Towards better computation-
statistics trade-off in tensor
decomposition
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From matrices to tensors

e Trace norm: convex relaxation of matrix rank

[Wills, = ) a;(W)
j=1

Induces low-rank-ness
(spectral sparsity)

— It works like L1 regularization on the singular values

— Performance guarantees [Srebro & Schraibman 2005; Candes
& Recht 2009; Candes & Tao 2010; Negahban & Wainwright 2011]

Similar relaxation possible for tensor rank?




From matrices to tensors

» Spectral norm of random Gaussian matrix

8| X s, <o (vVm+/n)

Gaussian, size=[200 500]

Uniform, size=[200 500]
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distribution

[Marchenko & Pastur 1967]
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Random tensor theory?




Outline

Tensor ranks and decompositions

Overlapped trace norm (moderate computation)
— Limitations: requires O(rn*-1) samples
Balanced trace norm (heavy computation) [Mu et al. 2013]

— requires O(r*2nk2) samples

Tensor trace norm (probably intractable)

— requires only O(rn) samples



Tensor rank

« Minimum number R such that

|l
O

Xiik = E Qirbirc
( Lk irjrke (for 374 order tensor)

r=1
 Known as CP (canonical polyadic) decomposition
[Hitchcock 27; Carroll & Chang 70; Harshman 70]

« Comutation of the above decomposition is NP hard!



Tucker decomposition

[Tucker 66; De Lathauwer+00]

Factors
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Factors can be obtained by unfolding operation+SVD

In practice no unfolding is low-rank --- Common solution: iterate
truncated SVD (HOSVD, HOOI); non-convex



Unfolding (matricization)

Mode-1 unfolding X ;) rank r,
no N2 n2
: / ﬁ@ V4 By
oy ns L ~" J
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Mode-2 unfolding X (2)
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Core idea

Tensor X is low rank
dk,r.<n,

(in the sense of Tucker

decomposition)

Unfolding
(Matricization)

-
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Unfolding X,
Is low-rank
(as a matrix)

Tensorization




Overlapped trace norm
[T+10; Signoretto+10; Gandy+11; Liu+09]

» Convex optimization problem

. . . 1
minimize iy = XW)IF 4+ A W] g,

K
where [[W|lg, 1 =D  IWals,
k=1 mode-k

_ the same tensor is regularized to be  Unfolding

simultaneously low-rank w.r.t. all modes.



Generalization error

Empirical performance

* True tensor: 50x50x20, rank 7x8x9. No noise (A=0).

 Random train/test split.

= = = As a Matrix (mode 1)

EREEIEY As a Matrix (mode 2)
{ | = As a Matrix (mode 3)

Overlap

1 | —— Latent

Tucker (large)
Tucker (exact)

1 | = = = Optimization tolerance
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Tucker
= EM algo

(hon-convex)
[Andersson & Bro 00]




Analysis: Problem setting

Observation WW* : true tensor with rank (ry,...,r)

Yi = <X¢,W*>—|—€Z’ (i:1,...,M)

Gaussian noise N(0,09)
Optimization Likelihood Regularization

W = argmin (—Hy xX(Ww H2 [)‘M‘HWMJ)
WER™ X+ Xn

Reg constant

(N =TTy )

Observation operator X:RY - RM
%(W) — (<X17W> y ooy <XM7W>)T



Theorem (“overlapped” approach)

[T, Suzuki, Hayashi, Kashima 11]
Assume that the elements of the design X are

independently and identically Gaussian distributed.
Moreover, if

#samples (M) . r
> ~ __
#variables (V) — Cl\Hn Hl/erHl/z | n

normalized rank

_ K 2 K 2
Itz = (% S V) Iy = (% 05 v



Theorem (random Gauss design)

[T, Suzuki, Hayashi, Kashima 11]
Assume that the elements of the design X are

independently and identically Gaussian distributed.
Moreover, if

#samples (M) .
> ~
Hvariables (N) = c%||n H1/2H7"H1/2 =

T
| T
Convergence! v normalized rank

P % (|| 2 .

I —w|>. o2 n 12|71 2

<0,
N M

(with appropriate choice of A\,
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Estimation error

Tensor completion

size = 50x50x20 true rank 7x8x9 or 40x9x7

—— Convex [7 8 9]
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Theory vs. Experiments (4t order)
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Limitation: exponentially many
samples required!

» Simplify by setting n,=n and r,=r
 Then there are constants c0O, c1, c2 such that

— #samples ] > can_lr

—reg. const. A\, = coa\/nK_l/M
| olrnk—1

M
with high probability.

W — W*

2
<
P =02




Why?

« Key steps in the analysis

— Relation between the norm and the rank

Wlls, )1 < BEVT|[W)| (OK)

— Dual norm of noise tensor

11" (e) < oYM (\/pK=1 4\ /p)

unbalanced (Bad)

©ll (s, /1)-

where X' (€) := Zf\il €;X;



Balanced unfolding

* For K>3, there are 2X-1-1 > K ways to

unfold a tensor. For example,

NyN,
N3
n, oo o0
X (1,2:3,4) = MMy E
n, oo o

(See also Mu et al. 2013)



Balanced trace norm (for K=4)

e Definition

‘HW‘Hbalamed ”W(l 2;3,4) HSl + HW(l 3;2,4) Hsl + HW(1 4:2,3) HSl

— Relation between the norm and t
HWH|balanced § 3\/7472‘“)/\/”

— Dual norm of noise tensor

ne rank

F

|Hbalanced* § G\/_ 2\/7

> Sample complexity O(r’n?)



Experiment (K=4)

tensor completion at rank (2 2,2,2) Ihgzrrg;ﬂca”y
B owmmitaee | A0

| X Overlapped (unbalanced) |..................... SO A .

Number of samples at the phase transition

Dimension n



Comparison of computational
complexity

* Qverlapped trace norm (Sample Complex. O(rnk-1))

— requires SVD of nX-! x n matrix: Large!

ONnX+1+n3) = O(n®) for K=4 OK
« Balanced trace norm (Sample Complex. O(r%2nk/2))

— requires SVD of n¥2 x nkK2 matrix: OK
O(n'-K) = O(n®) for K=4 Large!

statistically more efficient, computationally more challenging!




Computation-statistics trade-off

Sample
complexity

NnK

A

Frobenius norm

Overlapped trace norm
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Tensor trace norm

For K=3
|HVVH|tr = inf Z cq, St W= Z Cally OV, O Wy
acA acA
cg, > 0

lul| <1, o]l < 1, flw] <1

rank-1 tensor
(outer prod. of
vectors)

can be seen as an atomic norm [Chandrasekaran 12] with
atomic set = set of rank-1 tensors



Tensor trace norm

For K=3
|HWH|tr = inf Z cq, St W= Z Cally O Vg O Wy
acA acA
cg, > 0

lul| <1, o]l < 1, flw] <1

Relation between the norm and the orthogonal CP rank

(Kolda 2001)
W, < vE[W] -

Dual norm of the noise tensor

Ef|X" (e, < CovMyn
> Sample complexity O(Rn)




Dual of the trace norm is the
tensor operator norm

[Plliee = IVl = sup D Vijpusojuws

u,v,Ww . .
1,7,k

stllul < 1, ol <1, | <1

Greedy algorithm for computing the operator norm

1. Inttialize u, v, w.

2. Fix u, maximize over v and w (matrix operator norm)
3. Cycle overv, w, u, ... until convergence

(can be improved by incorporating gradient)



Empirical scaling (K=3)

3 Theoretically
x Operatornom | 1 |x O(n)

x Dual overlapnorm |~ ... o e ] X O(Jn)

............... x

10 _ .10 10
Dimensionality n.=n_=n



Low-rank tensor estimation with
the tensor trace norm

Likelihood Regularization

1
minimize 5 |y — x(W)HZ +£)‘M|HW|HJ

WER”lX”'X”K

Key operation: prox operator
. 1 2
prox, (W) = argmin AV, + 5113 - W)
= W — proj, (W)  (Moreau’s theorem)
proj, (W) = arg)r}ninm)/\/ — y|HF S.t. H\ym < A

op —
Tensor operator norm



Greedy algorithm for prox ; (W)

. Let R=W.

. Compute ||R]l,,
if [|R[|,p < A, done. Return W-R

otherwise, R=R+(A-||R||,,) u - v - w

. Go to 2.




Tensor completion experiment
(A—0)

size=50x50x20, CP rank=8
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Generalization error
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Summary

« Tensor decomposition via convex optimization
— Fast and stable algorithm for tensor decomposition
— Rank selection is replaced by regularization parameter selection
« Limitation of the overlapped trace norm
— unbalancedness of the unfolding
— balanced unfolding
« Optimization statistics trade-off
— balanced trace norm requires less samples but more computation

— tensor trace norm requires only O(n) samples but seems intractable
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