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Kernel methodology: feature space by RKHS

Kernel methodology = Data analysis by transforming data into a
high-dimensional feature space given by RKHS.

Apply linear methods on RKHS.
The computation of the inner product is cheap.

4 / 48



Kernel Methodology
Kernel PCA

Kernel Fisher discriminant analysis
Introduction to Support Vector Machine

Kernel CCA
Representer theorem and other kernel methods

Higher-order statistics by positive definite kernel

A nonlinear kernel can include higher-order statistics.

Example: Polynomial kernel on R: k(y, x) = (yx+ 1)d.

Data are transformed as k(·, X1), . . . , k(·, XN ) ∈ Hk.
Regarding k(·, X) = k(y,X) as a function of y,

k(y,X) = Xdyd + ad−1X
d−1yd−1 + · · ·+ a1Xy + a0 (ai 6= 0).

{1, y, y2, . . . , yd} is a basis of Hk.
With respect to this basis, the component of the feature vector
k(·, X) is

(Xd, ad−1X
d−1, . . . , a1X, a0)T .

This includes the statistics (X,X2, . . . , Xd).

Similar nonlinear statistics appear in other kernels such as
Gaussian, Lapacian, etc.
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Kernel PCA I

X1, . . . , XN : data on X .
k : X × X positive definite kernel, Hk: RKHS.
Transform the data into Hk by Φ(x) = k(·, x) :

X1, . . . , XN 7→ Φ(X1), . . . ,Φ(XN ).

Kernel PCA ([SSM98]): Apply PCA on Hk:
Maximize the variance of the projection onto the unit vector f .

max
‖f‖=1

Var[〈f,Φ(X)〉] = max
‖f‖=1

1
N

∑N
i=1

(
〈f,Φ(Xi)〉− 1

N

∑N
j=1〈f,Φ(Xj)〉

)2
It suffices to use f =

∑n
i=1 aiΦ̃(Xi), where

Φ̃(Xi) = Φ(Xi)− 1
N

∑N
j=1Φ(Xj).

The direction orthogonal to {Φ̃(X1), . . . , Φ̃(XN )} does not
contribute.
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Kernel PCA II

The PCA solution:

max aT K̃2a subject to aT K̃a = 1,

where K̃ is N ×N matrix with K̃ij = 〈Φ̃(Xi), Φ̃(Xj)〉.

K̃ = k(Xi, Xj)− 1
N

∑N
b=1k(Xi, Xb)− 1

N

∑N
a=1k(Xa, Xj)

+ 1
N2

∑N
a,b=1k(Xa, Xb).

K̃ is called a centered Gram matrix.

Note:

1
N

∑N
i=1〈f, Φ̃(Xi)〉2 = 1

N

∑N
i=1〈

∑N
j=1ajΦ̃(Xj), Φ̃(Xi)〉2 = 1

N
aT K̃2a,

‖f‖2 = 〈
∑n

i=1aiΦ̃(Xi),
∑n

i=1aiΦ̃(Xi)〉 = aT K̃a.
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Kernel PCA III

The p-th principal direction f (p) =
∑N
i=1 α

(p)
i Φ̃(Xi) is given by

maxα(p)T K̃2α(p) subj. to

{
α(p)K̃α(p) = 1
α(p)K̃α(a) = 0 (a = 1, . . . , p− 1).

Principal component of kernel PCA

Let K̃ =
∑N
p=1λpu

(p)u(p)T is the eigen decomposition
(λ1 ≥ · · · ≥ λN ≥ 0).
The p-th principal component of the data Xi is

〈Φ̃(Xi),
∑N
j=1α

(p)
j

˜Φ(Xj)〉 =
∑N
j=1

√
λ1u

(p)
i ,
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Kernel PCA: numerical examples

Wine data (from UCI repository [MA94]).
178 data of 13 dimension. They represents chemical
measurements of different wine.
There are three classes, which correspond to types of wine.
The classes are shown in different colors, but not used for the
analysis.

Linear PCA KPCA Gaussian kernel
linear σ = 3

10 / 48



Kernel Methodology
Kernel PCA

Kernel Fisher discriminant analysis
Introduction to Support Vector Machine

Kernel CCA
Representer theorem and other kernel methods

KPCA with Gaussian
kernels. k(x, y) = exp

{
− 1

2σ2 ‖x− y‖2
}

.

σ = 2 σ = 4 σ = 5
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Application to noise reduction
Noise reduction by kernel PCA.

X1, . . . , XN : data, 7→ Φ(X1), . . . ,Φ(XN ): data in RKHS.
Vd: subspace of Hk spanned by f (1), . . . , f (d) (d major principle
directions).
Π(x) (∈ Hk): orthogonal projection of Φ(x) onto Vd.
Find a point y in the original space such that

y = arg min
y∈X
‖Φ(y)−Π(x)‖Hk

.

Note: Π(x) is not necessarily in the image of embedding Φ.
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USPS hand-written digits data:
7191 images of hand-written digits of 16 × 16 pixels.
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Properties of kernel PCA

Nonlinear features can be considered.
The results depend on the choice of kernel and kernel
parameters. Interpreting the results may be difficult.
Can be used for a preprocessing of other analysis like
classification. (Dimension reduction / feature extraction)
How to choose a kernel and kernel parameter?

Cross-validation may be possible, in general.
If it is a preprocessing, the performance of the final analysis should
be maximized.
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Fisher discriminant analysis I
Fisher’s linear discriminant analysis

Data: (X1, Y1), . . . , (XN , YN ): data
Xi: explanatory variable, covariate (m-dimensional)
Yi ∈ {+1,−1} binary,

Linear discriminant function

f(x) = sgn
(
wTx+ b

)
Criterion: maximize the quotient

J(w) =
Between-class scatter along w
Within-class scatter along w

=
wTSBw

wTSWw
,

SB = (µ+ − µ−)(µ+ − µ−)T ,
SW =∑

i:Yi=+1(Xi − µ+)(Xi − µ+)T +
∑

j:Yj=−1(Xj − µ−)(Xj − µ−)T .

µ+ = 1
N+

∑
i:Yi=+1 Xi, µ− = 1

N−

∑
j:Yj=−1 Xj .
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Fisher discriminant analysis II

Linear discriminant function Fisher LDA
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Fisher discriminant analysis III

The maximization

max
w 6=0

wTSBw

wTSWw

can be solved as a generalized eigenproblem.

If the discriminant function is needed, a possible choice of b is

f(µ+) = −f(µ−) ⇒ b =
1
2
wT (µ+ + µ−).
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Kernel Fisher Discriminant Analysis I

Kernel Fisher discriminant analysis (kernel FDA, [MRW+99])

(X1, Y1), . . . , (XN , YN ): data
Xi: arbitrary covariate
Yi ∈ {+1,−1} binary,

Embedding: X1, . . . , XN 7→ Φ(X1), . . . ,Φ(XN ) ∈ Hk, where
Φ(x) = k(·, x).
Linear discriminant function on RKHS

f(x) = sgn
(
〈h,Φ(x)〉+ b

)
= sgn(h(x) + b).

Criterion:

JΦ(h) =
Between-class scatter along h in Hk
Within-class scatter along h in Hk

.
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Kernel Fisher Discriminant Analysis II

Between-class scatter:

〈h, µΦ
+ − µΦ

−〉2

Within-class scatter:∑
i:Yi=+1〈h,Φ(Xi)− µΦ

+〉2 +
∑
j:Yj=−1〈h,Φ(Xj)− µΦ

−〉2,

where µΦ
+, µΦ

− are the mean of {Φ(Xi) | Yi = +1},
{Φ(Xj) | Yj = −1}, i.e.,

µΦ
+ = 1

N+

∑
i:Yi=+1Φ(Xi), µΦ

− = 1
N−

∑
j:Yj=−1Φ(Xj).

It suffices to assume h =
∑N
i=1 αiΦ(Xi),

because the orthogonal direction does not contribute to JΦ(h).
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Kernel Fisher Discriminant Analysis III

Between-class:

〈h, µΦ
±〉 = 1

N±

∑N
t=1

∑
i:Yi=±1αt〈Φ(Xt),Φ(Xi)〉 = mT

±α,

where (m±)t = 1
N±

∑
i:Yi=±1k(Xi, Xt) ∈ RN .

Scatter: 〈h, µΦ
+ − µΦ

−〉2 = αTSΦ
Bα,

SΦ
B := (m+ −m−)(m+ −m−)T (N ×N matrix).

Within-class:∑
i:Yi=±1〈h,Φ(Xi)− µΦ

±〉 = (IN± − 1
N±

JN±)K±α,

where (K±)it = k(Xi, Xt) (i : Yi = ±1, t = 1, . . . , N),

IN is the unit matrix, and JN is the N ×N matrix with all entries 1.

Scatter: αTSΦ
Wα,

SΦ
W = KT

+(IN+ − 1
N+

JN+)K+ +KT
−(IN− − 1

N−
JN+)K− (N ×N matrix).
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Kernel Fisher Discriminant Analysis IV

Objective function

JΦ(α) =
αTSΦ

Bα

αTSΦ
Wα

.

Regularization:
Maximizing JΦ(α) is ill-posed. The matrix SΦ

W is of low rank!.
Use Tikhonov-type regularization

J̃Φ(α) :=
αTSΦ

Bα

α(SΦ
W + λIN )α

(λ: regularization coefficient.)

maxα J̃Φ(α) is solved as a generalized eigenproblem.
The discriminant function is given by

f(x) = sgn
(
〈h,Φ(x)〉+ b

)
= sgn

(∑
tk(x,Xt)αt + b

)
.
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Large margin classifier in Rm

Linear support vector machine (in Rm)

(X1, Y1), . . . , (XN , YN ): data
Xi: explanatory variable (m-dimensional)
Yi ∈ {+1,−1} binary,

Linear classifier
f(x) = sgn

(
wTx+ b

)
Large margin criterion:
Assumption: the data is linearly separable.

Among infinite number of separating hyperplanes, choose the
one to give the largest margin.

Margin = distance of two classes measured along the direction of
w.
The classifying hyperplane is the middle of the margin.
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Large margin classifier in Rm II

To fix a scale, assume{
min(wTXi + b) = 1 i : Yi = +1,
max(wTXi + b) = −1 i : Yi = −1.

Then,

Margin =
2
‖w‖

The vectors attaining the
minimum and maximum are
called support vectors.

25 / 48



Kernel Methodology
Kernel PCA

Kernel Fisher discriminant analysis
Introduction to Support Vector Machine

Kernel CCA
Representer theorem and other kernel methods

Large margin classifier in Rm III

Large margin linear classifier

max
1
‖w‖

subj. to

{
wTXi + b ≥ 1 if Yi = +1,
wTXi + b ≤ −1 if Yi = −1.

Equivalently,

Linear support vector machine (hard margin)

min
w,b
‖w‖2 subject to Yi(wTXi + b) ≥ 1 (∀i).

Quadratic objective function with linear constraints =⇒ free from
local minima!
This optimization can be numerically solved with the standard
quadratic programming (QP, discussed later). Software
packages are available.
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SVM with soft margin

Relax the separability assumption. The linear separability is too
restrictive in practice.

Hard constraint: Yi(wTXi + b) ≥ 1

Soft constraint: Yi(wTXi + b) ≥ 1− ξi (ξi ≥ 0)

Linear support vector machine (soft margin)

min
w,b,ξi

‖w‖2 + C
∑N
i=1ξi subj. to

{
Yi(wTXi + b) ≥ 1− ξi,
ξi ≥ 0.

The optimization is still QP.
C is a hyper-parameter, which we have to decide.
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Soft margin as regularization

Soft margin linear SVM is equivalent to the following
regularization problem (λ = 1/C):

min
w,b

N∑
i=1

(
1− Yi(wTXi + b)

)
+

+ λ‖w‖2

where
(z)+ = max(z, 0)

`(f(x), y) = (1− yf(x))+ is called the soft margin loss function.
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Tikhonov Regularization
General theory of regularization

When the solution of the optimization

min
α∈A

Ω(α)

(A ⊂ H) is not unique or stable, a regularization technique is
often used.
Tikhonov regularization: add a regularization term (or penalty
term), e.g.,

min
α∈A

Ω(α) + λ‖α‖2.

λ > 0: regularization coefficient.
The solution is often unique and stable.
Other regularization terms, such as ‖α‖, are also possible, but
differentiability may be lost.
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Tikhonov Regularization II
Example

Ill-posed problem:
min

f
(Yi − f(Xi))

2.

Many f give zero error, if f is taken from a large space.

Regularized objective function

min
f

(Yi − f(Xi))
2 + λ‖f‖2 (ridge regression)

finds a unique solution, which is often smoother.
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SVM with kernels I
Kernelization of linear SVM

(X1, Y1), . . . , (XN , YN ): data
Xi: arbitrary covariate taking values in X ,
Yi ∈ {+1,−1} binary,

k: positive definite kernel on X . H: associated RKHS.
Φ(Xi) = k(·, Xi): transformed data in H.

Large margin linear classifier on RKHS

f(x) = sgn
(
〈h,Φ(x)〉H + b

)
= sgn(h(x) + b).

Objective function (soft margin):

min
h,b,ξi

‖h‖2H+C
∑N
i=1ξi subj. to

{
Yi(〈h,Φ(Xi)〉+ b) ≥ 1− ξi,
ξi ≥ 0,

or equivalently

min
h,b

∑N
i=1

(
1− Yi(〈h,Φ(Xi)〉+ b)

)
+

+ λ‖h‖2
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SVM with kernels II

It suffices to assume h =
∑N
i=1 ciΦ(Xi), because the orthogonal

direction only increases the regularization term without changing
the first term of

min
h,b

∑N
i=1

(
1− Yi(〈h,Φ(Xi)〉+ b)

)
+

+ λ‖h‖2.

In this case,
‖h‖2 =

∑N
i,j=1cicjk(Xi, Xj),

〈h,Φ(Xi)〉 =
∑N
j=1cjk(Xi, Xj).
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SVM with kernels III

In summary,

SVM with kernel

min
ci,b,ξi

∑N
i,j=1cicjk(Xi, Xj) + C

∑N
i=1ξi,

subj. to

{
Yi(
∑N
j=1k(Xi, Xj)cj + b) ≥ 1− ξi,

ξi ≥ 0.

The optimization is numerically solved with QP.
The dual form is simpler to solve (discussed later.)

The parameter C and the kernel are often chosen by
cross-validation.
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Demonstration of SVM

Webpages for SVM Java applet
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

http://www.eee.metu.edu.tr/~alatan/Courses/
Demo/AppletSVM.html
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Mini-summary on SVM

Kernel trick (a common property of kernel methods):
linear classifier on RKHS.
The computation of inner product is easy.

Large margin criterion
May not be the Bayes optimal, but causes other good properties.

Quadratic programming:
The objective function is solved by the standard quadratic
programming.

Sparse representation:
The classifier is represented by a small number of support vectors
(discussed later).

Regularization:
The soft margin objective function is equivalent to the margin loss
with regularization.
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Canonical correlation analysis I

Canonical correlation analysis (CCA)

Linear dependence of two multivariate.
Data (X1, Y1), . . . , (XN , YN )
Xi: m-dimensional, Yi: `-dimensional.

Find the directions a and b so that the correlation between the
projections of X onto a and that of Y onto b is maximized:

ρ = max
a∈Rm,b∈R`

Cov[aTX, bTY ]√
Var[aTX]Var[bTY ]

= max
a∈Rm,b∈R`

aT V̂XY b√
aT V̂XXa

√
bT V̂Y Y b

,

where V̂XX , V̂Y Y , and V̂XY are the sample variance (covariance)
matrices.
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Canonical correlation analysis I

Optimization:

max aT V̂XY b subject to aT V̂XXa = bT V̂Y Y b = 1.

Lagrange multiplier:

max aT V̂XY b+
µ

2
(aT V̂XXa− 1) +

ν

2
(bT V̂Y Y b− 1).

(µ, ν: Lagrange multiplier).
Solution is obtained by the generalized eigenproblem:(

O V̂XY
V̂Y X O

)(
a
b

)
= ρ

(
V̂XX O

O V̂Y Y

)(
a
b

)
(µ = ν is derived. Set ρ = −µ = −ν.)
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Kernel CCA I
Kernel CCA: kernelization of CCA ([Aka01, MRB01, BJ02]).

Data: (X1, Y1), . . . , (XN , YN ).
Xi, Yi: arbitrary variables taking values in X and Y (resp.).

Embedding: prepare kernels kX on X and kY on Y.
X1, . . . , XN 7→ ΦX (X1), . . . ,ΦX (XN ) ∈ HkX .
Y1, . . . , YN 7→ ΦY(Y1), . . . ,ΦY(YN ) ∈ HkY .

Apply CCA on HX and HY .

max
f∈HX ,g∈HY

∑N
i=1〈f, Φ̃X (Xi)〉HX 〈g, Φ̃Y(Yi)〉HY√∑N

i=1〈f, Φ̃X (Xi)〉2HX
√∑N

i=1〈g, Φ̃Y(Yi)〉2HY

where

Φ̃X (Xi) = ΦX (Xi)− 1
N

∑N
j=1ΦX (Xj), and Φ̃Y(Yi) similar.
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Kernel CCA II

We can assume f =
∑N
i=1 αiΦ̃X (Xi) and g =

∑N
i=1 βiΦ̃Y(Yi).

ρ = max
α∈RN ,β∈RN

αT K̃XK̃Y β√
αT K̃2

Xα
√
βT K̃2

Y β
,

K̃X and K̃Y are the centered Gram matrices.

Regularization:
Canonical correlation in N dimensional space with N data is
ill-posed with correlation 1.

max
f∈HX ,g∈HY

∑N
i=1〈f, Φ̃X (Xi)〉HX 〈g, Φ̃Y(Yi)〉HY√∑N

i=1〈f, Φ̃X (Xi)〉2HX + εN‖f‖2
√∑N

i=1〈g, Φ̃Y(Yi)〉2HY + εN‖g‖2
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Kernel CCA III

Kernel CCA

(
O K̃XK̃Y

K̃Y K̃X O

)(
α
β

)
= ρ

(
K̃2
X + εNKX O

O K̃2
Y + εNKy

)(
α
β

)
The Solution is obtained as a generalized eigenproblem.

The multiple feature vectors (second, third, eigenvectors) can be
also obtained.

Remark:
The results of kernel CCA depends on the kernels and εN .
The consistency is known if εN decreases sufficiently slowly as
N →∞.
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Toy exapmle of Kernel CCA
X, Y : one-dimensional. Gaussian RBF kernels are used.
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Application of Kernel CCA

Application of kernel CCA to image retrieval ([HSST04]).
Idea: use d eigenvectors f1, . . . , fd and g1, . . . , gd as the feature
spaces which contain the dependence between X and Y .

Xi: image, Yi: text (extracted from webpages).
Compute the feature vectors f1, . . . , fd and g1, . . . , gd by kernel
CCA.
Compute the projections ξi = (〈ΦX (Xi), fa〉HX )da=1 ∈ Rd for all
images.
For a new text Ynew, compute the projection
ζ = (〈ΦY(Ynew), ga〉HY )da=1 ∈ Rd, and output the image

arg maxi = ξTi ζ.
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Representer theorem I

Minimization problems on RKHS

min
f∈Hk

(Yi − f(Xi))2 + λ‖f‖2 (ridge regression),

min
f∈Hk,b

∑N
i=1

(
1− (Yif(Xi) + b)

)
+

+ λ‖f‖2 (SVM).

The solution can be taken from f =
∑N
i=1 αik(·, Xi).
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Representer theorem II
General problem:

Hk: RKHS with associated with a positive definite kernel k.
X1, . . . , XN , Y1, . . . , YN : data.
h1(x), . . . , hm(x): fixed functions.
Ψ : [0∞)→ R: non-decreasing function (regularization term).

Minimization

min
f∈H,c∈Rm

L
(
{Xi}Ni=1, {Yi}Ni=1, {f(Xi)+

∑m
a=1 caha(Xi)}Ni=1

)
+Ψ(‖f‖).

Representer theorem

The solution of the above minimization is achieved by a function of
the form

f =
∑N
i=1αik(·, Xi).

The optimization in an high (or infinite) dimensional space can be
reduced to the optimization in a subspace of N dimension
(sample size). 46 / 48
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Proof of the representer theorem

Decomposition:
Hk = H0 ⊕H⊥0 ,

H0 = span{k(·, X1), . . . , k(·, XN )}, H⊥0 : orthogonal complement.
Decompose

f = f0 + f⊥

accordingly.
Because

〈f⊥, k(·, Xi)〉 = 0,

the loss function L does not change by replacing f with f0.
The second term:

‖f0‖ ≤ ‖f‖ =⇒ Ψ(‖f0‖) ≤ Ψ(‖f‖).

Thus, the optimum f can be in the space H0.
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Other kernel methods

Kernel PLS (partial least square)
Support vector regression (SVR)
Kernel logistic regression
Other variants of SVM (ν-SVM, one-class SVM etc., discussed
later).
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Summary of Chapter 3

Various classical linear methods of data analysis can be
kernelized – linear algorithms on RKHS.
Kernel PCA, SVM, kernel CCA, kernel FDA, etc.

The solution often has the form

f =
∑N
i=1αik(·, Xi)

(representer theorem).

The problem is reduced to operations on Gram matrices of the
sample size N .

The kernel methods can be applied to any type of data including
non-vectorial (structured) data, such as graphs, strings, etc, if a
positive definite kernel is provided.
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