduction to Support Vector Machine

Demonstration of SVM

Webpages for SVM Java applet
@ http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

@ http://www.eee.metu.edu.tr/~alatan/Courses/
Demo/AppletSVM.html
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Introduction to Support Vector Machine

Mini-summary on SVM

@ Kernel trick (a common property of kernel methods):

o linear classifier on RKHS.
@ The computation of inner product is easy.

@ Large margin criterion
e May not be the Bayes optimal, but causes other good properties.
@ Quadratic programming:
e The objective function is solved by the standard quadratic
programming.
@ Sparse representation:

e The classifier is represented by a small number of support vectors
(discussed later).

@ Regularization:

e The soft margin objective function is equivalent to the margin loss
with regularization.
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e Kernel CCA

36/48



Kernel CCA

Canonical correlation analysis |

Canonical correlation analysis (CCA)

@ Linear dependence of two multivariate.
e Data (X1, Yi), ey (XN,YN)
@ X;: m-dimensional, Y;: ¢-dimensional.
@ Find the directions a and b so that the correlation between the
projections of X onto a and that of Y onto b is maximized:

Cov[a® X,bTY] aT‘A/Xyb

= max max ;
r ack™ beR! \/Var[aT X|Var[bTY]  acR™ beR! \/aT‘/}XXa\/bT‘/}YYb

where Vxx, Vyy, and Vxy are the sample variance (covariance)
matrices.



Kernel CCA

Canonical correlation analysis |

@ Optimization:
max (LT‘/}Xyb subject to aT‘A/XXa = bT‘//\'yyb =1.
@ Lagrange multiplier:

maxaTXA/Xyb + %(QT‘/}XXa — 1) + g(bT‘/}yyb — 1).

(14, v: Lagrange multiplier).
@ Solution is obtained by the generalized eigenproblem:

0] ‘7XY a _ ‘7XX 0] a
VYX O b P O VYY b

(u=visderived. Set p = —pu = —v.)

38/48
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Kernel CCA |

Kernel CCA: kernelization of CCA ([Aka01, MRBO1, BJ02]).

@ Data: (Xl, Yl), ey (XN,YN).
e X;,Y;: arbitrary variables taking values in X and ) (resp.).

@ Embedding: prepare kernels ky on X and ky on ).
Xq,...,. Xy +— @X(Xl),...,q)x(XN) € Hiy -
Yi,....,Yn +—  Dy(Y7),..., 2y (Yn) € Hg,,.

@ Apply CCA on Hy and Hy.
ax Yo P (X)) ra (9, Py (Vi) 2y
RN N 5 (X R[S (0 5 (VD

where

Dx(X;) = x(X;) — £ 30 @x(X;), and dy(Y;) similar.

39/48
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Kernel CCA Il

@ Wecanassume f = YN a;®x(X;)and g = SN | 3,8y (Y;).

dTKx Ky
p=  max

RN, 3eRN ~ ~o o
PRI JaT Koy /BT RE A

Ky and Ky are the centered Gram matrices.

@ Regularization:
Canonical correlation in NV dimensional space with N data is
ill-posed with correlation 1.

. S B (X)) (g, By (V)
TEHCHy [N (B (X)), + x2S (g @y (Y, + exlgl?

40/48
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Kernel CCA Il

@ Kernel CCA

O ]’?X}?y ay Kg(-l-ENKX B O «
KyKx O 5) =" 9, K2 +enK,) \B

The Solution is obtained as a generalized eigenproblem.

@ The multiple feature vectors (second, third, eigenvectors) can be
also obtained.

@ Remark:

@ The results of kernel CCA depends on the kernels and e .
e The consistency is known if ey decreases sufficiently slowly as
N — oo.

41/48



Kernel CCA

Toy exapmle of Kernel CCA

X, Y: one-dimensional. Gaussian RBF kernels are used.

02 -0.15
.
y 0 : g,
.
- &0
* Ax)

o

42/48



Kernel CCA

Application of Kernel CCA

Application of kernel CCA to image retrieval ((HSST04]).
@ Idea: use d eigenvectors fi,..., fg and g1, ..., gq as the feature
spaces which contain the dependence between X and Y.
@ X;:image, Y;: text (extracted from webpages).

@ Compute the feature vectors f1,..., fa and g1, ..., gq by kernel
CCA.

@ Compute the projections & = ((®x(X;), fa)n, )i, € RY for all
images.

@ For a new text Y,,..,, compute the projection
¢ = ((®y(Ynew): 9a)#y )2—1 € RY, and output the image

argmax; = fLTC
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e Representer theorem and other kernel methods
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Representer theorem and other kernel methods

Representer theorem |

@ Minimization problems on RKHS

min (V; — £(X;))? + M| f]I? (ridge regression),
feH

Jmin S (1= (Vf(X) +0), +AIFIP - (SVM).

The solution can be taken from f = "N | a;k(-, X;).
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Representer theorem and other kernel methods

Representer theorem I

@ General problem:

Hr: RKHS with associated with a positive definite kernel k.
Xi,...,Xn, Y1,...,Yy: data.

hi(x), ..., hm(x): fixed functions.

¥ : [0 c0) — R: non-decreasing function (regularization term).

Minimization

somin, LGS (Y (XTI eaha(X0) 1 )+ (7).

Representer theorem

The solution of the above minimization is achieved by a function of
the form

f=Y 0uk(, X;).

@ The optimization in an high (or infinite) dimensional space can be
reduced to the optimization in a subspace of N dimension
(sample size). 16748




Representer theorem and other kernel methods

Proof of the representer theorem

@ Decomposition:

Hy = Ho © Hy,
Hy = span{k(-, X1),...,k(-, Xn)}, Hg: orthogonal complement.
Decompose
f=fo+r"
accordingly.
@ Because

<fl7 k( XZ)> = 07
the loss function L does not change by replacing f with f;.
@ The second term:

Il <l = w(lfl) <wdr)-

@ Thus, the optimum f can be in the space H,.
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Representer theorem and other kernel methods

Other kernel methods

@ Kernel PLS (partial least square)
@ Support vector regression (SVR)
@ Kernel logistic regression

@ Other variants of SVM (v-SVM, one-class SVM etc., discussed
later).

48/48



Summary of Chapter 3

@ Various classical linear methods of data analysis can be
kernelized — linear algorithms on RKHS.

Kernel PCA, SVM, kernel CCA, kernel FDA, etc.

@ The solution often has the form
f= k(- X,)

(representer theorem).

@ The problem is reduced to operations on Gram matrices of the
sample size N.

@ The kernel methods can be applied to any type of data including
non-vectorial (structured) data, such as graphs, strings, etc, if a
positive definite kernel is provided.
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