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Problem Setting

Sparse estimation [Lasso]

Design matrix X = (Xj;) € R"*P. p (dimension) > n (# of samples).
True coefficients 8* € RP: only d(< p) elements are non-zeros
(d-sparse).

Model : Y = XB* + €.

N 1
B« argmin = || X8 — Y3 + M\ |IB]l1.
Bere N
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Theorem (Lasso’s convergence rate (Bickel et al., 2009; Zhang, 2009))

If the design matrix satisfies “Restricted e/genvalue cond/t/on ,
max;j | X;j| < 1, and the noise satisfy E[e™S] < 7’7 /2 (V7 > 0), then we
have, with probability 1 — 9,

O p's effect is just log(p), the effective dimension d is dominantO



Problem Setting

Restricted eigenvalue condition (Bickel et al., 2009; Zhang,

2009)

BTXTXB/n
1) = 0 ,
oo(1) sup{¢ >0]¢< > 7
V3 € RP such that b |8, > |ﬂj|}.
jel j¢l

Restricted Eigenvalue Condition

There exists a constant 0 < C such that

0<C< i ).
I:IoCTm§2d ¢3( )

Motivation: Is there any estimator which does not require this
condition to achieve a similar convergence rate?
— Bayesian estimator

6
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Problem Setting

Goal of this talk

@ Change the risk criterion:
ol 2 1 ol *1 12
1B-5813 — ~IX(B- 8"
o We generalize the model to non-parametric (sparse) additive model:
M
ZXJﬁJ — f Z fm
Jj=1 =1
o Finally, we will derive a risk bound of Bayesian sparse estimator:

IF = )17 <2



Problem Setting

Goal of this talk

@ Change the risk criterion:
. 1oon .,
1B=BI8 — IX(B- 53

o We generalize the model to non-parametric (sparse) additive model:

=D %8 — f()= D fn(x™)

o Finally, we will derive a risk bound of Bayesian sparse estimator:

" I
17— 2 < 3 nmrs 4 Lo8e/d)
n
mely



Problem Setting

Non-parametric Regression
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Problem Setting

Sparse Additive Model




Problem Setting

Sparse Additive Model

z(M) | fur @)




Problem Setting

Problem Setting

Yi = fO(Xi) +€ia (l = 17' L) n)a
where f° is the true function such that E[Y|X] = f°(X).

f° is well approximated by a function f* with a sparse representation:
FO(x) ~ £*(x Z fr(x(™),

where only a few components of {£}M_, are non-zero.
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Multiple Kernel Learning

Multiple Kernel Learning

fm€Hm N 1

1 M 2 M
min ,Z ( me (m) > +CZHmeHm
m=1

(Hm: Reproducing Kernel Hilbert Space (RKHS), explained later)

@ Extension of Group Lasso: each group is infinite dimensional

@ Sparse solution

@ Reduced to finite dimensional optimization problem by the
representer theorem (Sonnenburg et al., 2006; Rakotomamonjy
et al., 2008; Suzuki & Tomioka, 2009)
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Multiple Kernel Learning

Various types of regularization

@ [;-MKL (Lanckriet et al., 2004; Bach et al., 2004)0 Sparse

M M
i L fn C frn
iy (z >+ S Il
@ [,-MKLO Dense

M M
. 2
mip L (z fm) RSN

14 /55



Multiple Kernel Learning

Various types of regularization

@ [;-MKL (Lanckriet et al., 2004; Bach et al., 2004)0 Sparse
M M
i L fm C fm
i L(3o8) + €3l
@ [»,-MKLO Dense
M M
in L fim fonl |5
i L(3o8) + €31l
@ Elasticnet-MKL (Tomioka & Suzuki, 2009)
M M M
i L(328) <63 1ol + 615,

@ /,-MKL (Kloft et al., 2009)

M M B
fmn;%lm L (Z f”’) +G (21 |fm|§'im>

m=1
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Multiple Kernel Learning

Sparsity VS accuracy
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Figure: Relation between accuracy and sparsity of Elasticnet-MKL for caltech
101
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Multiple Kernel Learning

Sparsity VS accuracy
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Figure: Relation between accuracy and sparsity of £,-MKL (Cortes et al., 2009)
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Multiple Kernel Learning

Convergence rate of MKL

Suzuki (2011) gave a unifying framework to derive convergence rates of
various types of regularizations.

Examples:

o (,-MKL: ||f]ly = (Zﬁ\nﬂzl ”meg-tm);

N 1 2 Mlog(M
I = £y =0, (ot Miatin e 4. MBI

n
o Elasticnet-MKL:

1Flly =AMl + (= N 13, )?

2 * - s * w125 4 Mlog(M
17— |%2m>=0p<n M I+ (- A ||e2]1+s+°§”>

1

.
/ M: HIK
o VSKL: [l = [l = |1 (S22 1l } .

, 1—s B 12T55
. (Spam) 7 [ (e e @ [l b Mog(M)
17— £ 1By = 05 | L — e Z(anu + ===
nlts j=1 5

17 / 5¢
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Multiple Kernel Learning

Convergence rate L; and elastic-net MKL

M M
min L (Z fm> + 3 O flln + X ll92 + A [ e, )-
m=1

fm€Hm

m=1

Theorem (Convergence rate of Mixed-Norm-Elasticnet-MKL (Suzuki &

Sugiyama, 2013))

Under the conditions stated above, for sufficiently large n, for
appropriately chosen A, A" AL we have

N —s 25 dlog(M
(L1) IIf — f*||f2(r,) <C (dlusn—lis Rllf;* + Ogn()> n(t)2,

. 2 dlog(M
(Elastic) ||F — £*[|2,m) < C' (dlitflsn—ﬁiﬂsR;f;:s + Ogn()> n(t)?,

with probability 1 — e™t — e~ (Vt > 1).

n(t) := max(v/t, t/+/n) and, Ry ¢+, Ro g+ are defined as

1

M M 2
* * 12
Rure = S e, Roge im (zugmnﬂm) |
m=1 m=1



Multiple Kernel Learning

(Generalized) Restricted Eigenvalue Condition

To prove a fast convergence rate of MKL, we utilize the following
(generalized) Restricted Eigenvalue Condition (Bickel et al., 2009;
Koltchinskii & Yuan, 2010; Suzuki, 2011; Suzuki & Sugiyama, 2012).

Restricted Eigenvalue Condition

There exists a constant 0 < C such that

0 < C < Byg(h).

M
IS0y ol e
et Wl

Vf such that bz Il Loy > Z ||fm||Lz(l'l)}'

mel mél

Bo(l) == SUP{BZOIﬁS

fms are not totally correlated inside Iy and between Iy and /5.
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Multiple Kernel Learning

We investigate a Bayesian variant of MKL.

We show a fast learning rate of it without conditions on the design such
as the restricted eigenvalue condition.

20/55
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Gaussian Process Regression

Our proposal = sparse aggregated estimation + Gaussian process

o Aggregated Estimator, Exponential Screening, Model Averaging
(Leung & Barron, 2006; Rigollet & Tsybakov, 2011)

@ Gaussian Process Regression (Rasmussen & Williams, 2006; van der
Vaart & van Zanten, 2008a; van der Vaart & van Zanten, 2008b;
van der Vaart & van Zanten, 2011)
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Gaussian Process Regression

Gaussian Process Regression

Gaussian process prior: a prior on a functions f = (f(x) : x € X).
f ~GP

means that each finite subset (f(x1), f(x2),...,f(x})) (j=1,2,...)
obeys a zero-mean multivariate normal distribution.

We assume that sup, |f(x)| < co and f : Q — £ (X) is tight and Borel
measurable.

Kernel function:
k(x,x") := Ermgp[f(x)f (X))

Examples:

o Linear kernel: k(x,x’) = x'x'.

o Gaussian kernel: k(x,x") = exp(—||x — x'||?/20?).

e polynomial kernel: k(x,x') = (14 x'x").



Gaussian Process Regression

Gaussian Process Prior

(a) Gaussian kernel (b) Linear kernel
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Gaussian Process Regression

Estimation

Suppose {y;}7_; are generated from the following model:
yi = (%) + &,

where &; is i.i.d. Gaussian noise N'(0,0?).
Posterior distribution: let f = (f(x1),...,f(xy)), then

If — YII2 Lot 1
exp( n 272 exp 2f K™f

exp <_; IF = (K +02h) Ky |

p(f|Dn) =

Al =

K1+In/02)) ’

where K € R"*" is the Gram matrix (K;; = k(x;, x;)).

o posterior mean: f = (K + o2l,) *KY.

@ posterior covariance: K — K(K + o21,)71K.



Gaussian Process Regression

Gaussian Process Posterior

(c) Training Data (d) Posterior Sample



Gaussian Process Regression

Gaussian Process Posterior 2

output, y
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Gaussian Process Regression

Our interest

How fast does the posterior concentrate around the true?

30/55



Gaussian Process Regression

Reproducing Kernel Hilbert Space (RKHS)

The kernel function defines Reproducing Kernel Hilbert Space (RKHS) H
as a completion of the linear space spanned by all functions

/

X Za;k(x,-,x), (1=1,2,...)

i=1
relative to the RKHS norm || - || induced by the inner product
I I
(k) ookt 1) =373 vt
i=1 j=1 w 0=l =1
Reproducibility: for f € H, the function value at x is recovered as

F(x) = (£, k(- )ne

31/55



Gaussian Process Regression

Example: Matérn prior

Matérn prior: for a smoothness parameter o > 0, we define
k(X7 XI) — / e/)\T(X_X/)'l/}()\)d)\7
]Rd

where 1) : RY — R is the spectral density given by

1

A= .
YO = @y

@ The support is included in a Hélder space C*’ [0,1]9 for any o < a.

o The RKHS # is included in a Sobolev space W+9/2[0,1]9 with the
regularity o + d /2.

For infinite dimensional RKHS 7, the support of the prior is
typically much larger than .



Gaussian Process Regression

Convergence rate of posterior: Matérn prior

Let f be the posterior mean.

Theorem (van der Vaart and van Zanten (2011))

Let f* € CP[0,1]9 N WP[0,1]¢ for B > 0, then for Matérn prior with
parameter o, we have

E[IIf - 2] < 0 (n=%%72).

. . __8
@ The optimal rate is O (n ﬂ+d/2>.

@ The optimal rate is achieved only when o = 3.

aAp

@ The rate n~ =472 is tight.
— If f* € H (8 = a+ d/2), then GP does not achieve the optimal
rate.

— Scale mixture is useful (van der Vaart & van Zanten, 2009).
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Gaussian Process Regression

Summary of existing results

o GP is optimal only in quite restrictive situations (o = f3).
o In particular, if f° € H, the optimal rate can not be achieved.

@ The analysis was given only for restricted classes such as Sobolev
and Holder classes.
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Bayesian MKL

Bayesian-MKL = sparse aggregated estimation + Gaussian process

o Condition on design: Does not require any special conditions such
as restricted eigenvalue condition.

o Optimality: Adaptively achieves the optimal rate for a wide class of
true functions. In particular, even if f° € H, it achieves the optimal
rate.

@ Generality: The analysis is given for a general class of spaces
utilizing the notion of interpolation spaces and the metric entropy.
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Bayesian MKL

Bayesian MKL

We estimate ° in a Bayesian manner. Let f = (f1,..., fu).
Prior of Bayesian MKL:

nan= Y wJ-HA . GP (A fin| Am)G(dAR) - T do(dfim)

JC{1,...M}  meJ meJ
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Bayesian MKL

Bayesian MKL

We estimate ° in a Bayesian manner. Let f = (f1,..., fu).
Prior of Bayesian MKL:

n(df) = GPm(dfml)‘m)

e GP,(:|\m) with a scale parameter A, is a scaled Gaussian process
corresponding to the kernel function ky, 5, where

- k
km,)\m ==

)
m

for some fixed kernel function k.
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Bayesian MKL

Bayesian MKL

We estimate ° in a Bayesian manner. Let f = (f1,..., fu).
Prior of Bayesian MKL:

n(dr) = A  CP(dfalAn)G(dAn)

e GP,(:|\m) with a scale parameter A, is a scaled Gaussian process
corresponding to the kernel function ky, 5, where

~ k

km,)\m = 7’"7
m

for some fixed kernel function k.

e G(Am) = exp(—Am) (Gamma distribution: conjugate prior)
— scale mixture.
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Bayesian MKL

Bayesian MKL

We estimate ° in a Bayesian manner. Let f = (f1,..., fu).
Prior of Bayesian MKL:

n(df) = HA _, GPn(afAn(arn) - [T dofaf)

meJ m¢J

e GP,(:|\m) with a scale parameter A, is a scaled Gaussian process
corresponding to the kernel function ky, 5, where

- k
km,)\m = ﬁ7

for some fixed kernel function k.

e G(Am) = exp(—Am) (Gamma distribution: conjugate prior)
— scale mixture.

o Set all components f,, for m ¢ J as 0.
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Bayesian MKL

Bayesian MKL

We estimate ° in a Bayesian manner. Let f = (f1,..., fu).
Prior of Bayesian MKL:

nan= Y m-HA . GP (A fin| Am)G(dAR) - T do(dfim)

JC{1,...M}  meJ meJ

e GP,(:|\m) with a scale parameter A, is a scaled Gaussian process
corresponding to the kernel function ky, 5, where

~ k
km,)\m = ﬁ7
for some fixed kernel function k.

e G(Am) = exp(—Am) (Gamma distribution: conjugate prior)
— scale mixture.

@ Set all components f,, for m ¢ J as 0.
@ Put a prior m; on each sub-model J.
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Bayesian MKL

Bayesian MKL

We estimate ° in a Bayesian manner. Let f = (f1,..., fu).
Prior of Bayesian MKL:

nan= Y, m-HA . GP (A fin| Am)G(dAm) - [T do(dfin)

Jc{1,...,M}  meJ m¢J

@ 7, is given as

_ (M)‘l
WJ—Zinlé_j |J| 9

with some ¢ € (0,1).

37/55



Bayesian MKL

The estimator

The posterior: For some constant 8 > 0, the posterior probability
measure is given as

exp <7 Ef:l(y"*%gﬂ fn (X)) )

n(df|D,) :=

n 7 —(df),
Fon (ST i

for f = (f,...,fu). .
The estimator: The Bayesian estimator f (Bayesian-MKL estimator) is
given as the expectation of the posterior:

M
?:/men(dﬂyl,...,yn).
m=1
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Bayesian MKL

@ Model averaging

@ Scale mixture of Gaussian process prior

39/55



Convergence Rate of Bayesian MKL

Outline

© Convergence Rate of Bayesian MKL
@ PAC-Bayesian Bound
@ Main Result
@ Applications to Some Examples
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Convergence Rate of Bayesian MKL
@00
PAC-Bayesian Bound

Mean Squared Error

We want to bound the mean squared error:
1 n
£ = P2 = 3207 0a) — o),

i=1

where f is the Bayesian estimator. We utilize a PAC-Bayesian bound.
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Convergence Rate of Bayesian MKL
oeo

PAC-Bayesian Bound

PAC-Bayesian Bound

Under some conditions for the noise (explained in the next slide), we
have the following theorem.

Theorem (Dalalyan and Tsybakov (2008))

For all probability measure p, we have

B [IF — 1] /Hf Flzanr) + 240,

where KC(p, ) is the KL-divergence between p and :

K(p,N) := /Iog (jﬂ) dp.




Convergence Rate of Bayesian MKL
[e]e] J

PAC-Bayesian Bound

Noise Condition

Let

me(z) := —E[G1{& < z}],
where 1{-} is the indicator function. Then we impose the following
assumption on me.

Assumption

E[¢?] < 0o and the measure m¢(z)dz is absolutely continuous with
respect to the density function p¢(z) with a bounded Radon-Nikodym
derivative, i.e., there exists a bounded function g¢ : R — R such that

b b
/mf(z)dz:/ ge(2)pe(z)dz, Va,beR.

@ The Gaussian noise N(0, 02) satisfies the assumption with
ge(z) = o?,

@ The uniform distribution on [—a, a] satisfies the assumption with
ge(z) = max(a® — z%,0)/2.
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Convergence Rate of Bayesian MKL
@000
Main Result

Concentration Function

We define the concentration function as

(m) = inf A2, —log GP.({f: |Ifl, <
Or. (€ Am) : hewm:n'f?ff,;unge” (34,5, — 108 GPm({f : [[flln < €}[Am).

bias variance

It is known that ¢\ (€, Am) ~ — log GPm({ : ||£% — F|ln < €}|Am) (van
der Vaart & van Zanten, 2011; van der Vaart & van Zanten, 2008b).
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Convergence Rate of Bayesian MKL
[e] lele]

Main Result

General Result

Let fo ;== {m | fz #0}, lo:={mely|fi ¢ Hn} and s := (1 ).

Theorem (Convergence rate of Bayesian-MKL)

The convergence rate of Bayesian-MKL is bounded as

Byaapan [IF = F2I2] < 201F° |2
: Am  log(Am)
+G sm,'9f>o{ > < + ¢ )(em> Am) + - >

mely
M
Z 6m€m’+|0||0g( e)
o]

m,m’ €ly:
m##m’
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Convergence Rate of Bayesian MKL
[e]e] o)

Main Result

Interpretation of the theorem

Let &2, = inf., >0 (€2, + (;Sf* (€my Am) + )‘Tm — %) and suppose
achieves the optimal learning rate for the single

fo = f*. Typically &,

kernel learning.
o (Correctly specified) If 7% € Hp, for all m, then we have

2 pon2] _ 2 M Me
By [IF ~ 7°I3] O[Zw b '°g(ﬂ|/o|>]'

me€ly

— Optimal learning rate for MKL.
Note that we imposed no condition on the design such as restricted

eigenvalue condition.
(Misspecified) If £ & H,, for all m € Iy, then we have

z o ~ |I0| Me
Eyl:nlxl:n |:||f - f Hi:| = O <Z €m> + _— | g m
mely
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Convergence Rate of Bayesian MKL
[e]e]e] )
Main Result

Outline of the Proof

Fix €m, Am > 0 arbitrary. Next we define a “representer” element

By € Hy that is close to fr. If £ € Hpm, then set By = f. Otherwise,
we take hy, € Hpm z, such that

Hhm||%{m)>\m < 2infpeq, | h—fxlla<em ||h||’27LLm,>\m' We substitute the following
“dummy"” posterior into p:

f Socn, GPm(d =i | Am)1{|| =P <em} (

Ap < GP (A | Aflln<em} [ Nm)

pan =TT 2 EEL T o)
— G({m: 2 < X < Am}) foird

One can show that the KL-divergence betweenp and the prior I is
bounded as

KoM < S (S0 e A+ 20— 2oz ()] + Bhiog (2.

m€ly |/0|H

where C] is a universal constant. A key to prove this is an infinite
dimensional extension of the Brascamp and Lieb inequality (Brascamp &
Lieb, 1976; Hargé, 2004). Since {€m, Am}™_, are arbitrary, this gives the

assertion.
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Convergence Rate of Bayesian MKL
®0000000
Applications to Some Examples

Example 1: Metric Entropy Characterization
(Correctly specified)

Define the e-covering number N(By,,, €, || - ||n) as the number of
|| - [|--norm balls covering the unit ball By, in Hp.
The metric entropy is its logarithm:

log N(B,, €, | - Iln)-
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Convergence Rate of Bayesian MKL
O@000000
Applications to Some Examples

Example 1. Metric Entropy Characterization

We assume that there exits a real value 0 < s,, < 1 such that
log N(Bi,,, €, || - [ln) = O(e>"),

where By, is the unit ball of the RKHS .

Theorem (Correctly specified)

If % € Hp, for all m € Iy, then we have

n o Io| Me o %
Evinben [Ilf— f II%] <C{Z n” T '—°| og <m>}+2llf — 2

meEly

It is known that, if there is no scale mixture prior, the optimal rate
1
n~ Tsm can not be achieved (Castillo, 2008).
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Convergence Rate of Bayesian MKL
[e]e] le]elelele]

Applications to Some Examples

Example 1: Metric Entropy Characterization (Misspecified)
Let [L2(Pn), Hmlo,co be the interpolation space equipped with the norm,
f(m) =supt~? inf f—gmlln+ tllgm .
1% = sup e inf, {11 ~ gl + tlgnl )

One has
Hm [L2(Pn),Hm]«9,oo — Lo(Pn).

Interpolation space

50 /55



Convergence Rate of Bayesian MKL
[e]e] le]elelele]

Applications to Some Examples

Example 1: Metric Entropy Characterization (Misspecified)

Let [L2(Pn), Hmlo,co be the interpolation space equipped with the norm,
Il = supt=" inf {[If — gmlln+ tlegmlz,}-
’ t>0 gm€EHm

One has
Hm — [L2(Pn)7Hm]0,oo — L2(Pn)

Theorem (Misspecified)
If£% € [La(Pp), Hmlo,co with 0 < § <1, then we have

2
z 0|2 — gy |/0| Me
Evioixn {Hf —f ||n} <C (Z n~ 2 m/e)> + — log <|/0|/-e

m€ly

+2f° = I3

Thanks to the scale mixture prior, the estimator adaptively achieves the
optimal rate for 6 € (sp, 1].



Convergence Rate of Bayesian MKL
[e]e]e] lelelele]
Applications to Some Examples

Example 2: Matérn prior

Suppose that X, = [0,1]9". The Matérn priors on X, correspond to the
kernel function defined as

km(z,z'):/ eisT(Z*Z/)wm(s)ds,
Rém

where ¥,(s) is the spectral density given by
Ym(s) = (1 + ||s]|?)~(@m*+9n/2) for a smoothness parameter o, > 0.

Theorem (Matérn prior, correctly specified)

If £ € Hpm, then we have that

1
2 o2 T bl Me
Evanpen | IF = 1] sc{z n et + llog <|/0|f<¢

mely
+2f° — I3
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Convergence Rate of Bayesian MKL
[e]e]ee] lelele]

Applications to Some Examples

Example 2: Matérn prior

Theorem (Matérn prior, Misspecified)
If £ € CPn[0,1]% N W5n[0,1]9 and B, < am + dm/2, then we have

that
* el (M
7 0112 e g €
By o |17~ P12 <C (Zn ) a8 <|/o|n>
me€ly
+2||f° — £

Although % & M, the convergence rate achieves the optimal rate
adaptively.




Convergence Rate of Bayesian MKL
O0000e00
Applications to Some Examples

Example 3: Group Lasso

X, is a finite dimensional Euclidean space: X, = R The kernel

function corresponding to the Gaussian process prior is kny(x,x') = x "

x':

fn(x) = " x, pn~ N(0O, Ig,).

Theorem (Group Lasso)

If % = ulx, then we have that
N dmlog(n) || Me
_ fo2| Zmelg g 70
EYl:nlxl:n |:||f f ||n] _C { n + n |Og (|/0|K:> }
+2[f° = I3

This is rate optimal up to log(n)-order.
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Convergence Rate of Bayesian MKL
O00000e0

Applications to Some Examples

Gaussian correlation conjecture

We use an infinite dimensional version of the following inequality
(Brascamp-Lieb inequality (Brascamp & Lieb, 1976; Hargé, 2004)):

EB[(X,0)?1X € Al < E[(X,9)?],

where X ~ N(0,X) and A is a symmetric convex set centered on the
origin.

Gaussian correlation conjecture:
(AN B) > p(A)u(B),

where p is any centered Gaussian measure and A and B are any two
symmetric convex sets.

Brascamp-Lieb inequality can be seen as an application of a particular
case of the Gaussian correlation conjecture. See the survey by Li and
Shao (2001) for more details.

54 /55



Convergence Rate of Bayesian MKL
O000000e
Applications to Some Examples

Conclusion

@ We developed a PAC-Bayesian bound for Gaussian process model
and generalized it to sparse additive model.

@ The optimal rate is achieved without any conditions on the design.

@ We have observed that Gaussian processes with scale mixture
adaptively achieve the minimax optimal rate on both
correctly-specified and misspecified situations.
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