
1

Kenji Fukumizu
Institute of Statistical Mathematics, ROIS

Department of Statistical Science, Graduate University for Advanced Studies

September 26, 2008 / Statistical Learning Theory II

Other Topics in Kernel Method
Statistical Inference with Reproducing Kernel Hilbert Space



2

Outline

1. Relation to functional data analysis

2. Spline smoothing

3. Relation to random process 



3

Outline

1. Relation to functional data analysis

2. Spline smoothing

3. Relation to random process 



4

Functional data analysis
For functional data analysis, see Ramsay & Silverman (2005)

What are functional data?
Data:  f1(t),  f2(t), …,  fN(t)   -- functions on an interval [a, b]

Example: Berkeley Growth Study

See    http://www.psych.mcgill.ca/misc/fda/index.html
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Converting raw data into functional form
– Data are often given by a set of {(tj,  yi(tj)) | i = 1, …, N,  j = 1,…, mi}.

– Converting data by smoothing
For each i, fit a curve φi(t) to individual data {(tj,  yi(tj)) | j = 1,…, mi}

by smoothing (e.g. B-spline)
– The converted data are of the form

Analysis on functional data
– Apply linear methods to the “converted data” in a function space 

(typically L2). 
– Examples:

• Functional PCA
• Functional CCA
• Functional linear modeling,      etc. 

),()()( 11 tctct llL θθφ ++= :)(,),(1 tt lK θθ basis functions



6

Functional PCA
Functional data: φ1(t), …, φN(t)   (already converted)
Find a function to maximize 

If basis functions                      are used,  

Solve:

The integral in R is computed numerically, or by the property of the 
basis

Variance of the projections 
on the direction of f

)(,),(1 tt lK θθ

where
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Kernel method v.s. functional data 
analysis

Similarity
– Both the methods extends linear methods to “functional data”. 

Difference
– In kernel methods, the data conversion is given by a positive 

definite kernel, while in FDA the data are assumed to be functional.
– Kernel methods use RKHS as a function space, while the FDA 

uses L2 space in principle.

Roughness penalty in FDA
– In FDA, smoothness is sometimes imposed on the solution. 

This is essentially the Sobolev norm (RKHS).
With roughness penalty, FDA is more similar to kernel methods.
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Spline smoothing
(X1,Y1), ..., (XN, YN) ： Xi ∈ Rn, Yi ∈ R
P： differential operator on Rn

Spline smoothing:

( )2 2

1
min ( ) | ( ) |

N
i i

f i
Y f X Pf x dxλ

=
− +∑ ∫

Roughness penalty
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Laplacian and Green function
Laplacian

Self-adjoint:

Green function for Laplacian

– Green function solves a differential equation:

2 2 2

2 2 2
1 2 n

f f ff
x x x

∂ ∂ ∂
Δ = + + +

∂ ∂ ∂
L

f ϕΔ =

( ) ( ) ( ) ( )f x g x dx f x g x dxΔ = Δ∫ ∫

if | f (x)|, | g (x) | 0 

( , ) ( )G x xξ δ ξΔ = −
i.e. 

( ) ( , ) ( )f x G x y y dyϕ= ∫
given ϕ.

∵）
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Smoothing penalty
Regularization term
Consider functions on Rn for simplicity (no boundary)

– example (n = m = 2)
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L2 norm of m-th derivative
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Smoothing

Expression by Laplacian
Partial integral shows

The smoothing problem is expressed by 

( )2

1 0
min ( ) ( )

N
i i n

m mf i m
Y f X a J fλ

∞

= =
− +∑ ∑

( ) ( ) 2( ) 1 ,mn m
m L

J f f f= − Δ

( ) ( ) 2

2

1
min ( ) ,

N
i i

Lf i
Y f X f Afλ

=
− +∑

0
( 1)m m

m
m

A a
∞

=
= − Δ∑where 

)0( ≥ma
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Two cases
Case
– The Green function is a positive definite kernel.
– The penalty term is equal to the squared RKHS norm.  

Case
– Spline smoothing
– The Green functions is conditionally positive definite.
– The functional space is RKHS + polynomial of some order
– The penalty term is equal to the squared RKHS norm of the 

projection of f onto the RKHS. 

0 0a ≠

0 0a =



14

: RKHS regularization
Solution

Variational calculus

( ) ( ) 2

2

1
min ( ) ,

N
i i

Lf i
Y f X f Afλ

=
− +∑

0 0a ≠

( )
1

( ) ( ) 0
N

i i

i
Y f x x X Afδ λ

=
− − + =∑

( )
1

1 ( ) ( )
N

i i

i
Af Y f x x Xδ

λ =
= − − −∑

1

1

1( ) ( ( )) ( ) ( , )

1 ( ( )) ( , )

N
i i

i
N

i i i

i

f Y f x x X G x dx

Y f X G X

ξ δ ξ
λ

ξ
λ

=

=

= − − −

= − −

∑∫

∑

If we have the Green function G for A   i.e. 

Note: f(Xi) unknown
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The solution is to have the form:

Plug it into the original problem:

The solution:

1
( , )

N
i

i
i

f c G X
=

= ⋅∑

( )2
1 , 1

1
min ( , ) ( , )

N

N N Ni i j i j
j i jj i j

c i
Y c G X X c c G X Xλ= =

∈ =
− +∑ ∑ ∑

R

( , )i j
ijG G X X= 1( , , )N TY Y=Y K

1( )c G Iλ −= + Y

1( ) ( ) ( )Tf x G I g xλ −= +Y ( ) ( , )i
ig x G x X=

By differentiation, 

where 

where

)Q
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Green function
Theorem

If                               , the Green function of A is a positive definite 
kernel.

Proof.
Since Α is shift invariant, so is G. Thus, 

0
( 1) ( ) ( )m m

m
m

a G z zδ
∞

=
− Δ =∑

By Fourier transform

If                              , the Fourier inversion is possible.  
Use Bochner’s theorem. 

)1(0,00 ≥∃≠≠ jaa j

)1(0,00 ≥∃≠≠ jaa j
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Regularization by RKHS norm
Assume 
G: Green function of A.
HG: RKHS w.r.t. G. 

( )2 2

1
min ( ) || ||

G

N
i i

Hf i
Y f X fλ

=
− +∑

( )2

1 0
min ( ) ( )

N
i i n

m mf i m
Y f X a J fλ

∞

= =
− +∑ ∑

0 10, 0a a≠ ≠

1 ( , )N i
iif c G X== ⋅∑The solution is given by

The penalty term is, then,  

The above regularization is equivalent to the kernel ridge regression
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a0 = 0: Spline smoothing
Thin-plate spline

– The Green function of        is not necessarily positive definite, but 
conditionally positive definite

– The function space for f is

and 

( )2

1
min ( ) ( )

N
i i n

mf i
Y f X J fλ

=
− +∑

2
1

2

1 2

!( )
! ! !n

n
m Lm n

mJ f D fα

α α α α α+ + =
= ∑

L L

2: ( ) (| | )n n
mB D f L mα α∈ =R

1( ) 0n
m mJ f f −= ⇔ ∈P

Pm-1 ： Polynomials of degree at most m - 1
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Let                              be decomposition by direct sum.

If m > n/2 ，the subspace H* is a RKHS with inner product 

In particular, the norm is given by 

*

2 ( )n
mHf J f=

1 *
n
m mB H−= ⊕P

Theorem (Meinguet 1979)

( ) ( )2 21*

!
| | ! !, , ( 1) ,

n

m mm
mH L L

f g D f D g f gα α
α α α== = − Δ∑ L

( )2

1
min ( ) ( )

N
i i n

mf i
Y f X J fλ

=
− +∑

( ) *
* 1

2 2

, 1
min ( ( ) ( )) || ||

m

N
i i i

Hg H p i
Y g X p X gλ

−∈ ∈ =
− + +∑

P
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Solution of spline smoothing
By the representer theorem, the solution is to be of the form:

By plugging it,

The solution: 

1 1
( ) ( ) ( )

N M

i i
i

f x c K x X b xφ
= =

= − +∑ ∑ l l
l
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Conditionally positive definite
Definition. K(x,y) ： Ω x Ω R is said to be conditionally positive 

definite of order m if 
1.  K(x,y) = K(y,x) 
2.  If points x1, …, xn in Ω and real numbers c1,…, cn satisfy

for any polynomial                       (generalized increment of order m), 
then 

– A positive definite kernel is conditionally positive definite of order 0. 
– A negative definite kernel is negation of a conditionally positive 

definite kernel of order 1. 
– Intuition: the above c1,…, cn is a generalization of the m-th order 

difference. Thus, the definition intuitively says that the m-th
derivative of K is positive definite. 

1 ( ) 0n
i ii c p x= =∑

, 1 ( , ) 0n
i j i ji j c c K x x= ≥∑
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Gaussian process
– A Gaussian process is a random process               (random 

variables with index Ω) such that for any finite subset {t1, ..., tn} of 
Ω, the random vector is a Gaussian random vector. 

– Mean function
– Covariance function

– A Gaussian process is uniquely determined by the mean and 
covariance function. 

1
( ,..., )

nt tX X=X

1( ( ), , ( )),nt tμ μ μ=X K

1 1 1 2 1

2 1 2 2 2

1 2
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⎛ ⎞
⎜ ⎟
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– Examples
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Random process and positive 
definite kernel

Covariance function is a positive definite kernel

– A random process on Ω determines a RKHS on Ω.

, 1 , 1( , ) [ , ]
i j

n n
i j i j i j t ti j i jc c R t t c c E X X= ==∑ ∑

( )2
1 1 1, 0

i j i

n n n
i t j t i ti j iE c X c X E c X= = =

⎡ ⎤⎡ ⎤= = ≥⎣ ⎦ ⎢ ⎥⎣ ⎦∑ ∑ ∑

Theorem
The covariance function R(s, t) of a random process 
is a positive definite kernel.

)Q For simplicity, mean = 0.
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Positive definite kernel defines Gaussian process
k(s,t): positive definite kernel on Ω. 

For any finite subset t = (t1, …, tn ) of Ω, the Gram matrix Σt = ( k(ti, tj) )
is always positive semidefinite. 

By Kolmogorov extension theorem, there is a Gaussian process with 
index set Ω such that 

The covariance function = k(s,t).
1

( ,..., )
nt tX X=X
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RKHS by random process
：random process on Ω with mean zero and finite 2nd moments. 

Xt : Ξ R random variable defined by a probability space.
⇒

{ }t tX ∈Ω

2 ( , , )tX L P∈ Ξ B

, ( )U V X∈L( )( , ) [ ]U V E UVΞ =L

(inner product of L2(Ξ))

2 ( )L Ξ

{ }t tX ∈ΩHilbert space generated by 

Inner product

closed subspace of 
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RKHS and random process
Theorem

k ： positive definite kernel on a set Ω
：random process with mean 0 and covariance function k{ }t tX ∈Ω

( ) kX H≅L

( , )tX k t↔ ⋅

( )( , ) ,U V f gΞ =L ,U f V g↔ ↔

注） ( )( , ) [ ] ( , ) ( , ), ( , )
kt s t s HX X E X X k t s k t k sΞ = = = ⋅ ⋅L

(inner product) (cov) (reproducing)

(isomorphic as Hilbert space)
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Stationary process and shift-
invariant kernel

Stationary case
: random process on Rm

– stationary process

covariance function is given by 

– Positive definite kernel for a stationary process is given by 

– Bochner’s theorem ⇔ Wiener-Khinchine’s theorem

[ ] [ ] ( , , )m
t h s h t sE X X E X X t s h+ + = ∀ ∈ R

( , ) ( )R t s R t s≡ −

( , ) ( )K t s K t s= −

(covariance function of a stationary 
process on Rm is the inverse Fourier 
transform of the power spectral.)
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Inference with random process
Estimation of random process
– Modeling by a random process

– Estimation
Estimate        for t0 given the observation 

t t tY X ε= +
Xt :  random process on Ω with mean zero and finite 2nd moments

εt : noise indep. with Xt
2[ ] 0, Cov[ , ] ( )t t sE t sε ε ε σ δ= = −

R(t,s) = Cov[Xt, Xs] : known． σ2 : known

0tX
ntt YY ,,

1
K



32

Minimizing mean square error
Linear estimator for random process
– Linear estimator

– Mean square error

– Least square error estimator

0 1
ˆ

j

n
t j tjX Yα== ∑

0 0 0

2 2
1

ˆmin | | min | |
j

n
t t t j tjE X X E X Y

α
α=− = − ∑

2min ( ) 2T T
nK I r

α
α σ α α+ −

2 1( )ˆ nK I r

0

2 1ˆ ( )ˆT T
t nX Y r K I Yα σ −= = +t t

∵）

α σ −= +⇒
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Bayesian estimation of Gaussian 
process

– Joint probability

– Bayesian estimation = LSE estimation

( ( , )) n n
i jK R t t ×= ∈ R 0( ( , )) n

ir R t t= ∈ Rwhere

0

2 1[ | ] ( )T
t nE X Y r K I Yσ −= +t t

2[ , ] ( , ) ( ),t sE Y Y R t s t sσ δ= + − [ , ] ( , )t sE Y X R t s=∵）



34

Gaussian process and 
regularization

LSE estimation of a process ＝ Regularization 
with RKHS
– Linear LSE estimator of a process (Bayesian estimator of 

Gaussian process)

– Ridge regression on RKHS

0 0 0

2 2
1

ˆmin | | min | |
j

n
t t t j tjE X X E X Y

α
α=− = − ∑

0

2 1ˆ ( )T
t nX r K I Yσ −= + t

( )2 2
1min ( )N

i ii Hf H
Y f t fλ=∈

− +∑

1( ) ( ) ( )T
Nf t r t K I Yλ −= +

Sol.

Sol.

identical
σ2 ⇔ λ
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Correspondence between RKHS and random 
process

RKHS random process

Pos. def. kernel K(t,s) Covariance fun. K(t,s) = E[Xt,Xs]

( , )i ic K t⋅∑ ii tc X∑

lim ( , )i ic K t⋅∑ lim
ii tc X∑(completion) (closure)

0

2
1min | |

j

n
t j tjE X Y

α
α=− ∑

Linear estimation
( )2 2

1min ( )N
i ii Hf H

Y f t fλ=∈
− +∑

Regularization (smoothing)

0

2 1ˆ ( )T
t nX r K I Yσ −= + t

1( ) ( ) ( )T
Nf t r t K I Yλ −= +

Cov. fun. of a statinary process
K(t,s) = K(t-s) 

Shift-invariant kernel
K(t,s) = K(t-s) 

Bochner’s theorem Wiener-Khinchine’s theorem
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Iterative random functions
m-IRF
A random process                is said to be an m-iterative random 

functions (m-IRF) if for any finite subset t = (t1, …, tn ) of Ω and any 
generalized increment c1,…, cn of order m, the process 

is second-order stationary. 

– A stationary process is called (-1)-IRF in convention. 

Modeling by non-stationary process
– Kriging is a modeling by 0-IRF. 

The generalized covariance function G(t-s) is used instead of 
covariance function K(t, s) for the modeling. 
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Generalized covariance
Theorem (Matheron 1973)

: continuous m-IRF.
There is a continuous function GK such that for any finite subset 
t = (t1, …, tn ) of Ω and any two generalized increments (c1,…, cn)
and (d1,…, dn) of order m, 

– The function GK is called generalized covariance. 

– The generalized covariance is conditionally positive definite of
order m (obvious by definition and above theorem).

– Matheron (1973) proves the converse, also.  There is a 
correspondence between m-IRF and conditionally positive 
definite functions of order m.  
(Generalization of the correspondence between the stationary 
processes and positive definite functions.)
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