# PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additive Model

† Taiji Suzuki

<sup>†</sup> Tokyo Institute of Technology Department of Mathematical Computing Sciences

15th/March/2014@ISM

Conference on Learning Theory (COLT2012), *JMLR Workshop and Conference Proceedings* 23, pp. 8.1 – 8.20, 2012.

Taiji Suzuki, and Masashi Sugiyama: Fast learning rate of multiple kernel learning: trade-off between sparsity and smoothness.

The Annals of Statistics, vol. 41, number 3, pp. 1381-1405, 2013.

Taiji Suzuki: Unifying Framework for Fast Learning Rate of Non-Sparse Multiple Kernel Learning.

Advances in Neural Information Processing Systems 24 (NIPS2011). pp.1575–1583.

#### Outline

- Problem Setting
- Multiple Kernel Learning
- Gaussian Process Regression
- Bayesian MKL
- 5 Convergence Rate of Bayesian MKL
  - PAC-Bayesian Bound
  - Main Result
  - Applications to Some Examples

#### Outline

- Problem Setting
- Multiple Kernel Learning
- Gaussian Process Regression
- Bayesian MKL
- © Convergence Rate of Bayesian MKL
  - PAC-Bayesian Bound
  - Main Result
  - Applications to Some Examples

Problem Setting

Design matrix  $X = (X_{ij}) \in \mathbb{R}^{n \times p}$ . p (dimension)  $\gg n$  (# of samples). True coefficients  $\beta^* \in \mathbb{R}^p$ : only d(< p) elements are non-zeros (d-sparse).

Model: 
$$Y = X\beta^* + \xi$$
.

$$\hat{\beta} \leftarrow \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \|X\beta - Y\|_2^2 + \lambda_n \|\beta\|_1.$$

# Sparse estimation [Lasso]

Design matrix  $X = (X_{ij}) \in \mathbb{R}^{n \times p}$ . p (dimension)  $\gg n$  (# of samples). True coefficients  $\beta^* \in \mathbb{R}^p$ : only d(< p) elements are non-zeros (d-sparse).

Model: 
$$Y = X\beta^* + \xi$$
.

$$\hat{\beta} \leftarrow \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{n} \| X\beta - Y \|_2^2 + \lambda_n \|\beta\|_1.$$

#### Theorem (Lasso's convergence rate (Bickel et al., 2009; Zhang, 2009))

If the design matrix satisfies "Restricted eigenvalue condition",  $\max_{i,j} |X_{ij}| \leq 1$ , and the noise satisfy  $\mathrm{E}[e^{\tau \xi_i}] \leq e^{\sigma^2 \tau^2/2}$  ( $\forall \tau > 0$ ), then we have, with probability  $1 - \delta$ ,

$$\|\hat{\beta} - \beta^*\|_2^2 \le C \frac{d \log(p/\delta)}{n}.$$

p's effect is just  $\log(p)$ , the effective dimension d is dominant.

# Restricted eigenvalue condition (Bickel et al., 2009; Zhang, 2009)

$$\phi_b(I) := \sup \left\{ \phi \ge 0 \mid \phi \le \frac{\beta^\top X^\top X \beta / n}{\sum_{j \in I} \beta_j^2}, \\ \forall \beta \in \mathbb{R}^p \text{ such that } b \sum_{j \in I} |\beta_j| \ge \sum_{j \notin I} |\beta_j| \right\}.$$

#### Restricted Eigenvalue Condition

There exists a constant 0 < C such that

$$0 < C < \min_{I:I_0 \subset I, |I| \le 2d} \phi_3(I).$$

Motivation: Is there any estimator which does not require this condition to achieve a similar convergence rate?

 $\rightarrow$  Bayesian estimator



Problem Setting

#### Change the risk criterion:

$$\|\hat{\beta} - \beta\|_2^2 \longrightarrow \frac{1}{n} \|X(\hat{\beta} - \beta^*)\|_2^2$$

We generalize the model to non-parametric (sparse) additive model:

$$f(x) = \sum_{j=1}^{p} x_j \beta_j \longrightarrow f(x) = \sum_{m=1}^{M} f_m(x^{(m)})$$

• Finally, we will derive a risk bound of Bayesian sparse estimator:

$$\|\hat{f} - f^*\|_p^2 < ?$$

#### Goal of this talk

Problem Setting

• Change the risk criterion:

$$\|\hat{\beta} - \beta\|_2^2 \longrightarrow \frac{1}{n} \|X(\hat{\beta} - \beta^*)\|_2^2$$

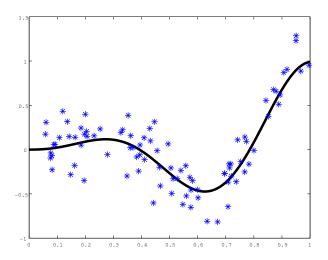
We generalize the model to non-parametric (sparse) additive model:

$$f(x) = \sum_{i=1}^{p} x_{j} \beta_{j} \longrightarrow f(x) = \sum_{m=1}^{M} f_{m}(x^{(m)})$$

• Finally, we will derive a risk bound of Bayesian sparse estimator:

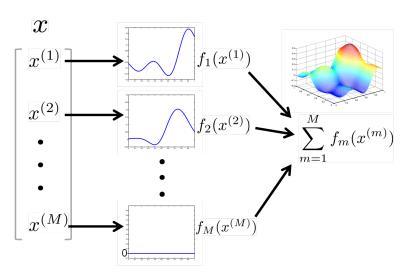
$$\|\hat{f} - f^*\|_n^2 \le \sum_{n} n^{-\frac{1}{1+s_m}} + \frac{d \log(p/d)}{n}$$

# Non-parametric Regression



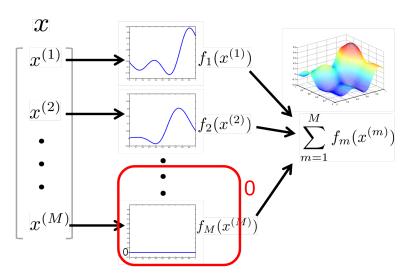


# Sparse Additive Model





# Sparse Additive Model





# **Problem Setting**

Problem Setting

$$y_i = f^{o}(x_i) + \xi_i, \quad (i = 1, ..., n),$$

where  $f^{\circ}$  is the true function such that  $\mathrm{E}[Y|X] = f^{\circ}(X)$ .

 $f^{o}$  is well approximated by a function  $f^{*}$  with a sparse representation:

$$f^{\circ}(x) \simeq f^{*}(x) = \sum_{m=1}^{M} f_{m}^{*}(x^{(m)}),$$

where only a few components of  $\{f_m^*\}_{m=1}^M$  are non-zero.

#### Outline

- Problem Setting
- Multiple Kernel Learning
- Gaussian Process Regression
- 4 Bayesian MKL
- 5 Convergence Rate of Bayesian MKL
  - PAC-Bayesian Bound
  - Main Result
  - Applications to Some Examples

# Multiple Kernel Learning

$$\min_{f_m \in \mathcal{H}_m} \frac{1}{n} \sum_{i=1}^n \left( y_i - \sum_{m=1}^M f_m(x_i^{(m)}) \right)^2 + C \sum_{m=1}^M \|f_m\|_{\mathcal{H}_m}$$

 $(\mathcal{H}_m: Reproducing Kernel Hilbert Space (RKHS), explained later)$ 

- Extension of Group Lasso: each group is infinite dimensional
- Sparse solution
- Reduced to finite dimensional optimization problem by the representer theorem (Sonnenburg et al., 2006; Rakotomamoniy et al., 2008; Suzuki & Tomioka, 2009)

• L<sub>1</sub>-MKL (Lanckriet et al., 2004; Bach et al., 2004) : Sparse

$$\min_{f_m \in \mathcal{H}_m} L\left(\sum_{m=1}^M f_m\right) + C\sum_{m=1}^M \|f_m\|_{\mathcal{H}_m}$$

• L<sub>2</sub>-MKL : Dense

$$\min_{f_m \in \mathcal{H}_m} L\left(\sum_{m=1}^M f_m\right) + C\sum_{m=1}^M \|f_m\|_{\mathcal{H}_m}^2$$

# Various types of regularization

• L<sub>1</sub>-MKL (Lanckriet et al., 2004; Bach et al., 2004) : Sparse

$$\min_{f_m \in \mathcal{H}_m} L\left(\sum_{m=1}^M f_m\right) + C\sum_{m=1}^M \|f_m\|_{\mathcal{H}_m}$$

•  $L_2$ -MKL : Dense

$$\min_{f_m \in \mathcal{H}_m} L\left(\sum_{m=1}^M f_m\right) + C\sum_{m=1}^M \|f_m\|_{\mathcal{H}_m}^2$$

• Elasticnet-MKL (Tomioka & Suzuki, 2009)

$$\min_{f_m \in \mathcal{H}_m} L\left(\sum_{m=1}^M f_m\right) + C_1 \sum_{m=1}^M \|f_m\|_{\mathcal{H}_m} + C_2 \sum_{m=1}^M \|f_m\|_{\mathcal{H}_m}^2$$

•  $\ell_p$ -MKL (Kloft et al., 2009)

$$\min_{f_m \in \mathcal{H}_m} L\left(\sum_{m=1}^M f_m\right) + C_1 \left(\sum_{m=1}^M \|f_m\|_{\mathcal{H}_m}^p\right)^{\frac{2}{p}}$$



# Sparsity VS accuracy

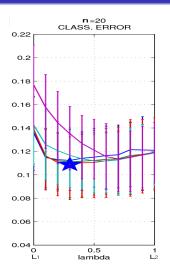


Figure: Relation between accuracy and sparsity of Elasticnet-MKL for caltech



# Sparsity VS accuracy

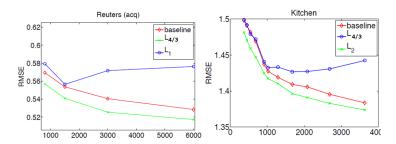


Figure: Relation between accuracy and sparsity of  $\ell_p$ -MKL (Cortes et al., 2009)

# Convergence rate of MKL

Suzuki (2011) gave a unifying framework to derive convergence rates of various types of regularizations.

Examples:

• 
$$\ell_p$$
-MKL:  $||f||_{\psi} = (\sum_{m=1}^{M} ||f_m||_{\mathcal{U}}^p)^{\frac{1}{p}}$ 

$$\|\hat{f} - f^*\|_{L_2(\Pi)}^2 = \mathcal{O}_p\left(n^{-\frac{1}{1+s}}M^{1-\frac{2s}{p(1+s)}}R_p^{\frac{2s}{1+s}} + \frac{M\log(M)}{n}\right)$$

• Elasticnet-MKL:

$$||f||_{\psi} = \lambda \sum_{m=1}^{M} ||f_m||_{\mathcal{H}_m} + (1 - \lambda) (\sum_{m=1}^{M} ||f_m||_{\mathcal{H}_m}^2)^{\frac{1}{2}}$$

$$\|\hat{f} - f^*\|_{L_2(\Pi)}^2 = \mathcal{O}_p \left( n^{-rac{1}{1+s}} rac{M^{1-rac{s}{1+s}}}{(1-\lambda+\lambda\sqrt{M})^{rac{2s}{1+s}}} [\lambda \|f^*\|_{\ell_1} + (1-\lambda) \|f^*\|_{\ell_2}]^{rac{2s}{1+s}} + rac{M \log(M)}{n} 
ight)$$

$$VSKI: ||f||_{\ell} = ||f||_{\ell=0} = \left[ \sum_{j=1}^{M'} \left( \sum_{j=1}^{M_j} ||f_{i,j}||_{p_{i,j}}^{p_{i,j}} \right)^{\frac{q}{p}} \right]^{\frac{1}{q}}$$

$$\text{VSKL: } \|f\|_{\psi} = \|f\|_{(p,q)} = \left[ \sum_{j=1}^{M'} \left( \sum_{k=1}^{M_j} \|f_{j,k}\|_{\mathcal{H}_{j,k}}^p \right)^{\frac{q}{p}} \right]^{\frac{1}{q}} .$$
 
$$\|\hat{f} - f^*\|_{L_2(\Pi)}^2 = \mathcal{O}_p \left( \frac{\left( \sum_{j=1}^{M'} M_j \right)^{\frac{1-s}{1+s}}}{n^{\frac{1+s}{1+s}}} \left\{ \left( \sum_{j=1}^{M'} M_j^{\frac{q^*}{p^*}} \right)^{\frac{1}{q^*}} \left[ \sum_{j=1}^{M'} \left( \sum_{k=1}^{M_j} \|f_{j,k}^*\|_{\mathcal{H}_{j,k}}^p \right)^{\frac{q}{p}} \right]^{\frac{1}{q}} \right\}_{\frac{q}{2} = p}^{\frac{2s}{1+s}} + \frac{M \log(M)}{n^{\frac{s}{2} + \frac{s}{2} + \frac{s}{2}}}$$

#### Convergence rate $L_1$ and elastic-net MKL

$$\min_{f_m \in \mathcal{H}_m} L\left(\sum_{m=1}^M f_m\right) + \sum_{m=1}^M (\lambda_1^{(n)} \|f_m\|_n + \lambda_2^{(n)} \|f_m\|_{\mathcal{H}_m} + \lambda_3^{(n)} \|f_m\|_{\mathcal{H}_m}^2).$$

Theorem (Convergence rate of Mixed-Norm-Elasticnet-MKL (Suzuki & Sugiyama, 2013))

Under the conditions stated above, for sufficiently large n, for appropriately chosen  $\lambda_1^{(n)}$ ,  $\lambda_2^{(n)}$ ,  $\lambda_3^{(n)}$ , we have

(L1) 
$$\|\hat{f} - f^*\|_{L_2(\Pi)}^2 \leq C' \left( d^{\frac{1-s}{1+s}} n^{-\frac{1}{1+s}} R_{1,f^*}^{\frac{2s}{1+s}} + \frac{d \log(M)}{n} \right) \eta(t)^2,$$

$$(\textit{Elastic}) \quad \|\hat{f} - f^*\|_{L_2(\Pi)}^2 \leq C' \left( d^{\frac{1+q}{1+q+s}} n^{-\frac{1+q}{1+q+s}} R_{2,g^*}^{\frac{2s}{1+q+s}} + \frac{d \log(M)}{n} \right) \eta(t)^2,$$

with probability  $1 - e^{-t} - e^{-\zeta_n}$  ( $\forall t > 1$ ).

 $\eta(t) := \max(\sqrt{t}, t/\sqrt{n})$  and,  $R_{1,f^*}$ ,  $R_{2,g^*}$  are defined as

$$R_{1,f^*} := \sum_{m=1}^{M} \|f_m^*\|_{\mathcal{H}_m}, \quad R_{2,g^*} := \left(\sum_{m=1}^{M} \|g_m^*\|_{\mathcal{H}_m}^2\right)^{\frac{5}{2}} + \sum_{m=1}^{\infty} \|g_m^*\|_{\mathcal{H}_m}^2$$

# (Generalized) Restricted Eigenvalue Condition

To prove a fast convergence rate of MKL, we utilize the following (generalized) *Restricted Eigenvalue Condition* (Bickel et al., 2009; Koltchinskii & Yuan, 2010; Suzuki, 2011; Suzuki & Sugiyama, 2012).

#### Restricted Eigenvalue Condition

There exists a constant 0 < C such that

$$0 < C < \beta_{\sqrt{d}}(I_0).$$

$$\begin{split} \beta_b(I) := \sup \bigg\{ \beta \geq 0 \mid \beta \leq \frac{\|\sum_{m=1}^M f_m\|_{L_2(\Pi)}^2}{\sum_{m \in I} \|f_m\|_{L_2(\Pi)}^2}, \\ \forall f \text{ such that } b \sum_{m \in I} \|f_m\|_{L_2(\Pi)} \geq \sum_{m \notin I} \|f_m\|_{L_2(\Pi)} \bigg\}. \end{split}$$

 $f_m$ s are not totally correlated inside  $I_0$  and between  $I_0$  and  $I_0^c$ .



We investigate a Bayesian variant of MKL.

We show a fast learning rate of it **without** conditions on the design such as the restricted eigenvalue condition.

#### Outline

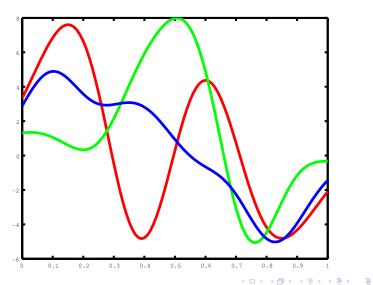
- Problem Setting
- Multiple Kernel Learning
- Gaussian Process Regression
- Bayesian MKL
- © Convergence Rate of Bayesian MKL
  - PAC-Bayesian Bound
  - Main Result
  - Applications to Some Examples

#### Our proposal = sparse aggregated estimation + Gaussian process

- Aggregated Estimator, Exponential Screening, Model Averaging (Leung & Barron, 2006; Rigollet & Tsybakov, 2011)
- Gaussian Process Regression (Rasmussen & Williams, 2006; van der Vaart & van Zanten, 2008a; van der Vaart & van Zanten, 2008b; van der Vaart & van Zanten, 2011)

# **Gaussian Process Regression**

# Gaussian Process Regression





Convergence Rate of Bayesian MKL

# Gaussian Process Regression

Gaussian process prior: a prior on a functions  $f = (f(x) : x \in \mathcal{X})$ .

$$f \sim GP$$

means that each finite subset  $(f(x_1), f(x_2), \dots, f(x_i))$   $(i = 1, 2, \dots)$ obeys a zero-mean multivariate normal distribution.

We assume that  $\sup_{x} |f(x)| < \infty$  and  $f: \Omega \to \ell_{\infty}(\mathcal{X})$  is tight and Borel measurable.

#### Kernel function:

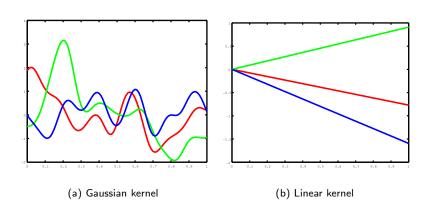
$$k(x,x') := \mathrm{E}_{f \sim GP}[f(x)f(x')].$$

#### Examples:

- Linear kernel:  $k(x, x') = x^{\top} x'$ .
- Gaussian kernel:  $k(x, x') = \exp(-\|x x'\|^2/2\sigma^2)$ .
- polynomial kernel:  $k(x, x') = (1 + x^{\top}x')^d$ .



#### Gaussian Process Prior



#### Estimation

Suppose  $\{y_i\}_{i=1}^n$  are generated from the following model:

$$y_i = f^{o}(x_i) + \xi_i,$$

where  $\xi_i$  is i.i.d. Gaussian noise  $\mathcal{N}(0, \sigma^2)$ .

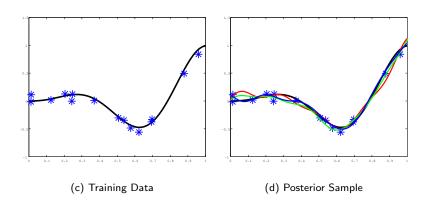
**Posterior distribution:** let  $\mathbf{f} = (f(x_1), \dots, f(x_n))$ , then

$$p(\mathbf{f}|D_n) = \frac{1}{C} \exp\left(-n \frac{\|\mathbf{f} - Y\|_n^2}{2\sigma^2}\right) \exp\left(-\frac{1}{2}\mathbf{f}^\top K^{-1}\mathbf{f}\right)$$
$$= \frac{1}{C} \exp\left(-\frac{1}{2} \|\mathbf{f} - (K + \sigma^2 I_n)^{-1} KY\|_{(K^{-1} + I_n/\sigma^2)}^2\right),$$

where  $K \in \mathbb{R}^{n \times n}$  is the Gram matrix  $(K_{i,j} = k(x_i, x_i))$ .

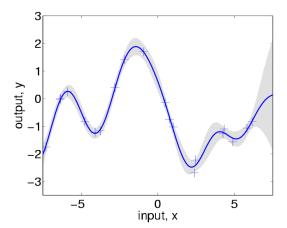
- posterior mean:  $\hat{\mathbf{f}} = (K + \sigma^2 I_n)^{-1} KY$ .
- posterior covariance:  $K K(K + \sigma^2 I_n)^{-1} K$ .

#### Gaussian Process Posterior





#### Gaussian Process Posterior 2



#### Our interest

How fast does the posterior concentrate around the true?

References

# Reproducing Kernel Hilbert Space (RKHS)

The kernel function defines Reproducing Kernel Hilbert Space (RKHS)  $\mathcal{H}$ as a completion of the linear space spanned by all functions

$$x \mapsto \sum_{i=1}^{l} \alpha_i k(x_i, x), \quad (l = 1, 2, \dots)$$

relative to the RKHS norm  $\|\cdot\|_{\mathcal{H}}$  induced by the inner product

$$\left\langle \sum_{i=1}^{I} \alpha_i k(x_i, \cdot), \sum_{j=1}^{J} \alpha'_j k(x'_j, \cdot) \right\rangle_{\mathcal{H}} = \sum_{i=1}^{I} \sum_{j=1}^{J} \alpha_i \alpha'_j k(x_i, x'_j).$$

**Reproducibility:** for  $f \in \mathcal{H}$ , the function value at x is recovered as

$$f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}}.$$

# Example: Matérn prior

**Matérn prior**: for a *smoothness* parameter  $\alpha > 0$ , we define

$$k(x, x') = \int_{\mathbb{R}^d} e^{i\lambda^\top (x - x')} \psi(\lambda) d\lambda,$$

where  $\psi:\mathbb{R}^d \to \mathbb{R}$  is the spectral density given by

$$\psi(\lambda) = \frac{1}{(1+\|\lambda\|^2)^{\alpha+d/2}}.$$

- The support is included in a Hölder space  $C^{\alpha'}[0,1]^d$  for any  $\alpha' < \alpha$ .
- The RKHS  $\mathcal{H}$  is included in a Sobolev space  $W^{\alpha+d/2}[0,1]^d$  with the regularity  $\alpha+d/2$ .

For infinite dimensional RKHS  $\mathcal{H}$ , the support of the prior is typically much larger than  $\mathcal{H}$ .



# Convergence rate of posterior: Matérn prior

Let  $\hat{f}$  be the posterior mean.

#### Theorem (van der Vaart and van Zanten (2011))

Let  $f^* \in C^{\beta}[0,1]^d \cap W^{\beta}[0,1]^d$  for  $\beta > 0$ , then for Matérn prior with parameter  $\alpha$ , we have

$$E[\|\hat{f} - f^*\|_n^2] \le O\left(n^{-\frac{\alpha \wedge \beta}{\alpha + d/2}}\right).$$

- The optimal rate is  $O\left(n^{-\frac{\beta}{\beta+d/2}}\right)$ .
- The optimal rate is achieved only when  $\alpha = \beta$ .
- The rate  $n^{-\frac{\alpha \wedge \beta}{\alpha + d/2}}$  is tight.  $\rightarrow$  If  $f^* \in \mathcal{H}$   $(\beta = \frac{\alpha + d}{2})$ , then GP does not achieve the optimal rate.
- $\rightarrow$  Scale mixture is useful (van der Vaart & van Zanten, 2009).



## Summary of existing results

- GP is optimal only in quite restrictive situations ( $\alpha = \beta$ ).
  - In particular, if  $f^{\circ} \in \mathcal{H}$ , the optimal rate can not be achieved.
- The analysis was given only for restricted classes such as Sobolev and Hölder classes.

## Outline

- Problem Setting
- 2 Multiple Kernel Learning
- Gaussian Process Regression
- 4 Bayesian MKL
- 5 Convergence Rate of Bayesian MKL
  - PAC-Bayesian Bound
  - Main Result
  - Applications to Some Examples

References

- **Condition on design:** Does not require any special conditions such as restricted eigenvalue condition.
- Optimality: Adaptively achieves the optimal rate for a wide class of true functions. In particular, even if f<sup>o</sup> ∈ H, it achieves the optimal rate.
- Generality: The analysis is given for a general class of spaces utilizing the notion of interpolation spaces and the metric entropy.

We estimate  $f^{o}$  in a Bayesian manner. Let  $f = (f_1, \dots, f_M)$ . Prior of Bayesian MKL:

$$\Pi(\mathrm{d}f) = \sum_{J \subseteq \{1,\dots,M\}} \pi_J \cdot \prod_{m \in J} \int_{\lambda_m \in \mathbb{R}_+} \mathrm{GP}_m(\mathrm{d}f_m | \lambda_m) \mathcal{G}(\mathrm{d}\lambda_m) \cdot \prod_{m \notin J} \delta_0(\mathrm{d}f_m)$$

We estimate  $f^{\circ}$  in a Bayesian manner. Let  $f = (f_1, \dots, f_M)$ . Prior of Bayesian MKL:

$$\Pi(\mathrm{d}f) = \sum_{J \subseteq \{1,\dots,M\}} \pi_{J} \cdot \prod_{m \in J} \int_{\lambda_m \in \mathbb{R}_+} \mathrm{GP}_{m}(\mathrm{d}f_{m}|\lambda_{m}) \mathcal{G}(\mathrm{d}\lambda_{m}) \cdot \prod_{m \notin J} \delta_0(\mathrm{d}f_{m})$$

•  $GP_m(\cdot|\lambda_m)$  with a scale parameter  $\lambda_m$  is a scaled Gaussian process corresponding to the kernel function  $\tilde{k}_{m,\lambda_m}$  where

$$\tilde{k}_{m,\lambda_m} = \frac{k_m}{\lambda_m},$$

for some fixed kernel function  $k_m$ .

We estimate  $f^{\circ}$  in a Bayesian manner. Let  $f = (f_1, \dots, f_M)$ . Prior of Bayesian MKL:

$$\Pi(\mathrm{d}f) = \sum_{J \subseteq \{1,\dots,M\}} \pi_{J} \cdot \prod_{m \in J} \int_{\lambda_m \in \mathbb{R}_+} \mathrm{GP}_m(\mathrm{d}f_m | \lambda_m) \mathcal{G}(\mathrm{d}\lambda_m) \cdot \prod_{m \notin J} \delta_0(\mathrm{d}f_m)$$

•  $GP_m(\cdot|\lambda_m)$  with a scale parameter  $\lambda_m$  is a scaled Gaussian process corresponding to the kernel function  $\tilde{k}_{m,\lambda_m}$  where

$$\tilde{k}_{m,\lambda_m}=\frac{k_m}{\lambda_m},$$

for some fixed kernel function  $k_m$ .

•  $G(\lambda_m) = \exp(-\lambda_m)$  (Gamma distribution: conjugate prior)  $\rightarrow$  scale mixture.

We estimate  $f^{\circ}$  in a Bayesian manner. Let  $f = (f_1, \dots, f_M)$ . Prior of Bayesian MKL:

$$\Pi(\mathrm{d}f) = \sum_{J \subseteq \{1,\dots,M\}} \pi_{J} \cdot \prod_{m \in J} \int_{\lambda_m \in \mathbb{R}_+} \mathrm{GP}_m(\mathrm{d}f_m | \lambda_m) \mathcal{G}(\mathrm{d}\lambda_m) \cdot \prod_{m \notin J} \delta_0(\mathrm{d}f_m)$$

•  $GP_m(\cdot|\lambda_m)$  with a scale parameter  $\lambda_m$  is a scaled Gaussian process corresponding to the kernel function  $\tilde{k}_{m,\lambda_m}$  where

$$\tilde{k}_{m,\lambda_m} = \frac{k_m}{\lambda_m},$$

for some fixed kernel function  $k_m$ .

- $\mathcal{G}(\lambda_m) = \exp(-\lambda_m)$  (Gamma distribution: conjugate prior)  $\rightarrow$  scale mixture.
- Set all components  $f_m$  for  $m \notin J$  as 0.

We estimate  $f^{\circ}$  in a Bayesian manner. Let  $f = (f_1, \dots, f_M)$ . Prior of Bayesian MKL:

$$\Pi(\mathrm{d}f) = \sum_{J \subseteq \{1,\dots,M\}} \pi_J \cdot \prod_{m \in J} \int_{\lambda_m \in \mathbb{R}_+} \mathrm{GP}_m(\mathrm{d}f_m | \lambda_m) \mathcal{G}(\mathrm{d}\lambda_m) \cdot \prod_{m \notin J} \delta_0(\mathrm{d}f_m)$$

•  $GP_m(\cdot|\lambda_m)$  with a scale parameter  $\lambda_m$  is a scaled Gaussian process corresponding to the kernel function  $\tilde{k}_{m,\lambda_m}$  where

$$\tilde{k}_{m,\lambda_m} = \frac{k_m}{\lambda_m},$$

for some fixed kernel function  $k_m$ .

- $\mathcal{G}(\lambda_m) = \exp(-\lambda_m)$  (Gamma distribution: conjugate prior)  $\rightarrow$  scale mixture.
- Set all components  $f_m$  for  $m \notin J$  as 0.
- Put a prior  $\pi_I$  on each sub-model J.



We estimate  $f^{o}$  in a Bayesian manner. Let  $f = (f_1, \dots, f_M)$ . Prior of Bayesian MKL:

$$\Pi(\mathrm{d}f) = \sum_{J\subseteq\{1,\ldots,M\}} \pi_J \cdot \prod_{m\in J} \int_{\lambda_m\in\mathbb{R}_+} \mathrm{GP}_m(\mathrm{d}f_m|\lambda_m) \mathcal{G}(\mathrm{d}\lambda_m) \cdot \prod_{m\notin J} \delta_0(\mathrm{d}f_m)$$

•  $\pi_I$  is given as

$$\pi_J = \frac{\zeta^{|J|}}{\sum_{j=1}^M \zeta^j} \binom{M}{|J|}^{-1},$$

with some  $\zeta \in (0,1)$ .

### The estimator

**The posterior:** For some constant  $\beta > 0$ , the posterior probability measure is given as

$$\Pi(\mathrm{d}f|D_n) := \frac{\exp\left(-\frac{\sum_{i=1}^n (y_i - \sum_{m=1}^M f_m(x_i))^2}{\beta}\right)}{\int \exp\left(-\frac{\sum_{i=1}^n (y_i - \sum_{m=1}^M \tilde{f}_m(x_i))^2}{\beta}\right) \Pi(\mathrm{d}\tilde{f})} \Pi(\mathrm{d}f),$$

for  $f = (f_1, ..., f_M)$ .

**The estimator:** The Bayesian estimator  $\hat{f}$  (Bayesian-MKL estimator) is given as the expectation of the posterior:

$$\hat{f} = \int \sum_{m=1}^{M} f_m \Pi(\mathrm{d}f|y_1,\ldots,y_n).$$

## Point

- Model averaging
- Scale mixture of Gaussian process prior

## Outline

- Problem Setting
- Multiple Kernel Learning
- Gaussian Process Regression
- Bayesian MKL
- 5 Convergence Rate of Bayesian MKL
  - PAC-Bayesian Bound
  - Main Result
  - Applications to Some Examples

# Mean Squared Error

We want to bound the mean squared error:

$$||f^{\circ} - \hat{f}||_{n}^{2} := \frac{1}{n} \sum_{i=1}^{n} (f^{\circ}(x_{i}) - \hat{f}(x_{i}))^{2},$$

where  $\hat{f}$  is the Bayesian estimator. We utilize a *PAC-Bayesian bound*.

# PAC-Bayesian Bound

Under some conditions for the noise (explained in the next slide), we have the following theorem.

#### Theorem (Dalalyan and Tsybakov (2008))

For all probability measure  $\rho$ , we have

$$\mathrm{E}_{Y_{1:n}|\mathbf{x}_{1:n}}\left[\|\hat{f}-f^{\mathrm{o}}\|_{n}^{2}\right] \leq \int \|f-f^{\mathrm{o}}\|_{n}^{2} \mathrm{d}\rho(f) + \frac{\beta \mathcal{K}(\rho,\Pi)}{n},$$

where  $\mathcal{K}(\rho, \Pi)$  is the KL-divergence between  $\rho$  and  $\Pi$ :

$$\mathcal{K}(
ho, \Pi) := \int \log \left( rac{\mathrm{d} 
ho}{\mathrm{d} \Pi} 
ight) \mathrm{d} 
ho.$$

## Noise Condition

Let

PAC-Bayesian Bound

$$m_{\xi}(z) := -\mathbb{E}[\xi_1 \mathbf{1}\{\xi_1 \leq z\}],$$

where  $\mathbf{1}\{\cdot\}$  is the indicator function. Then we impose the following assumption on  $m_{\mathcal{E}}$ .

#### Assumption

 $E[\xi_1^2] < \infty$  and the measure  $m_{\varepsilon}(z)dz$  is absolutely continuous with respect to the density function  $p_{\xi}(z)$  with a bounded Radon-Nikodym derivative, i.e., there exists a bounded function  $g_{\xi}: \mathbb{R} \to \mathbb{R}_+$  such that

$$\int_a^b m_\xi(z) dz = \int_a^b g_\xi(z) p_\xi(z) dz, \quad \forall a, b \in \mathbb{R}.$$

- The Gaussian noise  $\mathcal{N}(0,\sigma^2)$  satisfies the assumption with  $g_{\varepsilon}(z) = \sigma^2$
- ullet The uniform distribution on [-a,a] satisfies the assumption with  $g_{\varepsilon}(z) = \max(a^2 - z^2, 0)/2.$

#### We define the concentration function as

$$\phi_{f_m^*}^{(m)}(\epsilon,\lambda_m) := \underbrace{\inf_{h \in \mathcal{H}_m: \|h-f_m^*\|_n \le \epsilon} \|h\|_{\mathcal{H}_{m,\lambda_m}}^2}_{\text{bias}} - \log \mathrm{GP}_m(\{f: \|f\|_n \le \epsilon\} |\lambda_m).$$

It is known that  $\phi_{f_*}^{(m)}(\epsilon, \lambda_m) \sim -\log \mathrm{GP}_m(\{f: \|f_m^* - f\|_n \leq \epsilon\} | \lambda_m)$  (van der Vaart & van Zanten, 2011; van der Vaart & van Zanten, 2008b).

## General Result

Let 
$$I_0 := \{ m \mid f_m^* \neq 0 \}$$
,  $\check{I}_0 := \{ m \in I_0 \mid f_m^* \notin \mathcal{H}_m \}$ , and  $\kappa := \zeta(1 - \zeta)$ .

#### Theorem (Convergence rate of Bayesian-MKL)

The convergence rate of Bayesian-MKL is bounded as

$$\begin{split} \mathrm{E}_{Y_{1:n}|\mathbf{x}_{1:n}} \left[ \|\hat{f} - f^{\mathrm{o}}\|_{n}^{2} \right] &\leq 2\|f^{\mathrm{o}} - f^{*}\|_{n}^{2} \\ &+ C_{1} \inf_{\epsilon_{m},\lambda_{m}>0} \left\{ \sum_{m \in I_{0}} \left( \epsilon_{m}^{2} + \frac{1}{n} \phi_{f_{m}^{*}}^{(m)}(\epsilon_{m},\lambda_{m}) + \frac{\lambda_{m}}{n} - \frac{\log(\lambda_{m})}{n} \right) \right. \\ &+ \sum_{m,m' \in \tilde{I}_{0}:} \epsilon_{m} \epsilon_{m'} + \frac{|I_{0}|}{n} \log\left(\frac{Me}{\kappa |I_{0}|}\right) \right\}. \end{split}$$

# Interpretation of the theorem

Let  $\hat{\epsilon}_m^2 = \inf_{\epsilon_m, \lambda_m > 0} \left( \epsilon_m^2 + \frac{1}{n} \phi_{f_m^*}^{(m)}(\epsilon_m, \lambda_m) + \frac{\lambda_m}{n} - \frac{\log(\lambda_m)}{n} \right)$  and suppose  $f^\circ = f^*$ . Typically  $\hat{\epsilon}_m^2$  achieves the optimal learning rate for the *single kernel* learning.

• (Correctly specified) If  $f_m^* \in \mathcal{H}_m$  for all m, then we have

$$\mathrm{E}_{\mathsf{Y}_{1:n}|\mathsf{X}_{1:n}}\left[\|\hat{f}-f^{\mathrm{o}}\|_{n}^{2}\right]=O\left[\sum_{m\in I_{0}}\hat{\epsilon}_{m}^{2}+\frac{|I_{0}|}{n}\log\left(\frac{Me}{\kappa|I_{0}|}\right)\right].$$

Optimal learning rate for MKL.

Note that we imposed no condition on the design such as restricted eigenvalue condition.

• (Misspecified) If  $f_m^* \notin \mathcal{H}_m$  for all  $m \in I_0$ , then we have

$$\mathrm{E}_{Y_{1:n}|\mathbf{x}_{1:n}}\left[\|\hat{f}-f^{\mathrm{o}}\|_{n}^{2}\right] = O\left[\left(\sum_{m\in I_{0}}\hat{\epsilon}_{m}\right)^{2} + \frac{|I_{0}|}{n}\log\left(\frac{Me}{\kappa|I_{0}|}\right)\right].$$



## Outline of the Proof

Fix  $\epsilon_m, \lambda_m > 0$  arbitrary. Next we define a "representer" element  $\tilde{h}_m \in \mathcal{H}_m$  that is close to  $f_m^*$ . If  $f_m^* \in \mathcal{H}_m$ , then set  $\tilde{h}_m = f_m^*$ . Otherwise, we take  $h_m \in \mathcal{H}_{m,\lambda_m}$  such that  $\|\tilde{h}_m\|_{\mathcal{H}_m,\lambda_m}^2 \leq 2\inf_{h\in\mathcal{H}_m:\|h-f_m^*\|_h\leq\epsilon_m}\|h\|_{\mathcal{H}_m,\lambda_m}^2$ . We substitute the following

"dummy" posterior into  $\rho$ :  $\rho(\mathrm{d}f) = \prod_{m \in \mathbb{A}} \frac{\int_{\frac{\lambda_m}{2} \leq \tilde{\lambda}_m \leq \lambda_m} \frac{\mathrm{GP}_m(\mathrm{d}f_m - \tilde{h}_m | \tilde{\lambda}_m) \mathbf{1}\{\|f_m - \tilde{h}_m\|_n \leq \epsilon_m\}}{\mathrm{GP}_m(\{\Delta f_m : \|\Delta f_m\|_n \leq \epsilon_m\} | \tilde{\lambda}_m)} \mathcal{G}(\mathrm{d}\tilde{\lambda}_m)}{\mathcal{G}(\{\tilde{\lambda}_m : \frac{\lambda_m}{2} \leq \tilde{\lambda}_m \leq \lambda_m\})} \cdot \prod_{m \in \mathbb{A}} \delta_0(\mathrm{d}f_m).$ 

$$\rho(\mathrm{d}f) = \prod_{m \in I_0} \frac{\int \frac{\Delta_m}{2} \leq \lambda_m \leq \lambda_m}{\mathcal{G}(\{\tilde{\lambda}_m : \frac{\lambda_m}{2} \leq \tilde{\lambda}_m \leq \lambda_m\})} \cdot \prod_{m \notin I_0} \delta_0(\mathrm{d}f_m)$$

One can show that the KL-divergence between  $\rho$  and the prior  $\Pi$  is bounded as

$$\frac{1}{n}\mathcal{K}(\rho,\Pi) \leq C_1' \sum_{m \in I_0} \left( \frac{1}{n} \phi_{f_m^*}^{(m)}(\epsilon_m, \lambda_m) + \frac{1}{n} \lambda_m - \frac{1}{n} \log\left(\lambda_m\right) \right) + \frac{|I_0|}{n} \log\left(\frac{\textit{Me}}{|I_0|\kappa}\right),$$

where  $C_1'$  is a universal constant. A key to prove this is an infinite dimensional extension of the Brascamp and Lieb inequality (Brascamp & Lieb, 1976; Hargé, 2004). Since  $\{\epsilon_m, \lambda_m\}_{m=1}^M$  are arbitrary, this gives the assertion. ←□→ ←□→ ←□→ □

# Example 1: Metric Entropy Characterization (Correctly specified)

Define the  $\epsilon$ -covering number  $N(\mathcal{B}_{\mathcal{H}_m}, \epsilon, \|\cdot\|_n)$  as the number of  $\|\cdot\|_n$ -norm balls covering the unit ball  $\mathcal{B}_{\mathcal{H}_m}$  in  $\mathcal{H}_m$ . The metric entropy is its logarithm:

$$\log N(\mathcal{B}_{\mathcal{H}_m}, \epsilon, \|\cdot\|_n).$$

# Example 1: Metric Entropy Characterization

We assume that there exits a real value  $0 < s_m < 1$  such that

$$\log N(\mathcal{B}_{\mathcal{H}_m}, \epsilon, \|\cdot\|_n) = O(\epsilon^{-2s_m}),$$

where  $\mathcal{B}_{\mathcal{H}_m}$  is the unit ball of the RKHS  $\mathcal{H}_m$ .

#### Theorem (Correctly specified)

If  $f_m^* \in \mathcal{H}_m$  for all  $m \in I_0$ , then we have

$$\mathbb{E}_{Y_{1:n}|x_{1:n}}\left[\|\hat{f} - f^{\circ}\|_{n}^{2}\right] \leq C\left\{\sum_{m \in I_{0}} n^{-\frac{1}{1+s_{m}}} + \frac{|I_{0}|}{n}\log\left(\frac{Me}{|I_{0}|\kappa}\right)\right\} + 2\|f^{\circ} - f^{*}\|_{n}^{2}$$

It is known that, if there is no scale mixture prior, the optimal rate  $n^{-\frac{1}{1+s_m}}$  can not be achieved (Castillo, 2008).

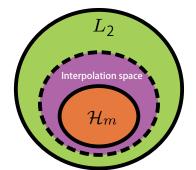
# Example 1: Metric Entropy Characterization (Misspecified)

Let  $[L_2(P_n), \mathcal{H}_m]_{\theta,\infty}$  be the interpolation space equipped with the norm,

$$||f||_{\theta,\infty}^{(m)} := \sup_{t>0} t^{-\theta} \inf_{g_m \in \mathcal{H}_m} \{||f - g_m||_n + t||g_m||_{\mathcal{H}_m}\}.$$

One has

$$\mathcal{H}_m \hookrightarrow [L_2(P_n), \mathcal{H}_m]_{\theta,\infty} \hookrightarrow L_2(P_n).$$



# Example 1: Metric Entropy Characterization (Misspecified)

Let  $[L_2(P_n), \mathcal{H}_m]_{\theta,\infty}$  be the interpolation space equipped with the norm,

$$||f||_{\theta,\infty}^{(m)} := \sup_{t>0} t^{-\theta} \inf_{g_m \in \mathcal{H}_m} \{||f - g_m||_n + t||g_m||_{\mathcal{H}_m}\}.$$

One has

$$\mathcal{H}_m \hookrightarrow [L_2(P_n), \mathcal{H}_m]_{\theta,\infty} \hookrightarrow L_2(P_n).$$

#### $\mathsf{Theorem}\;(\mathsf{Misspecified})$

If  $f_m^* \in [L_2(P_n), \mathcal{H}_m]_{\theta,\infty}$  with  $0 < \theta \le 1$ , then we have

$$\mathbb{E}_{Y_{1:n}|x_{1:n}} \left[ \|\hat{f} - f^{\circ}\|_{n}^{2} \right] \leq C \left\{ \left( \sum_{m \in I_{0}} n^{-\frac{1}{2(1+s_{m}/\theta)}} \right)^{2} + \frac{|I_{0}|}{n} \log \left( \frac{Me}{|I_{0}|\kappa} \right) \right\} + 2\|f^{\circ} - f^{*}\|_{n}^{2}$$

Thanks to the scale mixture prior, the estimator adaptively achieves the optimal rate for  $\theta \in (s_m, 1]$ .

Suppose that  $\mathcal{X}_m = [0,1]^{d_m}$ . The Matérn priors on  $\mathcal{X}_m$  correspond to the kernel function defined as

$$k_m(z,z') = \int_{\mathbb{R}^{d_m}} \mathrm{e}^{\mathrm{i} s^\top (z-z')} \psi_m(s) \mathrm{d} s,$$

where  $\psi_m(s)$  is the spectral density given by  $\psi_m(s) = (1 + \|s\|^2)^{-(\alpha_m + d_m/2)}$ , for a smoothness parameter  $\alpha_m > 0$ .

#### Theorem (Matérn prior, correctly specified)

If  $f_m^* \in \mathcal{H}_m$ , then we have that

$$\mathbb{E}_{Y_{1:n}|x_{1:n}} \left[ \|\hat{f} - f^{\circ}\|_{n}^{2} \right] \leq C \left\{ \sum_{m \in I_{0}} n^{-\frac{1}{1 + \frac{d_{m}}{2\alpha_{m} + d_{m}}}} + \frac{|I_{0}|}{n} \log \left( \frac{Me}{|I_{0}|\kappa} \right) \right\} + 2 \|f^{\circ} - f^{*}\|_{n}^{2}$$

# Example 2: Matérn prior

#### Theorem (Matérn prior, Misspecified)

If  $f_m^* \in C^{\beta_m}[0,1]^{d_m} \cap W^{\beta_m}[0,1]^{d_m}$  and  $\beta_m < \alpha_m + d_m/2$ , then we have that

$$\mathbb{E}_{\mathsf{Y}_{1:n}|\mathsf{x}_{1:n}} \Big[ \|\hat{f} - f^{\circ}\|_{n}^{2} \Big] \leq C \left\{ \left( \sum_{m \in I_{0}} n^{-\frac{\beta_{m}}{2\beta_{m} + d_{m}}} \right)^{2} + \frac{|I_{0}|}{n} \log \left( \frac{Me}{|I_{0}|\kappa} \right) \right\} + 2 \|f^{\circ} - f^{*}\|_{n}^{2}$$

Although  $f_m^* \notin \mathcal{H}_m$ , the convergence rate achieves the optimal rate adaptively.

## Example 3: Group Lasso

 $\mathcal{X}_m$  is a finite dimensional Euclidean space:  $\mathcal{X}_m = \mathbb{R}^{d_m}$ . The kernel function corresponding to the Gaussian process prior is  $k_m(x, x') = x^\top x'$ :

$$f_m(x) = \mu^\top x, \ \mu \sim \mathcal{N}(0, I_{d_m}).$$

#### Theorem (Group Lasso)

If  $f_m^* = \mu_m^\top x$ , then we have that

$$\operatorname{E}_{Y_{1:n}|X_{1:n}} \left[ \|\hat{f} - f^{\circ}\|_{n}^{2} \right] = C \left\{ \frac{\sum_{m \in I_{0}} d_{m} \log(n)}{n} + \frac{|I_{0}|}{n} \log\left(\frac{Me}{|I_{0}|\kappa}\right) \right\}$$

$$+ 2\|f^{\circ} - f^{*}\|_{n}^{2}$$

This is rate optimal up to log(n)-order.

# Gaussian correlation conjecture

We use an infinite dimensional version of the following inequality (Brascamp-Lieb inequality (Brascamp & Lieb, 1976; Hargé, 2004)):

$$E[\langle X, \phi \rangle^2 | X \in A] \le E[\langle X, \phi \rangle^2],$$

where  $X \sim \mathcal{N}(0, \Sigma)$  and A is a symmetric convex set centered on the origin.

#### Gaussian correlation conjecture:

$$\mu(A \cap B) \ge \mu(A)\mu(B)$$
,

where  $\mu$  is any centered Gaussian measure and A and B are any two symmetric convex sets.

Brascamp-Lieb inequality can be seen as an application of a particular case of the Gaussian correlation conjecture. See the survey by Li and Shao (2001) for more details.

- We developed a PAC-Bayesian bound for Gaussian process model and generalized it to sparse additive model.
- The optimal rate is achieved without any conditions on the design.
- We have observed that Gaussian processes with scale mixture adaptively achieve the minimax optimal rate on both correctly-specified and misspecified situations.

- Bach, F., Lanckriet, G., & Jordan, M. (2004). Multiple kernel learning, conic duality, and the SMO algorithm. *the 21st International Conference on Machine Learning* (pp. 41–48).
- Bickel, P. J., Ritov, Y., & Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig selector. *The Annals of Statistics*, *37*, 1705–1732.
- Brascamp, H. J., & Lieb, E. H. (1976). On extensions of the brunn-minkowski and prékopa-leindler theorem, including inequalities for log concave functions, and with an application to the diffusion equation. *Journal of Functional Analysis*, *22*, 366–389.
- Castillo, I. (2008). Lower bounds for posterior rates with Gaussian process priors. *Electronic Journal of Statistics*, *2*, 1281–1299.
- Cortes, C., Mohri, M., & Rostamizadeh, A. (2009).  $L_2$  regularization for learning kernels. the 25th Conference on Uncertainty in Artificial Intelligence (UAI 2009). Montréal, Canada.
- Dalalyan, A., & Tsybakov, A. B. (2008). Aggregation by exponential weighting sharp PAC-Bayesian bounds and sparsity. *Machine Learning*, 72, 39–61.
- Hargé, G. (2004). A convex/log-concave correlation inequality for gaussian measure and an application to abstract wiener spaces.

  Probability Theory and Related Fields, 130, 415-440.

References

- Kloft, M., Brefeld, U., Sonnenburg, S., Laskov, P., Müller, K.-R., & Zien, A. (2009). Efficient and accurate  $\ell_p$ -norm multiple kernel learning. Advances in Neural Information Processing Systems 22 (pp. 997–1005). Cambridge, MA: MIT Press.
- Koltchinskii, V., & Yuan, M. (2010). Sparsity in multiple kernel learning. *The Annals of Statistics*, *38*, 3660–3695.
- Lanckriet, G., Cristianini, N., Ghaoui, L. E., Bartlett, P., & Jordan, M. (2004). Learning the kernel matrix with semi-definite programming. *Journal of Machine Learning Research*, *5*, 27–72.
- Leung, G., & Barron, A. R. (2006). Information theory and mixing least-squares regressions. *IEEE Transactions on Information Theory*, 52, 3396–3410.
- Li, W. V., & Shao, Q.-M. (2001). Gaussian processes: inequalities, small ball probabilities and applications. *Stochastic Processes: Theory and Methods*, *19*, 533–597.
- Rakotomamonjy, A., Bach, F., Canu, S., & Y., G. (2008). SimpleMKL. Journal of Machine Learning Research, 9, 2491–2521.
- Rasmussen, C. E., & Williams, C. (2006). *Gaussian processes for machine learning*. MIT Press.

- Rigollet, P., & Tsybakov, A. (2011). Exponential screening and optimal rates of sparse estimation. *The Annals of Statistics*, *39*, 731–771.
- Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf, B. (2006). Large scale multiple kernel learning. *Journal of Machine Learning Research*, 7, 1531–1565.
- Suzuki, T. (2011). Unifying framework for fast learning rate of non-sparse multiple kernel learning. *Advances in Neural Information Processing Systems* 24 (pp. 1575–1583). NIPS2011.
- Suzuki, T., & Sugiyama, M. (2012). Fast learning rate of multiple kernel learning: Trade-off between sparsity and smoothness. *JMLR Workshop* and Conference Proceedings 22 (pp. 1152–1183). Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS2012).
- Suzuki, T., & Sugiyama, M. (2013). Fast learning rate of multiple kernel learning: Trade-off between sparsity and smoothness. *The Annals of Statistics*, *41*, 1381–1405.
- Suzuki, T., & Tomioka, R. (2009). SpicyMKL. arXiv:0909.5026.
- Tomioka, R., & Suzuki, T. (2009). Sparsity-accuracy trade-off in MKL. NIPS 2009 Workshop:: Understanding Multiple Kernel Learning Methods. Whistler. arXiv:1001.2615.

- van der Vaart, A. W., & van Zanten, J. H. (2008a). Rates of contraction of posterior distributions based on Gaussian process priors. The Annals of Statistics, 36, 1435-1463.
- van der Vaart, A. W., & van Zanten, J. H. (2008b). Reproducing kernel Hilbert spaces of Gaussian priors. Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, 3, 200–222. IMS Collections.
- van der Vaart, A. W., & van Zanten, J. H. (2009). Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth. The Annals of Statistics. 37, 2655–2675.
- van der Vaart, A. W., & van Zanten, J. H. (2011). Information rates of nonparametric gaussian process methods. Journal of Machine Learning Research, 12, 2095–2119.
- Zhang, T. (2009). Some sharp performance bounds for least squares regression with  $l_1$  regularization. The Annals of Statistics, 37, 2109-2144