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1. A lot of friends or a few 
friends?



A lot of friends or a few friends ?

A B

Question:  For      , which is more important ( A or B ) ?

B > A : B is more important than A.
A > B : A is more important than B.

Cosine similarity
Laplacian based kernels

If the edge weights are given by   



Small Example : Cosine similarity Prefers 
Common Terms

Term A B C

metric 1 0 0

learn 1 0 0

important 1 0 0

problem 1 1 0

data 1 1 0

mining 1 1 0

common 0 1 0

high 0 1 1

dimension 0 1 1

optimize 0 0 1

distance 0 0 1

challenge 0 0 1

A) Metric learning is an important problem in data mining.
B) High dimensional analysis is common in data mining.
C) Distance Optimization in high dimensions is a challenging.

[Davis et al., 2009]

Because common terms appear in various contexts, their feature vectors 
become rich. Hence common terms have many chance to share features with 
other terms. 
On the other hand, specific terms appear limited contexts, their feature 
vectors become sparse. Hence terms rarely share features with other terms.

A B C

A 1 0.08 0

B 0.08 1 0.08

C 0 0.08 1

Cosine similarity



Common Terms or Specific Terms?

Thiazide : A class of diuretics, Antihypertensive drug
• [Specific Knowledge] If I were a hypertensive patient, I know 

this is an antihypertensive drug and look for other drugs for my 
treatment

• [General Knowledge] If I were not a hypertensive patient, I just 
need to know Thiazide is an antihypertensive drug 

• Do Laplacian based Kernels prefer specific terms?

→ Cosine Similarity

→ Laplacian based Kernels ?



Experiment: Biomedical term synonym acquisition

Term A B C

treatment 1 0 0

usually 1 0 0

: : : :

type 1 1 1

ACE 0 1 0

calcium 0 1 1

channel 0 1 1

blocker 0 1 1

: : : :

muscle 0 0 1

cell 0 0 1

artery 0 0 1

wall 0 0 1

A) Treatment is usually initiated with a thiazide type diuretic.
B) The most important types of antihypertensives include the 

ACE inhibitors, the calcium channel blockers.
C) Norvasc is a long-acting dihydropyridine type calcium 

channel blocker, which blocks the entry of calcium into 
muscle cells in artery walls.

[Task Objective]  To acquire similar terms
Construct feature vectors for each term 
Measure similarity between terms by

≫ Cosine similarity
≫ Laplacian based Kernels

[what to know] Do Laplacian based Kernels prefer 
specific terms?



Laplacian-based kernel depreciate common terms

Laplacian based kernel 

C
o
si

n
e

• For 2700 biomedical terms, features are constructed by contextual words in 
GENIA corpus

• Construct a graph in which a node represents a term and an edge weight is 
given by cosine similarity between terms.

• Compare the number of edges of the 1st ranked 
term for cosine and Laplacian based kernel 

• Laplacian based kernels depreciate pivotal 
nodes (common terms). Why?

[Suzuki et al. DTMBIO 2009]

COS Laplacian-based Kernels

1st Cells Human T-lymphotropic virus 1

2nd Genes Leukemia, t-cell

3rd T-lymphocytes Viruses

Query term: 
Human



2. Hubness



Hubness Phenomena in High Dimensional Data

• Hubness
• When a sample is represented in a high dimensional feature 

space, hubness phenomena occurs.

• A hub is a sample which is similar to many other samples in a 
dataset.

• Hub samples can affect k-nearest neighbor (kNN)

[Radovanović et al. JMRL 2010]



test

Classification based on kNN

• A label of a test sample is predicted by labels of k training 
samples which are most similar to the test sample.

k-nearest neighbor（k=5）



Hub Samples in kNN

• When hubs emerge in a dataset, kNN classification can be 
affected
• A hub is a sample which appears in many other samples’ kNN

• When the data dimension is high (even tens of 
dimensions), hubs emerge in a dataset
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A Characteristics of Hub Samples

• Samples which is most similar to the data centroid 
become hubs

• Hubs emerges in many other samples’ kNN not because 
of label (classes) but because hubs are similar to the data 
centroid. Hubs can incur kNN based classification or 
information retrieval tasks. 
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[Radovanović et al. JMLR 2010]



Emergence of Hubs in Synthetic Data

• Hub is a sample which is included in many other samples’ 
kNN

[Characteristics of Hub samples]

• Hub emerges when the data dimension is high

• A sample which is similar to the data centroid tends to 
become hubs



Emergence of Hubs in Synthetic Data

• Synthetic dataset 
• 500 samples with 10 and 50 dimensions
• Cosine similarity is used to measure similarity between samples 

• Evaluate N10 value for each sample in a dataset
• Nk is the number of times a sample appears in other samples’ kNN

• Nk Value is large for hub samples

Histogram of N10 values for 500 samples

Many samples show small N10 value
A few sample(Hubs)  shows large N10 value 

10 dimensions 50 dimensions



Hubs and the Data Centroid

• A sample which is similar to the data centroid tends to 
become a hub

N10: Number of times a sample 
appears in other samples’ 10NN

Samples with large N10 value (hubs) 
show more similar to the data centroid

[Radovanović et al. JMLR  2010]



3.How to Solve the 
Hubness Problem?
Laplacian-based kernels    [Suzuki et al. AAAI 2012]



How to tackle with hub samples?

• Any idea to reduce hubs?

• [Fact] 
Samples which is similar to the data centroid become 
hubs

• [Hypothesis] 
Can we reduce hubs if all samples have the same 
similarity to the data centroid ? 
• Laplacian based Kernels 

[Suzuki et al. AAAI 2012]

[Radovanović et al.  JMLR 2010]



• Suppose we have N samples with M dimensional feature vectors 
(vector length is normalized to 1)

• is the inner product between xi and xj (cosine similarity)          
• The ij-th element of an adjacency matrix A is

• A is a cosine similarity matrix

• (Un-Normalized) Laplacian L
• Off-diagonal elements are same for A and -L

• Laplacian based kernels KLap

• Regularized Laplacian LRL
• Commute Time Kernel  LCT
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Laplacian based kernels Make All Samples 
Equally Similar to the Data Centroid

• A characteristics of hub samples
• Samples which show more similar to the data centroid become 

hubs

• Why Laplacian based kernels can reduce hubs?

• Regularized Laplacian LRL

makes all samples equally similar (1) to the data centroid

• Commute-time Kernel LCT

makes all samples equally similar (0) to the data centroid



Similarity to the Data Centroid

• Dataset D contains N samples which are represented M dimensional 
feature vectors

• The centroid vector

• Similarity of i-th sample to the data centroid

• The similarity of i-th sample and the data centroid is obtained by 
summing up the all elements of the similarity matrix K of i-th row
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Laplacian based kernels and the similarity to 
the data centroid

• Use smallest eigenvalue and its eigenvector
• The Laplacian matrix L has all-ones vector                  

as its eigenvector for the smallest eigenvalue (        ).

• Laplacian based kernels also have all-ones vector                 
as their eigenvectors. The corresponding eigenvalues are 
• Regularized Laplacian     

• Commute-time kernel      

• Similarity to the data centroid
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3.How to Solve the 
Hubness Problem?
Data Centering   [Suzuki et al. EMNLP 2013]



Centering Similarity Measures

• Laplacian based kernels make all samples in a dataset 
equally similar to the data centroid

• Is there another way to make all samples equally similar 
to the data centroid?

• Data centering
• Shift the origin to the data centroid



Data Centering

• Dataset D contains N samples 
with M dimensional feature vectors

• The centroid vector

• Centering each feature vector
• :  Shift the origin to the data centroid

• Centered Similarity between i-j th sample is given by the 
inner product between centered i and j-th samples
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Centering Similarity Matrix

• When n x n similarity matrix K is given, the centered 
similarity matrix Kcent is
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Why Centered Similarity Matrix Reduce Hubs? 

• Centered similarity matrix Kcent has the eigenvector 1= 
[1,…,1]T and the corresponding eigenvalue is 0. 
Therefore, similarity to the data centroid becomes equally 
0 for all samples by centering.

=







cent

1

cent

cent

1

cent

cent

1

cent

1

,

     

,

     

,

xx

xx

xx

N

i











centcent

centcent

centcent

1

,

     

,

     

,

NN

Ni

N

xx

xx

xx







 N

Kcent

=

  

   



1

1

1

0







1

1

1





0

0

0





=



• Let Φi be the i-th feature vector 
in the kernel space. The sample-feature 
matrix X is

• The Laplacian based Kernel KLap is 

Laplacian based Kernels is Centered

• Laplacian based kernels can be considered as centered in the 
kernel space • Let eigenvalues and eigenvectors of 

Laplacian L denoted as

• Φi is the collection of the i-th
element of each eigenvector

• Sum of the all elements in each 
eigenvector ui is 0

• Φi is centered feature vector
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Laplacian based Kernels

• Eigenvalues and eigenvectors of Laplacian L

• Laplacian based kernels KLap have the same eigenvectors

but the eigenvalues are regulated. Let r(λi) be the 
eigenvalue function then, 
• Regularized Laplacian LRL

• Commute-Time Kernel LCT

• KLap can be expressed by eigenvalues and eigenvectors
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Summary

• [Background] Samples which are similar to the data 
centroid tend to become hubs.

• [What I showed] 
• Laplacian based kernels

• Centering similarity measures

make all samples equally similar to the data centroid.
Therefore, they are expected to reduce hubs.



4.Experiments
Can hubs be reduced by making all samples equally similar to the 
data centroid?



Experiment

• [Purpose]
• Do Laplacian based kernels and centering similarity measures 

reduce hubs in real dataset and improve kNN-based classification 
performances?

• [Task]
• Multiclass document classification
• For each document, a feature vector is constructed by using word 

frequency occurred in the document. The vector length is 
normalized to 1 after tf-idf weighting.

• The class of a test sample is predicted by the majority vote from 
k=10 most similar samples to the test sample.

• To measure similarity between samples, I set several options;



Experiment –Similarity Measures-

• [Purpose]
• Do Laplacian based kernels and centering similarity measures 

reduce hubs in real dataset and improve performances?

• [Similarity Measures to Compare]
• Cosine similarity is a baseline similarity measure and given as 

the elements of adjacency matrix A. 
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Experiment  -Evaluation Value for Hubness-

• [Purpose]
• Do Laplacian based kernels and centering similarity measures 

reduce hubs in real dataset and improve performances?

• [Evaluation Value for Hubness]
• To evaluate how much hubs appears in a dataset, the 

emergence of hubs can be quantified by the skewness of the 
distribution of the N10 (the number of times a sample appears in 
the kNN of other samples). 
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A : cosine
Acent : centered cosine
LRL : Regularized Laplacian
LCT : Commute-Time Kernel
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A : cosine
Acent : centered cosine
LRL : Regularized Laplacian
LCT : Commute-Time Kernel
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Summary from Experiments

• [What I did] To examine if Laplacian based kernels and 
centering similarity measure reduce hubs in real datasets.

• [What I found]
• Centering similarity measure tend to work well to reduce hubs.

But when the feature is sparse, it does not make much change 
from non-centered similarity measures.

• For Laplacian-based kernels, the reduction of hubs depends on 
the parameter (Regularized Laplacian).



5.Theoretical Analysis Why 
Centering Reduce Hubs

[Suzuki et al. EMNLP 2013]



Theoretical Analysis Why Centering 
Reduce Hubs

• Dataset {x1,…,xN}∈ℝM are generated from a distribution 

P(x) with mean μ

• Choose two samples h and ℓ
h is more similar to the mean μ than ℓ

• Examine how the similarity distribution 
of h and ℓ with other samples(x) changes 
by centering

x1

x2

ℓ

h

μ



Overview

• Compare the similarity distribution of h and ℓ before and 
after centering

Similarity (Low ↔ High)

Before Centering：A sample which is more similar to the data centroid (h) is more similar 
with other samples (x) in a dataset than the one less similar to the data centroid (ℓ)
After Centering： There is no difference in similarity distribution between h and ℓ 

Before Centering After Centering
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Summary: Hubs are Reduced by Centering

• Before centering, the sample(h) which is more similar to 
the mean(μ) is more similar with other samples. The 
sample h was a hub sample.

• After centering, the sample h is not more similar with 
other samples, so that the sample h is no longer a hub 
sample.
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Overall Summary

• Hub is a sample which appear many other samples’ kNN.

• To reduce hubs, 
• Laplacian based kernels
• centered similarity measures

have nice properties to reduce hubs, i.e. make all samples 
equally similar to the data centroid.

• In experiment, Laplacian based kernels and centering 
similarity measures are effective to reduce hubs and improve 
kNN based classification. 

• In theoretical analysis, centering similarity measures have 
effect to reduce hubs.


