
Gaussian approximations and multiplier bootstrap for
maxima of sums of high-dimensional random vectors

Victor Chernozhukov (MIT), Denis Chetverikov (UCLA), and
Kengo Kato (U. of Tokyo)

March 14, 2014

Chernozhukov Chetverikov K. (MIT, UCLA, UT)GAR and MB for Maxima of Sums of High-Dimensional VectorsMarch 14, 2014 1 / 27



This talk is based upon the paper:
Chernozhukov, V., Chetverikov, D. and K. (2013). Gaussian
approximations and multiplier bootstrap for maxima of sums of
high-dimensional random vectors. Ann. Statist. 41 2786-2819

Applications to moment inequality models are based on an ongoing
paper.
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Introduction

Let x1, . . . , xn be independent random vectors in Rp, p ≥ 2.

E[xi] = 0 and E[xix
′
i] exists. E[xix

′
i] may be degenerate.

(Important!) Possibly p� n. Keep in mind p = pn.

This paper is about approximating the distribution of

T0 = max
1≤j≤p

1
√
n

n∑
i=1

xij.

By making
xi,p+1 = −xi1, . . . , xi,2p = −xip,

we have

max
1≤j≤p

∣∣∣∣∣ 1
√
n

n∑
i=1

xij

∣∣∣∣∣ = max
1≤j≤2p

1
√
n

n∑
i=1

xij.
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Introduction

Let y1, . . . , yn be independent normal random vectors with

yi ∼ N(0,E[xix
′
i]).

Define

Z0 = max
1≤j≤p

1
√
n

n∑
i=1

yij.

When p is fixed, (subject to the Lindeberg condition) the central limit
theorem guarantees that

sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)| → 0.
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Introduction

Basic question: How large p = pn can be while having

sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)| → 0?

Related to multivariate CLT with growing dimension (Portnoy, 1986,
PTRF; Götze, 1991, AoP; Bentkus, 2003, JSPI, etc.).

Write

X =
1
√
n

n∑
i=1

xi, Y =
1
√
n

n∑
i=1

yi.

They are concerned with conditions under which

sup
A∈A
|P(X ∈ A)− P(Y ∈ A)| → 0,

while allowing for p = pn →∞.
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Introduction

Bentkus (2003) proved that (in case of i.i.d. and E[xix
′
i] = I),

sup
A:convex

|P(X ∈ A)− P(Y ∈ A)| = O(p1/4E[|x1|3]n−1/2).

Typically E[|x1|3] = O(p3/2), so that the RHS=o(1) provided that

p = o(n2/7).

The main message of the paper: to make

sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)| → 0,

p can be much larger. Subject to some conditions,

log p = o(n1/7)

will suffice.
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Figure : P-P plots comparing distributions of T0 and Z0 in the example motivated by
the problem of selecting the penalty level of the Dantzig selector. Here xij are
generated as xij = zijεi with εi ∼ t(4), (a t-distribution with four degrees of
freedom), and zij are non-stochastic (simulated once using U [0, 1] distribution
independently across i and j). The dashed line is 45◦. The distributions of T0 and Z0

are close, as (qualitatively) predicted by the GAR derived in the paper. The quality of
the Gaussian approximation is particularly good for the tail probabilities, which is most
relevant for practical applications.

Chernozhukov Chetverikov K. (MIT, UCLA, UT)GAR and MB for Maxima of Sums of High-Dimensional VectorsMarch 14, 2014 7 / 27



Introduction

Still the above approximation results are not directly usable unless the
cov. structure between the coordinates in X is unknown.

In some cases, we know the cov. structure. e.g. think of xi = εizi
where εi is a scalar (error) r.v. with mean zero and common variance,
and zi is the vector of non-stochastic covariates. Then T0 is the
maximum of t-statistics.

But usually not. In such cases the dist. of Z0. is unknown.

⇒ We propose a Gaussian multiplier bootstrap for approximating the
dist. of T0 when the cov. structure between the coordinates of X is
unknown. Its validity is established through the Gaussian
approximation results. Still p can be much larger than n.

Chernozhukov Chetverikov K. (MIT, UCLA, UT)GAR and MB for Maxima of Sums of High-Dimensional VectorsMarch 14, 2014 8 / 27



Applications

Selecting design-adaptive tuning parameters for Lasso (Tibshirani,
1996, JRSSB) and Dantzig selector (Candès and Tao, 2007, AoS).

Multiple hypotheses testing (too many references).

Adaptive specification testing. These three applications are examined
in the arXiv paper.

Testing many moment inequalities. Will be treated if time allowed.
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Literature

Classical CLTs with p = pn →∞: Portnoy (1986, PTRF), Götze
(1991, AoP), Bentkus (2003, JSPI), among many others.

Modern approaches on multivariate CLTs: Chatterjee (2005,
arXiv),Chatterjee and Meckes (2008, ALEA), Reinert and Röllin
(2009, AoP), Röllin (2011,AIHP). Developing Stein’s methods for
normal approximation. Harsha, Klivans, and Meka (2012, J.ACM).

Bootstrap in high dim.: Mammen (1993, AoS), Arlot, Blanchard, and
Roquain (2010a,b, AoS).
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Main Thm.

Theorem

Suppose that there exists const. 0 < c1 < C1 s.t.
c1 ≤ n−1

∑n
i=1 E[x2

ij] ≤ C1, 1 ≤ ∀j ≤ p. Then

sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)|

≤ C inf
γ∈(0,1)

[
n−1/8(M

3/4
3 ∨M1/2

4 ) log7/8(pn/γ)

+ n−1/2Q(1− γ) log3/2(pn/γ) + γ
]
,

where C = C(c1, C1) > 0. Here

Q(1−γ) = (1− γ)-quantile of max
i,j
|xij|∨(1− γ)-quantile of max

i,j
|yij|,

and Mk = max1≤j≤p(n
−1
∑n
i=1 E[|xij|k])1/k.
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Comments

No restriction on correlation structure.

The extra parameter γ appears essentially to avoid the appearance of
the term of the form

E[ max
1≤j≤p

|xij|k]

in the bound. Notice the difference from Mk.

To avoid this, we use a suitable truncation, and γ controls the level of
truncation.
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Techniques

There are a lot of techniques used to prove the main thm.

Directly bounding the probability difference
(P(T0 ≤ t)− P(Z0 ≤ t)) is difficult. Transform the problem into
bounding

E[g(X)− g(Y )], g: smooth,

where X = n−1/2
∑n
i=1 xi, Y = n−1/2

∑n
i=1 yi.

How? Approximate z = (z1, . . . , zp)
′ 7→ max1≤j≤p zj by

Fβ(z) = β−1 log(
∑p
j=1e

βzj).

Then 0 ≤ Fβ(z)−max1≤j≤p zj ≤ β−1 log p.

Chernozhukov Chetverikov K. (MIT, UCLA, UT)GAR and MB for Maxima of Sums of High-Dimensional VectorsMarch 14, 2014 13 / 27



Techniques

Approximate the indicator function 1(· ≤ t) by a smooth function h
(standard). Then take g = h ◦ Fβ.

Use a variant of Stein’s method to bound

E[g(X)− g(Y )]. (*)

Truncation + some fine properties of Fβ are used here.

To obtain a bound on the probability difference from (*), we need an
anti-concentration ineq. for maxima of normal random vectors.

Intuition: from (*), we will have a bound on

P(T0 ≤ t)− P(Z0 ≤ t+ error).

Want to replace P(Z0 ≤ t+ error) by P(Z0 ≤ t).
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Simplified anti-concentration ineq.

Lemma (Simplified form)

Let (Y1, . . . , Yp)
′ be a normal random vector with E[Yj] = 0 and

E[Y 2
j ] = 1 for all 1 ≤ j ≤ p. Then ∀ε > 0,

sup
t∈R

P(| max
1≤j≤p

Yj − t| ≤ ε) ≤ 4ε(E[ max
1≤j≤p

Yj] + 1).

This bound is universally tight (up to constant).

Note 1: E[max1≤j≤p Yj] ≤
√
2 log p.

Note 2: The inequality is dimension-free: Easy to extend it to separable
Gaussian processes.
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Some consequences

Assumption: either

(E.1) E[exp(|xij|/Bn)] ≤ 2, ∀i, j; or

(E.2) (E[ max
1≤j≤p

x4
ij])

1/4 ≤ Bn, ∀i.

Moreover, assume both

(M.1) c1 ≤ n−1∑n
i=1E[x2

ij] ≤ C1, ∀j; and

(M.2) n−1∑n
i=1E[|xij|2+k] ≤ Bkn, k = 1, 2, ∀j.

Here Bn →∞ is allowed. e.g. consider the case where xi = εizi with
εi mean zero scalar error and zi vector of non-stochastic covariates
normalized s.t. n−1

∑n
i=1 z

2
ij = 1, ∀j. Then (E.2),(M.1),(M.2) are

satisfied if

E[ε2i ] ≥ c1, E[ε4i ] ≤ C1, |zij| ≤ Bn, ∀i, j,

after adjusting constants.
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Corollary

Corollary

Suppose that one of the following conditions is satisfied:

(i) (E.1) and B2
n log7(pn) ≤ C1n

1−c1 ; or

(ii) (E.2) and B4
n log7(pn) ≤ C1n

1−c1 .

Moreover, suppose that (M.1) and (M.2) are satisfied. Then

sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)| ≤ Cn−c,

where c, C depend only on c1, C1.
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Multiplier bootstrap

Unless the cov. structure of X is known, the dist. of Z0 is still
unknown. Propose a multiplier bootstrap.

Generate i.i.d. N(0, 1) r.v.’s e1, ..., en indep. of x1, ..., xn. Define

W0 = max
1≤j≤p

1
√
n

n∑
i=1

eixij.

Note that cond. on x1, . . . , xn,

n−1/2∑n
i=1eixi ∼ N(0, n−1∑n

i=1xix
′
i).

“Close” to N(0, n−1
∑n
i=1E[xix

′
i])

d
= Y . Recall

Z0 = max1≤j≤p Yj .

Bootstrap critical value:

cW0(α) = inf{t ∈ R : Pe(W0 ≤ t) ≥ α}.

Chernozhukov Chetverikov K. (MIT, UCLA, UT)GAR and MB for Maxima of Sums of High-Dimensional VectorsMarch 14, 2014 18 / 27



Theorem (Multiplier bootstrap theorem)

Suppose that one of the following conditions is satisfied:

(i) (E.1) and B2
n log7(pn) ≤ C1n

1−c1 ; or

(ii) (E.2) and B4
n log7(pn) ≤ C1n

1−c1 .

Moreover, suppose that (M.1) and (M.2) are satisfied. Then

sup
α∈(0,1)

|P(T0 ≤ cW0(α))− α| ≤ Cn−c,

where c, C depend only on c1, C1.
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Key fact

The key to the above theorem is the fact that

sup
t∈R
|Pe(W0 ≤ t)− P(Z0 ≤ t)|

is essentially controlled by

max
1≤j,k≤p

|n−1∑n
i=1(xijxik − E[xijxik])|,

which can be oP (1) even if p� n.
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Testing many moment inequalities

x1, . . . , xn ∼ i.i.d. in Rp with E[xi] = µ. Assume
σ2
j = Var(xij) > 0, ∀j.

Possibly p� n. Think of p = pn.

We are interested in testing the null hypothesis

H0 : µj ≤ 0, ∀j,

against the alternative

H1 : µj > 0, ∃j.
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Literature on testing moment inequalities

Testing unconditional moment inequalities: Chernozhukov, Hong, and
Tamer (2007, ECMT), Romano and Shaikh (2008, JSPI), Andrews
and Guggenberger (2009, ET), Andrews and Soares (2010, ECMT),
Canay (2010, JoE), Bugni (2011, working), Andrews and Jia-Barwick
(2012, ECMT), Romano, Shaikh, and Wolf (2012, working). # of
moment ineq. is fixed.

Testing conditional moment inequalities: Andrews and Shi (2013,
ECMT), Chernozhukov, Lee, and Rosen (2013, ECMT), Armstrong
(2011, working), Chetverikov (2011, working), Armstrong and Chan
(2012, working).

When many moment inequalities?: Entry game example in Ciliberto
and Tamer (2009, ECMT), testing conditional moment inequalities in
Andrews and Shi (2013, ECMT).

Chernozhukov Chetverikov K. (MIT, UCLA, UT)GAR and MB for Maxima of Sums of High-Dimensional VectorsMarch 14, 2014 22 / 27



Test statistic and MB critical value

Def. µ̂j = n−1
∑n
i=1 xij and σ̂2

j = n−1
∑n
i=1(xij − µ̂j)2.

Test stat.
T = max

1≤j≤p

√
nµ̂j/σ̂j.

Under H0,
T ≤ max

1≤j≤p

√
n(µ̂j − µj)/σ̂j.

Want to approximate the distribution of the RHS.

Generate i.i.d. N(0, 1) r.v.’s e1, . . . , en indep. of the data. Def.

W = max
1≤j≤p

1
√
n

n∑
i=1

ei(xij − µ̂j)/σ̂j,

cW (1− α) = conditional (1− α)-quantile of W.
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Refinement by moment selection

Take 0 < βn < α/2. βn → 0 is allowed but supn≥1 βn < α/2.

Take

Ĵ = {j ∈ {1, . . . , p} : µ̂j ≥ −2cW (1− βn)/
√
n}.

Def.

WR = max
j∈Ĵ

1
√
n

n∑
i=1

ei(xij − µ̂j)/σ̂j,

cWR(1− α) = conditional (1− α+ 2βn)-quantile of WR.
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Size control

Theorem

Define zij = (xij − µj)/σj and zi = (zi1, . . . , zip)
′. Suppose that

(E.2) and (M.2) are satisfied with xi = zi. Then

P(T > cW (1− α)) ≤ α+ Cn−c,

P(T > cWR(1− α)) ≤ α+ Cn−c, (if log(1/βn) ≤ C1 logn).

Moreover, if all the inequalities are binding and βn ≤ C1n
−c1 , then

P(T > cW (1− α)) ≥ α− Cn−c,
P(T > cWR(1− α)) ≥ α− Cn−c.

Here c, C depend only on c1, C1.
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Summary

We derived a new Gaussian approximation result for the maximum of
the sum of high-dimensional random vectors which is valid even when
p� n and without any restriction on correlation structure between
coordinates of the random vectors.

We proved validity of the Gaussian multiplier bootstrap.

We demonstrated usefulness of the results for testing many moment
inequalities.

The results presented here have many other applications as well.
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Thank you for your attention.
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